1
|
Nothnagel RM, Bauer C, Vukonic L, Váradi T, Franek F, Nehrer S, Ripoll MR. Comparative in vitro study of chondrocyte viability and gene expression in wrought and additive manufactured CoCrMo sliding against articular cartilage. J Mech Behav Biomed Mater 2025; 168:107024. [PMID: 40294541 DOI: 10.1016/j.jmbbm.2025.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/19/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Hemiarthroplasty consists of the replacement of local cartilage defects by a partial implant and provides a less aggressive alternative to total joint replacement. The material frequently selected nowadays for partial implants is CoCrMo alloy, which results in a sliding contact between articular cartilage and the alloy. Since the geometry of the implant needs to be tailored to the patient, partial implant technology would greatly profit from novel additive manufacturing techniques. This study examines the feasibility of using additive manufacturing techniques on partial implants made of CoCrMo alloys, with a particular focus on the impact of manufacturing technique on mechanical stimulation, cartilage analysis, and friction performance. To this end, in vitro biotribological experiments were performed between CoCrMo samples and bovine articular cartilage using PBS as simulated body fluid. Key findings reveal significant changes in microstructure between laser beam melted (LBM) and wrought CoCrMo alloys, despite having a comparable elemental composition. The coefficient of friction (CoF) measured between bovine articular cartilage and the CoCrMo specimens during biotribocorrosive testing revealed no significant differences resulting from the manufacturing techniques, even though wrought CoCrMo resulted in a higher reproducibility. Conventionally produced CoCrMo also exhibited a more anodic open circuit potential during the experiments, likely due to the significant differences in microstructure that affect corrosion resistance. The tested cartilage samples showed a slight increase in MMP13 (Matrix Metalloproteinases - degradative enzymes) in comparison to the controls, indicating potential remodeling effects, especially for the LBM CoCrMo alloy. Additionally, the metabolic activity in the cartilage specimens increased due to mechanical stimulation. No cracks or fissures were detected in histological imaging thus highlighting that the cartilage samples were not damaged during harvesting or testing. These findings indicate the possibility of an equivalent use of additive manufactured CoCrMo, enabling patient-specific surgeries and encourage further research to explore the long-term impact of corrosion stability on implant longevity and functionality.
Collapse
Affiliation(s)
- Rosa Maria Nothnagel
- AC2T Research GmbH, Wiener Neustadt, Austria; University of Continuing Science Krems, Faculty of Health and Medicine, Department for Health Sciences and Biomedicine, Center for Regenerative Medicine and Orthopedics, Krems, Austria.
| | - Christoph Bauer
- University of Continuing Science Krems, Faculty of Health and Medicine, Department for Health Sciences and Biomedicine, Center for Regenerative Medicine and Orthopedics, Krems, Austria
| | | | | | | | - Stefan Nehrer
- University of Continuing Science Krems, Faculty of Health and Medicine, Department for Health Sciences and Biomedicine, Center for Regenerative Medicine and Orthopedics, Krems, Austria
| | | |
Collapse
|
2
|
Elkington RJ, Hall RM, Beadling AR, Pandit H, Bryant MG. Highly lubricious SPMK-g-PEEK implant surfaces to facilitate rehydration of articular cartilage. J Mech Behav Biomed Mater 2023; 147:106084. [PMID: 37683556 DOI: 10.1016/j.jmbbm.2023.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
To enable long lasting osteochondral defect repairs which preserve the native function of synovial joint counter-face, it is essential to develop surfaces which are optimised to support healthy cartilage function by providing a hydrated, low friction and compliant sliding interface. PEEK surfaces were modified using a biocompatible 3-sulfopropyl methacrylate potassium salt (SPMK) through UV photo-polymerisation, resulting in a ∼350 nm thick hydrophilic coating rich in hydrophilic anionic sulfonic acid groups. Characterisation was done through Fourier Transformed Infrared Spectroscopy, Focused Ion Beam Scanning Electron Microscopy, and Water Contact Angle measurements. Using a Bruker UMT TriboLab, bovine cartilage sliding tests were conducted with real-time strain and shear force measurements, comparing untreated PEEK, SPMK functionalised PEEK (SPMK-g-PEEK), and Cobalt Chrome Molybdenum alloy. Tribological tests over 2.5 h at physiological loads (0.75 MPa) revealed that SPMK-g-PEEK maintains low friction (μ< 0.024) and minimises equilibrium strain, significantly reducing forces on the cartilage interface. Post-test analysis showed no notable damage to the cartilage interfacing against the SPMK functionalised surfaces. The application of a constitutive biphasic cartilage model to the experimental strain data reveals that SPMK surfaces increase the interfacial permeability of cartilage in sliding, facilitating fluid and strain recovery. Unlike previous demonstrations of sliding-induced tribological rehydration requiring specific hydrodynamic conditions, the SPMK-g-PEEK introduces a novel mode of tribological rehydration operating at low speeds and in a stationary contact area. SPMK-g-PEEK surfaces provide an enhanced cartilage counter-surface, which provides a highly hydrated and lubricious boundary layer along with supporting biphasic lubrication. Soft polymer surface functionalisation of orthopaedic implant surfaces are a promising approach for minimally invasive synovial joint repair with an enhanced bioinspired polyelectrolyte interface for sliding against cartilage. These hydrophilic surface coatings offer an enabling technology for the next generation of focal cartilage repair and hemiarthroplasty implant surfaces.
Collapse
Affiliation(s)
- Robert J Elkington
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK.
| | - Richard M Hall
- Institute of Thermofluids, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Andrew R Beadling
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, Yorkshire, UK
| | - Michael G Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| |
Collapse
|
3
|
Deroche E, Batailler C, Shatrov J, Gunst S, Servien E, Lustig S. No clinical difference at mid-term follow-up between TiN-coated versus uncoated cemented mobile-bearing total knee arthroplasty: a matched cohort study. SICOT J 2023; 9:5. [PMID: 36757220 PMCID: PMC9910165 DOI: 10.1051/sicotj/2023001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Nitride-based ceramic coating was introduced into surgical implants to improve hardness, reduce abrasion, and decrease the risk of metal-induced adverse reactions, especially for patients with suspected or identified metal hypersensitivity. The study aimed to evaluate the effectiveness and safety of a titanium nitride (TiN) coated prosthesis with a mobile bearing design. METHODS This was a retrospective matched-cohort study from a single center, comparing clinical outcomes between patients receiving either a TiN-coated versus an uncoated cobalt-chromium-molybdenum (CoCrMo) prostheses for primary total knee replacement. Seventeen patients received the TiN prosthesis between 2015 and 2019. These were matched 1:2 with patients receiving uncoated mobile-bearing knee prostheses with the same design manufacturer. RESULTS Fourteen patients in the TiN group had complete 5-year follow-up data and were compared with 34 patients from the CoCrMo group. The Knee Society Score was 170.6 ± 28.0 (Function subscore 83.7 ± 17.5 and Knee subscore 86.9 ± 13.8) in the TiN group and 180.7 ± 49.4 (Function subscore 87.5 ± 14.3 and Knee subscore 93.2 ± 9.6) in CoCrMo group, with no statistically significant difference (p = 0.19). One patient underwent a revision for instability requiring the removal of the implant in the TiN group and none in the CoCrMo group. The survival rates were 92.9% (CI95% 77.3-100.0) and 100.0% in the TiN group and CoCrMo group respectively (p = 1.0). DISCUSSION TiN-coated TKA with mobile bearing resulted in satisfactory clinical outcomes, and a low revision rate, and there was no complication related to the coated implant. The use of TiN-coated prostheses in case of confirmed or suspected metal allergy provides satisfactory short-term clinic outcomes.
Collapse
Affiliation(s)
- Etienne Deroche
- Orthopaedic Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital 69004 Lyon France,Corresponding author:
| | - Cécile Batailler
- Orthopaedic Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital 69004 Lyon France
| | - Jobe Shatrov
- Sydney Orthopaedic Research Institute (SORI) at Landmark Orthopaedics 500 Pacific Hwy St. Leonards NSW Australia
| | - Stanislas Gunst
- Orthopaedic Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital 69004 Lyon France
| | - Elvire Servien
- Orthopaedic Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital 69004 Lyon France,LIBM – EA 7424, Interuniversity Laboratory of Biology of Mobility, Claude Bernard Lyon 1 University 69622 Lyon France
| | - Sébastien Lustig
- Orthopaedic Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital 69004 Lyon France,University of Lyon, Claude Bernard Lyon 1 University, IFSTTAR, LBMC UMR_T9406 69622 Lyon France
| |
Collapse
|
4
|
Liu Y, Wo J, Zhu H, Huang Z, Zhou P, Yang J, Zheng S, Zhou L, Tan F, Sun G, Li Z. Cervical subtotal discectomy prosthesis validated in non-human primate model: A novel artificial cervical disc replacement concept? Front Bioeng Biotechnol 2022; 10:997877. [PMID: 36312530 PMCID: PMC9606661 DOI: 10.3389/fbioe.2022.997877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Objective: To evaluate the biological function of cervical subtotal discectomy prosthesis (CSDP) implantation in a non-human primate model. Methods: A CSDP was tested for cytocompatibility and osseointegration capacity before implantation in non-human primates. Subsequently, the CSDP was improved based on three-dimensional CT measurements of the non-human primate cervical spine. Eight cynomolgus monkeys were selected for removal of the intervertebral disc and lower endplate of the C5/6 segment to complete the model construction for CSDP implantation. In 18-month follow-up, physiological indices, radiology, and kinematics were assessed to estimate the biological function of the CSDP in non-human primates, including biosafety, osseointegration, and biomechanics. Results: Co-cultured with the CSDP constituent titanium alloy (Ti6Al4V-AO), the mouse embryo osteoblast precursor cell MC3T3-E1 obtained extended adhesion, remarkable viability status, and cell proliferation. After implantation in the mouse femur for 28 days, the surface of Ti6Al4V-AO was covered by a large amount of new cancellous bone, which formed further connections with the femur cortical bone, and no toxicity was detected by blood physiology indices or histopathology. After completing implantation in primate models, no infection or osteolysis was observed, nor was any subsidence or displacement of the CSDP observed in CT scans in the 18-month follow-up. In particular, the interior of the cervical vertebra fixation structure was gradually filled with new trabecular bone, and the CSDP had achieved fixation and bony fusion in the vertebral body at 1 year post-operation. Meanwhile, no signs of inflammation, spinal cord compression, adjacent segment degeneration, or force line changes were observed in subsequent MRI observations. Moreover, there were no pathological changes of the joint trajectory, joint motion range, stride length, or the stance phase ratio revealed in the kinematics analysis at 3, 6, 12, or 18 months after CSDP implantation. Conclusion: We successfully designed a new cervical subtotal discectomy prosthesis and constructed an excellent non-human primate implantation model for the evaluation of subtotal disc replacement arthroplasty. Furthermore, we demonstrated that CSDP had outstanding safety, osseointegration capacity, and biomechanical stability in a non-human primate model, which might be a new choice in the treatment of cervical disc diseases and potentially change future outcomes of degenerative cervical diseases.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jin Wo
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Haoran Zhu
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhonghai Huang
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Pan Zhou
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jinpei Yang
- Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Shuai Zheng
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
| | - Libing Zhou
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Fengjin Tan
- Orthopedics and Traumatology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
- *Correspondence: Fengjin Tan, ; Guodong Sun, ; Zhizhong Li,
| | - Guodong Sun
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Fengjin Tan, ; Guodong Sun, ; Zhizhong Li,
| | - Zhizhong Li
- Department of Orthopedics, First Affiliated Hospital and Fifth Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Fengjin Tan, ; Guodong Sun, ; Zhizhong Li,
| |
Collapse
|
5
|
Rahimi E, Offoiach R, Lekka M, Fedrizzi L. Electronic properties and surface potential evaluations at the protein nano-biofilm/oxide interface: Impact on corrosion and biodegradation. Colloids Surf B Biointerfaces 2022; 212:112346. [PMID: 35074638 DOI: 10.1016/j.colsurfb.2022.112346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
The formation of a protein nano-biofilm, which exhibits a special electronic behavior, on the surface of metals or oxide biomaterials considerably influences the crucial subsequent interactions, particularly the corrosion and biodegradation processes. This study discusses the impact of electrical surface potential (ESP) of a single or nano-biofilm of albumin protein on the electrochemical interactions and electronic property evolutions (e.g., charge carriers, space charge capacitance (SCC), and band bending) occurring on the surface oxide of CoCrMo implants. Scanning Kelvin probe force microscopy (SKPFM) results indicated that ESP or surface charge distribution on a single or nano-biofilm of the albumin protein is lower than that of a CoCrMo complex oxide layer, which hinders the charge transfer at the protein/electrolyte interface. Using a complementary approach, which involved performing Mott-Schottky analysis at the electrolyte/protein/oxide interface, it was revealed that the albumin protein significantly increases the SCC magnitude and number of n-type charge carrier owing to increased band bending at the SCC/protein interface; this facilitated the acceleration of metal ion release and metal-protein complex formation. The nanoscale SKPFM and electrochemical analyses performed in this study provide a better understanding of the role of protein molecules in corrosion/biodegradation of metallic biomaterials at the protein nano-biofilm/oxide interface.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy.
| | - Ruben Offoiach
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Maria Lekka
- CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 DonostiaSan Sebastián, Spain.
| | - Lorenzo Fedrizzi
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| |
Collapse
|
6
|
Kellens J, Berger P, Vandenneucker H. Metal wear debris generation in primary total knee arthroplasty: is it an issue? Acta Orthop Belg 2021; 87:681-695. [PMID: 35172435 DOI: 10.52628/87.4.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
More durable total knee arthroplasties (TKAs) are needed, due to the rising life expectancy, the higher activity levels of patients and the growing concerns about aseptic loosening being caused by metal hypersensitivity. In response, different hypoallergenic metal coatings have been developed for TKAs. However, possible adverse effects of these different metals (cobalt-chromium-molybdenum, zirconium, titanium and tantalum) have been neglected. The aim was to summarize the local and systemic adverse effects (including metal hypersensitivity), survival ratios, patient-reported outcome measures (PROMs) and the plasma metal ion concentrations of the different TKA coatings. A literature search on PubMed and EMBASE was performed. In total, 15 studies were found eligible. Common adverse effects of TKA were infection, loosening, pain, instability and hyper- coagulation disorders. Serious adverse effects related to TKA implants were not reported. The survival ratios and patient-reported outcome measures seem to confirm these good results. In contrast with chromium and cobalt, no significant differences were reported in the nickel, molybdenum and titanium concentrations. No significant differences between the hypoallergenic and standard TKA implants were found in terms of adverse effects, survival ratios and PROMs. A causal relationship between the common adverse effects and the different metals is unlikely. Due to the heterogeneity of the TKA implants used, no firm conclusions could be made. Further research with longer follow-up studies are needed to find possible adverse effects and differences. Thus far, the hypoallergenic implants seem to perform equal to the standard implants.
Collapse
|
7
|
Bauer C, Stotter C, Jeyakumar V, Niculescu-Morzsa E, Simlinger B, Rodríguez Ripoll M, Klestil T, Franek F, Nehrer S. Concentration-Dependent Effects of Cobalt and Chromium Ions on Osteoarthritic Chondrocytes. Cartilage 2021; 13:908S-919S. [PMID: 31779468 PMCID: PMC8721608 DOI: 10.1177/1947603519889389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Cobalt and chromium (CoCr) ions from metal implants are released into the joint due to biotribocorrosion, inducing apoptosis and altering gene expression in various cell types. Here, we asked whether CoCr ions concentration-dependently changed viability, transcriptional activity, and inflammatory response in human articular chondrocytes. DESIGN Human articular chondrocytes were exposed to Co (1.02-16.33 ppm) and Cr (0.42-6.66 ppm) ions and cell viability and early/late apoptosis (annexin V and 7-AAD) were assessed in 2-dimensional cell cultures using the XTT assay and flow cytometry, respectively. Changes in chondrocyte morphology were assessed using transmitted light microscopy. The effects of CoCr ions on transcriptional activity of chondrocytes were evaluated by quantitative polymerase chain reaction (qPCR). The inflammatory responses were determined by measuring the levels of released pro-inflammatory cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and tumor necrosis factor-α [TNF-α]). RESULTS CoCr ions concentration-dependently reduced metabolic activity and induced early and late apoptosis after 24 hours in culture. After 72 hours, the majority of chondrocytes (>90%) were apoptotic at the highest concentrations of CoCr ions (16.33/6/66 ppm). SOX9 expression was concentration-dependently enhanced, whereas expression of COL2A1 linearly decreased after 24 hours. IL-8 release was enhanced proportionally to CoCr ions levels, whereas IL-1β, IL-6, and TNF-α levels were not affected by the treatments. CONCLUSIONS CoCr ions showed concentration- and time-dependent effects on articular chondrocytes. Fractions of apoptotic articular chondrocytes were proportional to CoCr ion concentrations. In addition, metabolic activity and expression of chondrocyte-specific genes were decreased by CoCr ions. Furthermore, exposure to CoCr ions caused a release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Christoph Bauer
- Faculty of Health and Medicine,
Department for Health Sciences, Medicine and Research, Center for Regenerative
Medicine, Danube University Krems, Krems, Austria
| | - Christoph Stotter
- Faculty of Health and Medicine,
Department for Health Sciences, Medicine and Research, Center for Regenerative
Medicine, Danube University Krems, Krems, Austria,Department of Orthopedics and
Traumatology, LK Baden-Mödling-Hainburg, Baden, Austria
| | - Vivek Jeyakumar
- Faculty of Health and Medicine,
Department for Health Sciences, Medicine and Research, Center for Regenerative
Medicine, Danube University Krems, Krems, Austria
| | - Eugenia Niculescu-Morzsa
- Faculty of Health and Medicine,
Department for Health Sciences, Medicine and Research, Center for Regenerative
Medicine, Danube University Krems, Krems, Austria
| | | | | | - Thomas Klestil
- Department of Orthopedics and
Traumatology, LK Baden-Mödling-Hainburg, Baden, Austria,Faculty of Health and Medicine,
Department for Health Sciences, Medicine and Research, Center for Health Sciences
and Medicine, Danube University Krems, Krems, Austria
| | | | - Stefan Nehrer
- Faculty of Health and Medicine,
Department for Health Sciences, Medicine and Research, Center for Regenerative
Medicine, Danube University Krems, Krems, Austria,Stefan Nehrer, Center for Regenerative
Medicine, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems 3500,
Austria.
| |
Collapse
|
8
|
Berkmortel CJ, Szmit J, Langohr GD, King GJW, Johnson JA. The effect of hemiarthroplasty implant modulus on contact mechanics: an experimental investigation. J Shoulder Elbow Surg 2021; 30:2845-2851. [PMID: 34293420 DOI: 10.1016/j.jse.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/05/2021] [Accepted: 06/12/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hemiarthroplasties cause damage to the cartilage that they articulate against, which is a major limitation to their use. This study investigated the use of lower-stiffness materials to determine whether they improve hemiarthroplasty contact mechanics and thus reduce the risk of cartilage damage. METHODS Eleven fresh-frozen cadaveric upper extremities were disarticulated and fixed in a custom-built jig that applied a static load of 50 N to the radiocapitellar joint. Flexion angles of 0°, 45°, 90°, and 135° were tested with radial head implants made of cobalt-chrome (CoCr) and ultrahigh-molecular-weight polyethylene (UHMWPE) compared with the native radial head. A Tekscan thin-film sensor was used to measure the contact area and contact pressure between the radius and capitellum. RESULTS UHMWPE and CoCr were too stiff in the application of hemiarthroplasty, resulting in lower contact areas and higher contact pressures relative to the native joint. The native contact area was, on average, 42 ± 20 mm2 larger than that of UHMWPE (P < .001) and 55 ± 24 mm2 larger than that of CoCr (P < .001). UHMWPE had a contact area 13 ± 10 mm2 greater than that of CoCr (P = .014). DISCUSSION AND CONCLUSION This study shows that even though UHMWPE has a stiffness several times lower than CoCr, the use of this material in hemiarthroplasty led to only a minor improvement in contact mechanics. Neither implant restored contact similar to the native articulation. Investigations into new materials to improve the contact mechanics of hemiarthroplasty should focus on materials with a lower stiffness than UHMWPE.
Collapse
Affiliation(s)
- Carolyn J Berkmortel
- Department of Mechanical and Materials Engineering, Western University, London, ON, Canada
| | - Jakub Szmit
- Bioengineering Laboratory, Roth McFarlane Hand and Upper Limb Centre, Lawson Health Research Institute, St Joseph's Health Care, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - G Daniel Langohr
- Department of Mechanical and Materials Engineering, Western University, London, ON, Canada; Bioengineering Laboratory, Roth McFarlane Hand and Upper Limb Centre, Lawson Health Research Institute, St Joseph's Health Care, London, ON, Canada
| | - Graham J W King
- Bioengineering Laboratory, Roth McFarlane Hand and Upper Limb Centre, Lawson Health Research Institute, St Joseph's Health Care, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - James A Johnson
- Department of Mechanical and Materials Engineering, Western University, London, ON, Canada; Bioengineering Laboratory, Roth McFarlane Hand and Upper Limb Centre, Lawson Health Research Institute, St Joseph's Health Care, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada.
| |
Collapse
|
9
|
Guo J, Cao G, Wang X, Tang W, Diwu W, Yan M, Yang M, Bi L, Han Y. Coating CoCrMo Alloy with Graphene Oxide and ε-Poly-L-Lysine Enhances Its Antibacterial and Antibiofilm Properties. Int J Nanomedicine 2021; 16:7249-7268. [PMID: 34737563 PMCID: PMC8560011 DOI: 10.2147/ijn.s321800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION With increases in implant infections, the search for antibacterial and biofilm coatings has become a new interest for orthopaedists and dentists. In recent years, graphene oxide (GO) has been extensively studied for its superior antibacterial properties. However, most of these studies have focused on solutions and there are few antibacterial studies on metal surfaces, especially the surfaces of cobalt-chromium-molybdenum (CoCrMo) alloys. ε-Poly-L-lysine (ε-PLL), as a novel food preservative, has a spectrum of antimicrobial activity; however, its antimicrobial activity after coating an implant surface is not clear. METHODS In this study, for the first time, a two-step electrodeposition method was used to coat GO and ε-PLL on the surface of a CoCrMo alloy. Its antibacterial and antibiofilm properties against S. aureus and E. coli were then studied. RESULTS The results show that the formation of bacteria and biofilms on the coating surface was significantly inhibited, GO and ε-PLL composite coatings had the best antibacterial and antibiofilm effects, followed by ε-PLL and GO coatings. In terms of classification, the coatings are anti-adhesive and contact-killing/inhibitory surfaces. In addition to oxidative stress, physical damage to GO and electrostatic osmosis of ε-PLL are the main antibacterial and antibiofilm mechanisms. DISCUSSION This is the first study that GO and ε-PLL coatings were successfully prepared on the surface of CoCrMo alloy by electrodeposition. It provides a promising new approach to the problem of implant infection in orthopedics and stomatology.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Wenhao Tang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
10
|
Zhang X, Hu Y, Chen K, Zhang D. Bio-tribological behavior of articular cartilage based on biological morphology. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:132. [PMID: 34677698 PMCID: PMC8536562 DOI: 10.1007/s10856-021-06566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Artificial hemiarthroplasty is one of the effective methods for the treatment of hip joint diseases, but the wear failure of the interface between the hemi hip joint material and articular cartilage restricts the life of the prosthesis. Therefore, it is important to explore the damage mechanism between the interfaces to prolong the life of the prosthesis and improve the life quality of the prosthesis replacement. In this paper, the creep and bio-tribological properties of cartilage against PEEK, CoCrMo alloy, and ceramic were studied, and the tribological differences between "hard-soft" and "soft-soft" contact were analyzed based on biomorphology. The results showed that with the increase of time in vitro, the thickness of the cartilage membrane decreased, the surface damage was aggravated, and the anti-creep ability of cartilage was weakened. Second, the creep resistance of the soft-soft contact pair was better than that of the hard-soft contact pair. Also, the greater the load and the longer the wear time, the more serious the cartilage damage. Among the three friction pairs, the cartilage in PEEK/articular cartilage was the least damaged, followed by CoCrMo alloy/articular cartilage, and the most damage was found in ceramic/articular, indicating that the soft-soft friction pair inflicted the least damage to the cartilage.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Yi Hu
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Kai Chen
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Dekun Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China.
| |
Collapse
|
11
|
Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004393. [PMID: 34166584 PMCID: PMC8373130 DOI: 10.1002/advs.202004393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human-made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge-transfer regulating or monitoring abilities. Furthermore, three major charge-transfer controlling systems, including wired, self-activated, and stimuli-responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Yongfeng Mei
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
12
|
Liu G, Li G, Zhao F, Myshkin NK, Zhang G. Role of tribochemistry reactions of B 4C on tribofilm growth at a PEEK–steel interface in simulated body fluids. RSC Adv 2021; 11:32717-32729. [PMID: 35493560 PMCID: PMC9042132 DOI: 10.1039/d1ra05447c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Hydrolysis of B4C particles triggered by friction and deposition of Ca2+ and phosphate ions dominate formation of the barrier layer. The barrier layer endows the PEEK–metal sliding pair enhanced anti-wear and anti-corrosion performance.
Collapse
Affiliation(s)
- Gen Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guitao Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266071, China
| | - Fuyan Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266071, China
| | - Nikolai K. Myshkin
- V.A. Belyi Metal–Polymer Research Institute, National Academy of Sciences of Belarus, Gomel 246050, Belarus
| | - Ga Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266071, China
| |
Collapse
|
13
|
Chocarro‐Wrona C, de Vicente J, Antich C, Jiménez G, Martínez‐Moreno D, Carrillo E, Montañez E, Gálvez‐Martín P, Perán M, López‐Ruiz E, Marchal JA. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med 2021; 6:e10192. [PMID: 33532591 PMCID: PMC7823129 DOI: 10.1002/btm2.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.
Collapse
Affiliation(s)
- Carlos Chocarro‐Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Juan de Vicente
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Applied PhysicsFaculty of Sciences, University of GranadaGranadaSpain
| | - Cristina Antich
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Gema Jiménez
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Daniel Martínez‐Moreno
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Esmeralda Carrillo
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Elvira Montañez
- Biomedical Research Institute of Málaga (IBIMA)Málaga
- Department of Orthopedic Surgery and TraumatologyVirgen de la Victoria University HospitalMálagaSpain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologySchool of Pharmacy, University of GranadaGranadaSpain
- Advanced Therapies AreaBioibérica S.A.UBarcelonaSpain
| | - Macarena Perán
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Elena López‐Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| |
Collapse
|
14
|
Paish ADM, Nikolov HN, Welch ID, El-Warrak AO, Teeter MG, Naudie DDR, Holdsworth DW. Image-based design and 3D-metal printing of a rat hip implant for use in a clinically representative model of joint replacement. J Orthop Res 2020; 38:1627-1636. [PMID: 32369210 DOI: 10.1002/jor.24706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/04/2023]
Abstract
The aim of this study was to obtain micro-computed tomography derived measurements of the rat proximal femur, to create parameterized rat hip implants that could be surgically installed in a clinically representative small animal model of joint replacement. The proximal femoral anatomy of N = 25 rats (male, Sprague-Dawley, 390-605 g) was quantified. Key measurements were used to parameterize computer-aided design models of monoblock rat femoral implants. Linear regression analysis was used to determine if rat hip dimensions could be predicted from animal weight. A correlation analysis was used to determine how implants could be scaled to create a range of sizes. Additive manufacturing (3D printing) was used to create implants in medical-grade metal alloys. Linear regressions comparing rat weight to femoral head diameter and neck-head axis length revealed a significant nonzero slope (P < .05). Pearson's correlation analysis revealed five significant correlations between key measurements in the rat femur (P < .05). Implants were installed into both cadaveric and live animals; iterative design modifications were made to prototypes based on these surgical findings. Animals were able to tolerate the installation of implants and were observed ambulating on their affected limbs postoperatively. Clinical significance: We have developed a preclinical rat hip hemiarthroplasty model using image-based and iterative design techniques to create 3D-metal printed implants in medical-grade metal alloys. Our findings support further development of this model for use as a low-cost translational test platform for preclinical orthopaedic research into areas such as osseointegration, metal-on-cartilage wear, and periprosthetic joint infection.
Collapse
Affiliation(s)
- Adam D M Paish
- Bone and Joint Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Hristo N Nikolov
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Ian D Welch
- Animal Care Services, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander O El-Warrak
- Surgery Team, Premier Veterinary Group by Ethos Animal Health, Orland Park, Illinois
| | - Matthew G Teeter
- Bone and Joint Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Division of Orthopaedic Surgery, London Health Sciences Centre, London, Ontario, Canada
| | - Douglas D R Naudie
- Bone and Joint Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Division of Orthopaedic Surgery, London Health Sciences Centre, London, Ontario, Canada
| | - David W Holdsworth
- Bone and Joint Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Division of Orthopaedic Surgery, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
15
|
Stotter C, Stojanović B, Bauer C, Rodríguez Ripoll M, Franek F, Klestil T, Nehrer S. Effects of Loading Conditions on Articular Cartilage in a Metal-on-Cartilage Pairing. J Orthop Res 2019; 37:2531-2539. [PMID: 31334864 PMCID: PMC6899800 DOI: 10.1002/jor.24426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
The aim of this in vitro study was to investigate the response of articular cartilage to frictional load when sliding against a metal implant, and identify potential mechanisms of damage to articular cartilage in a metal-on-cartilage pairing. Bovine osteochondral cylinders were reciprocally slid against metal cylinders (cobalt-chromium-molybdenum alloy) with several variations of load and sliding velocity using a microtribometer. The effects of different loads and velocities, and the resulting friction coefficients on articular cartilage, were evaluated by measuring histological and metabolic outcomes. Moreover, the biotribocorrosion of the metal was determined. Chondrocytes stimulated with high load and velocity showed increased metabolic activity and cartilage-specific gene expression. In addition, higher load and velocity resulted in biotribocorrosion of the metal implant and damage to the surface of the articular cartilage, whereas low velocity and a high coefficient of friction increased the expression of catabolic genes. Articular cartilage showed particular responses to load and velocity when sliding against a metal implant. Moreover, metal implants showed tribocorrosion. Therefore, corrosion particles may play a role in the mechano-biochemical wear of articular cartilage after implantation of a metal implant. These findings may be useful to surgeons performing resurfacing procedures and total knee arthroplasty. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 37:2531-2539, 2019.
Collapse
Affiliation(s)
- Christoph Stotter
- Faculty of Health and Medicine, Department for Health Sciences, Medicine and Research, Center for Regenerative MedicineDanube University KremsDr. Karl‐Dorrek‐Str. 30KremsA‐3500Austria,Department of Orthopedics and TraumatologyLK Baden‐Mödling‐HainburgWaltersdorfer Straße 75A‐2500BadenAustria
| | - Bojana Stojanović
- AC2T Research GmbHViktor Kaplan‐Straße 2A‐2700Wiener NeustadtAustria
| | - Christoph Bauer
- Faculty of Health and Medicine, Department for Health Sciences, Medicine and Research, Center for Regenerative MedicineDanube University KremsDr. Karl‐Dorrek‐Str. 30KremsA‐3500Austria
| | | | - Friedrich Franek
- AC2T Research GmbHViktor Kaplan‐Straße 2A‐2700Wiener NeustadtAustria
| | - Thomas Klestil
- Department of Orthopedics and TraumatologyLK Baden‐Mödling‐HainburgWaltersdorfer Straße 75A‐2500BadenAustria,Faculty of Health and Medicine, Department for Health Sciences, Medicine and ResearchDanube University KremsDr. Karl‐Dorrek‐Str. 30KremsA‐3500Austria
| | - Stefan Nehrer
- Faculty of Health and Medicine, Department for Health Sciences, Medicine and Research, Center for Regenerative MedicineDanube University KremsDr. Karl‐Dorrek‐Str. 30KremsA‐3500Austria
| |
Collapse
|