1
|
Xi Y, Jiang Q, Dai W, Chen C, Wang Y, Miao X, Lai K, Jiang Z, Yang G, Wang Y. SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice. J Zhejiang Univ Sci B 2025; 26:254-268. [PMID: 40082204 PMCID: PMC11906391 DOI: 10.1631/jzus.b2300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2025]
Abstract
Loss-of-function variants of low-density lipoprotein receptor-related protein 5 (LRP5) can lead to reduced bone formation, culminating in diminished bone mass. Our previous study reported transcription factor osterix (SP7)-binding sites on the LRP5 promoter and its pivotal role in upregulating LRP5 expression during implant osseointegration. However, the potential role of SP7 in ameliorating LRP5-dependent osteoporosis remained unknown. In this study, we used mice with a conditional knockout (cKO) of LRP5 in mature osteoblasts, which presented decreased osteogenesis. The in vitro experimental results showed that SP7 could promote LRP5 expression, thereby upregulating the osteogenic markers such as alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and β-catenin (P<0.05). For the in vivo experiment, the SP7 overexpression virus was injected into a bone defect model of LRP5 cKO mice, resulting in increased bone mineral density (BMD) (P<0.001) and volumetric density (bone volume (BV)/total volume (TV)) (P<0.001), and decreased trabecular separation (Tb.Sp) (P<0.05). These data suggested that SP7 could ameliorate bone defect healing in LRP5 cKO mice. Our study provides new insights into potential therapeutic opportunities for ameliorating LRP5-dependent osteoporosis.
Collapse
Affiliation(s)
- Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qifeng Jiang
- School of Stomatology, Zhejiang University, Hangzhou 310058, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Chaozhen Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. ,
| |
Collapse
|
2
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
3
|
Wang K, Gao Y, Wu S, Zhang J, Zhu M, Chen X, Fu X, Duan X, Men K. Dual-mRNA Delivery Using Tumor Cell Lysate-Based Multifunctional Nanoparticles as an Efficient Colon Cancer Immunogene Therapy. Int J Nanomedicine 2024; 19:4779-4801. [PMID: 38828196 PMCID: PMC11141578 DOI: 10.2147/ijn.s452548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background Messenger RNA (mRNA)-based immunogene therapy holds significant promise as an emerging tumor therapy approach. However, the delivery efficiency of existing mRNA methods and their effectiveness in stimulating anti-tumor immune responses require further enhancement. Tumor cell lysates containing tumor-specific antigens and biomarkers can trigger a stronger immune response to tumors. In addition, strategies involving multiple gene therapies offer potential optimization paths for tumor gene treatments. Methods Based on the previously developed ideal mRNA delivery system called DOTAP-mPEG-PCL (DMP), which was formed through the self-assembly of 1.2-dioleoyl-3-trimethylammonium-propane (DOTAP) and methoxypoly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL), we introduced a fused cell-penetrating peptide (fCPP) into the framework and encapsulated tumor cell lysates to form a novel nanovector, termed CLSV system (CLS: CT26 tumor cell lysate, V: nanovector). This system served a dual purpose of facilitating the delivery of two mRNAs and enhancing tumor immunogene therapy through tumor cell lysates. Results The synthesized CLSV system had an average size of 241.17 nm and a potential of 39.53 mV. The CLSV system could not only encapsulate tumor cell lysates, but also deliver two mRNAs to tumor cells simultaneously, with a transfection efficiency of up to 60%. The CLSV system effectively activated the immune system such as dendritic cells to mature and activate, leading to an anti-tumor immune response. By loading Bim-encoded mRNA and IL-23A-encoded mRNA, CLSV/Bim and CLSV/IL-23A complexes were formed, respectively, to further induce apoptosis and anti-tumor immunity. The prepared CLSV/dual-mRNA complex showed significant anti-cancer effects in multiple CT26 mouse models. Conclusion Our results suggest that the prepared CLSV system is an ideal delivery system for dual-mRNA immunogene therapy.
Collapse
Affiliation(s)
- Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shan Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xiayu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xizi Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
4
|
Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws. Cell Tissue Res 2023; 392:413-430. [PMID: 36737519 DOI: 10.1007/s00441-023-03743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Osteoradionecrosis of the jaws (ORNJ) is a severe complication that occurs after radiotherapy of head and neck malignancies. Clinically, conservative treatments and surgeries for ORNJ exhibited certain therapeutic effects, whereas the regenerative disorder of the post-radiation jaw remains a pending problem to be solved. In recent years, the recognition of the role of the immune microenvironment has led to a shift from an osteoblasts (OBs) or bone marrow mesenchymal stromal cells (BMSCs)-centered view of bone regeneration to the concept of a complicated microecosystem that supports bone regeneration. Current advances in osteoimmunology have uncovered novel targets within the immune microenvironment to help improve various regeneration therapies, notably therapies potentiating the interaction between BMSCs and immune cells. However, these researches lack a thorough understanding of the immune microenvironment and the interaction network of immune cells in the course of bone regeneration, especially for the post-operative defect of ORNJ. This review summarized the composition of the immune microenvironment during bone regeneration, how the immune microenvironment interacts with the skeletal system, and discussed existing and potential strategies aimed at targeting cellular and molecular immune microenvironment components.
Collapse
|
5
|
Rajendran AK, Amirthalingam S, Hwang NS. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv 2022; 12:8889-8900. [PMID: 35424872 PMCID: PMC8985089 DOI: 10.1039/d2ra00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The therapeutics for bone tissue regeneration requires constant advancements owing to the steady increase in the number of patients suffering from bone-related disorders, and also to find efficient and cost-effective treatment modalities. One of the major advancements in the field of therapeutics is the development of mRNAs. mRNAs, which have been extensively tested for the vaccines, could be very well utilized as a potential inducer for bone regeneration. The ability of mRNAs to enter the cells and instruct the cellular machinery to produce the required native proteins such as BMP or VEGF is a great way to avoid the issues faced with growth factor deliveries such as the production cost, loss of biological function etc. However, there have been a few hurdles for using mRNAs as an effective therapeutic agent, such as proper dosing, tolerating the degradation by RNases, improving the half-life, controlling the spatio-temporal release and reducing the off-target effects. This brief review discusses the various developments in the field of mRNA therapeutics especially for bone tissue engineering, how nano-formulations are being developed to effectively deliver the mRNAs into the cells by evading the immune responses, how researchers have developed certain strategies to increase the half-life, to successfully deliver the mRNAs to specific bone defect area and bring about effective bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute for Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
6
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Kim H, Solak K, Han Y, Cho YW, Koo KM, Kim CD, Luo Z, Son H, Kim HR, Mavi A, Kim TH. Electrically controlled mRNA delivery using a polypyrrole-graphene oxide hybrid film to promote osteogenic differentiation of human mesenchymal stem cells. NANO RESEARCH 2022; 15:9253-9263. [PMID: 35911478 PMCID: PMC9308036 DOI: 10.1007/s12274-022-4613-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (electrochemical and FT-IR analysis on the film, additional SEM, AFM and C-AFM images of the film, optical and fluorescence images of cells, and the primers used for RT-qPCR analysis) is available in the online version of this article at 10.1007/s12274-022-4613-y.
Collapse
Affiliation(s)
- Huijung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kübra Solak
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, 25240 Turkey
| | - Yoojoong Han
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077 China
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, 25240 Turkey
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, 25240 Turkey
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
8
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
9
|
Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13070945. [PMID: 34202584 PMCID: PMC8308975 DOI: 10.3390/pharmaceutics13070945] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Messenger RNA (mRNA) is being extensively used in gene therapy and vaccination due to its safety over DNA, in the following ways: its lack of integration risk, cytoplasmic expression, and transient expression compatible with fine regulations. However, clinical applications of mRNA are limited by its fast degradation by nucleases, and the activation of detrimental immune responses. Advances in mRNA applications, with the recent approval of COVID-19 vaccines, were fueled by optimization of the mRNA sequence and the development of mRNA delivery systems. Although delivery systems and mRNA sequence optimization have been abundantly reviewed, understanding of the intracellular processing of mRNA is mandatory to improve its applications. We will focus on lipid nanoparticles (LNPs) as they are the most advanced nanocarriers for the delivery of mRNA. Here, we will review how mRNA therapeutic potency can be affected by its interactions with cellular proteins and intracellular distribution.
Collapse
Affiliation(s)
- Christophe Delehedde
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Patrick Midoux
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
| | - Chantal Pichon
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| | - Federico Perche
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| |
Collapse
|
10
|
Wang P, Perche F, Midoux P, Cabral CSD, Malard V, Correia IJ, Ei-Hafci H, Petite H, Logeart-Avramoglou D, Pichon C. In Vivo bone tissue induction by freeze-dried collagen-nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. J Control Release 2021; 334:188-200. [PMID: 33895201 DOI: 10.1016/j.jconrel.2021.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Messenger RNA (mRNA) activated matrices (RAMs) are interesting to orchestrate tissue and organ regeneration due to the in-situ and sustained production of functional proteins. However, the immunogenicity of in vitro transcribed mRNA and the paucity of proper in vivo mRNA delivery vector need to be overcome to exert the therapeutic potential of RAM. We developed a dual mRNAs system for in vitro osteogenesis by co-delivering NS1 mRNA with BMP2 mRNA to inhibit RNA sensors and enhance BMP-2 expression. Next, we evaluated a lipopolyplex (LPR) formulation platform for in vivo mRNA delivery and adapted the LPRs for RAM preparation. The LPR formulated BMP2/NS1 mRNAs were incorporated into an optimized collagen-nanohydroxyapatite scaffold and freeze-dried to prepare ready-to-use RAMs. The loaded BMP2/NS1 mRNAs lipopolyplexes maintained their spherical morphology in the RAM, thanks to the core-shell structure of LPR. The mRNAs release from RAMs lasted for 16 days resulting in an enhanced prolonged transgene expression period compared to direct cell transfection. Once subcutaneously implanted in mice, the BMP2/NS1 mRNAs LPRs containing RAMs (RAM-BMP2/NS1) induced significant new bone tissue than those without NS1 mRNA, eight weeks post implantation. Overall, our results demonstrate that the BMP2/NS1 dual mRNAs system is suitable for osteogenic engagement, and the freeze-dried RAM-BMP2/NS1 could be promising off-the-shelf products for clinical orthopedic practice.
Collapse
Affiliation(s)
- Pinpin Wang
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France; Shenzhen Institute of Advanced Technology, Chinese Academy Sciences, Shenzhen, China
| | - Federico Perche
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France
| | - Patrick Midoux
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France
| | - Cátia S D Cabral
- Centro de Investigação em Ciências da Saúde (CICS), Universidade da Beira Interior, Covilha, Portugal
| | - Virginie Malard
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France
| | - Ilídio J Correia
- Centro de Investigação em Ciências da Saúde (CICS), Universidade da Beira Interior, Covilha, Portugal; Departamento Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| | - Hanane Ei-Hafci
- Université de Paris, CNRS UMR 7052, INSERM U1271, B3OA, Paris, France
| | - Hervé Petite
- Université de Paris, CNRS UMR 7052, INSERM U1271, B3OA, Paris, France
| | | | - Chantal Pichon
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France; Faculty of Science and Techniques, University of Orléans, Orléans, France.
| |
Collapse
|
11
|
Chen Y, Lee K, Kawazoe N, Yang Y, Chen G. ECM scaffolds mimicking extracellular matrices of endochondral ossification for the regulation of mesenchymal stem cell differentiation. Acta Biomater 2020; 114:158-169. [PMID: 32738504 DOI: 10.1016/j.actbio.2020.07.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Endochondral ossification (ECO) is an important process of bone tissue development. During ECO, extracellular matrices (ECMs) are essential factors to control cell functions and induce bone regeneration. However, the exact role of ECO ECMs on stem cell differentiation remains elusive. In this study, ECM scaffolds were prepared to mimic the ECO-related ECM microenvironments and their effects on stem cell differentiation were compared. Four types of ECM scaffolds mimicking the ECMs of stem cells (SC), chondrogenic (CH), hypertrophic (HY) and osteogenic (OS) stages were prepared by controlling differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) at different stages. Composition of the ECM scaffolds was dependent on the differentiation stage of MSCs. They showed different influence on osteogenic differentiation of MSCs. HY ECM scaffold had the most promotive effect on osteogenic differentiation of MSCs. CH ECM and OS ECM scaffolds showed moderate effect, while SC ECM scaffold had the lowest effect on osteogenic differentiation of MSCs. Their effects on chondrogenic or adipogenic differentiation were not significantly different. The results suggested that the engineered HY ECM scaffold had superior effect for osteogenic differentiation of MSCs. Statement of significance ECM scaffolds mimicking endochondral ossification-related ECM microenvironments are pivotal for elucidation of their roles in regulation of stem cell functions and bone tissue regeneration. This study offers a method to prepare ECM scaffolds that mimic the ECMs from cells at hypertrophic, osteogenic, chondrogenic and stem cell stages. Their composition and impacts on osteogenic differentiation of MSCs were compared. The hypertrophic ECM scaffold had the highest promotive effect on osteogenic differentiation of MSCs. The results advance our understanding about the role of ECO ECMs in regulation of stem cell functions and provide perspective for bone defect repair strategies.
Collapse
|