1
|
Liu Z, Ye P, Shi L, Zhao Z, Zhou J, Zhou Y, Li F, Qu JH, Wang Q, Jiang Z. Dual-filler mixed matrix membrane with covalent-organic framework and nano TiO 2/polyether sulfone for efficient antibody purification. J Chromatogr A 2025; 1751:465940. [PMID: 40203634 DOI: 10.1016/j.chroma.2025.465940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
With the rapid expansion of antibody drug market, most biopharmaceutical industries urgently need to optimize their downstream purification processes to reduce production costs and improve market competitiveness. In this study, a dual-filler polyether sulfone (PES) mixed matrix membrane (MMM) that combines covalent-organic framework (COF) with nano TiO2 was developed to overcome the drawbacks of conventional protein A based purification methods. Firstly, COF@TiO2 dual-filler was prepared by Schiff base reaction. The proposed dual-filler MMM was fabricated via nonsolvent-induced phase separation (NIPS), followed by functionalization with a Fab-specific affinity peptide (m-EDPW) of trastuzumab through atom-transfer radical-polymerization method. The resulting m-EDPW@COF@TiO2/PES affinity membrane effectively integrates the merits of COF and TiO2 and show synergistic effects, demonstrating satisfactory hydrophilicity, anti-fouling ability (BSA rejection rate: 97.7 %), enrichment recovery (90.8 %), binding capacity for trastuzumab (386.6 mg/g), and long-term stability (∼ 21 days). Particularly, this affinity membrane showed good selectivity and specificity, enabling the successful purification of trastuzumab from spiked HCC1937 cancer cell culture medium with satisfactory purity (~ 97.4 %) and preservation of the antibody secondary structure. This study not only developed a novel affinity membrane with satisfactory antibody separation performance but also opened a new route for developing dual-filler or multi-filler MMM for highly efficient downstream protein purification.
Collapse
Affiliation(s)
- Zhenhu Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Peijun Ye
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Leying Shi
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Zheng Zhao
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Ying Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Feng Li
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China.
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Hu Y, Li M, Xu X, Ma N, Luo J, Wu X, Ping Q, Lin X, Zhang T, Liang C, Yang L. A bioactive Cu-grafted gel coating with micro-nano structures for simultaneous enhancement of bone regeneration and infection resistance. J Mater Chem B 2025. [PMID: 40391950 DOI: 10.1039/d5tb00211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Prosthetic joint infection (PJI) remains a significant challenge in clinical applications. It not only impedes the recovery of bone tissue at the site of bone defect but also leads to multiple debridements, long-lasting antibiotic treatment and even secondary replacement. Titanium alloy Ti6Al4V (TC4) is widely used in orthopedic implants due to its excellent mechanical properties and biocompatibility; however, it lacks inherent antibacterial and osteoinductive functions. In this study, a composite coating based on polyvinyl alcohol (PVA) with tissue repair and antibacterial properties was applied on the surface of TC4. A PVA gel coating functionalized with terpyridine and catechol groups (PVA-TP-CA) was synthesized and subsequently complexed with copper (Cu) ions. The differential binding affinities of TP and CA groups to Cu enabled a sustained and controlled release of metal ions. Furthermore, a micro-nano surface structure was fabricated on TC4 using femtosecond laser technology to achieve a micro-nano structure interface and enhanced bonding strength. Biological evaluations demonstrated that the modified surface significantly improved the antibacterial, angiogenic, and osteogenic properties of TC4. These findings indicate that this multifunctional composite coating holds great promise for surface modification of orthopedic implants, offering an effective strategy for preventing PJI while promoting bone regeneration.
Collapse
Affiliation(s)
- Ying Hu
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Mingjun Li
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jiahao Luo
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaoxuan Wu
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Qixiang Ping
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiao Lin
- Orthopedic Institute, Department of Orthopedics, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Tingbin Zhang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Chunyong Liang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
3
|
Xia K, Chen G, Hou B, Wang Z, Zhu Y, Xu Y, Zhang S, Xuan Q, You Y, Hao Z. Trimethylamine N-oxide-derived zwitterion coating for polyurethane ureteral stents prevents encrustation formation. Acta Biomater 2025:S1742-7061(25)00312-5. [PMID: 40318742 DOI: 10.1016/j.actbio.2025.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
A ureteral stent with strong resistance to proteins, bacteria, and multivalent ions is crucial for the safe treatment of urologic diseases. Generally, the proteins, bacteria, and multivalent ions present in urine tend to bind to the stent surface, leading to aggregation, nucleation, and subsequent stent encrustation. Stent encrustation can induce or exacerbate urinary tract infections and obstructions, thereby seriously harming kidney function. Although hydrophilic coatings on ureteral stents can reduce the binding of proteins, bacteria, and multivalent ions, encrustation still occurs. To date, preventing stent encrustation formation remains a significant challenge. Here, we grafted dense trimethylamine oxide (TMAO)-derived zwitterionic polymers onto the stent surface via a branched amplification strategy. These zwitterions can strongly bind water molecules, forming a stable hydration layer that repels proteins, bacteria, and multivalent ions from adhering to the surface of the polyurethane ureteral stent, thus rendering the stent anti-encrustation. The results showed that the TMAO-derived zwitterion-coated stents exhibited a significantly reduced encrustation weight (13.8% of the original polyurethane stent) and demonstrated good safety. This approach offers a promising method for enhancing stent encrustation resistance. STATEMENT OF SIGNIFICANCE: This study successfully developed a TMAO-derived zwitterionic coating on the surface of a polyurethane stent, creating a superhydrophilic surface with a minimal contact angle of 5.2o. This surface effectively shields the stent from interactions with proteins, bacteria, and multivalent ions in urine, demonstrating favorable anti-protein adsorption and antibacterial adhesion properties. The superhydrophilic surface formed by the TMAO-derived zwitterionic coating on the stents (PTMAO-s) provides strong anti-fouling resistance and enhanced anti-encrustation properties. Under identical conditions, the encrustation resistance of PTMAO-s is approximately 7.2-fold greater than that of original polyurethane stents (PU), 3.6-fold greater than Bard commercial stents, and 2.1-fold greater than betaine-coated stents (PSBG-s).
Collapse
Affiliation(s)
- Kaiguo Xia
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, 230022, PR China; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, 230022, PR China
| | - Zhe Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yaqi Zhu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuexian Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, 230022, PR China
| | - Shanfu Zhang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| | - Qiang Xuan
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| | - Yezi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
4
|
Yang H, Wang Y, Yao L, Wang J, Chen H. Antifouling Polymer Coatings for Bioactive Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6471-6496. [PMID: 40030123 DOI: 10.1021/acs.langmuir.4c04859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Bioactive surfaces play a pivotal role in biomedical applications by enabling precise biological interactions through immobilized functional molecules. However, their performance is often hindered by nonspecific protein adsorption and cell adhesion. Antifouling polymer coatings have emerged as an effective solution, creating hydration barriers to preserve functionality and reduce biofouling. This review provides an overview of the recent advances in the development of antifouling polymer coatings for bioactive surfaces, with particular focus on nonionic polymers, such as polyethylene glycol (PEG), and zwitterionic polymers like poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Among them, zwitterionic polymers, with their unique charge-balanced structures, exhibit exceptional hydration, protein resistance, and stability, making them particularly promising for biomedical applications. In addition, key applications of these bioactive surfaces, including their use in anticoagulant materials, antibacterial coatings, and biosensor interfaces, are also discussed. The discussion concludes with an address of the field's challenges and future directions, highlighting the need for innovative materials that balance antifouling properties, biocompatibility, and long-term stability for both clinical and industrial use. This review aims to review the latest advancements in antifouling polymer coatings for bioactive surfaces and provide insights into optimizing multifunctional bioactive surfaces to meet the evolving and dynamic demands of the biomedical field.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Jang SY, Roh S, Seo K, Jung Y, Thi HYN, Kim JF, An H, Jeon H, Kwon IK, Yoo J. Synergistic coating of Laponite swollen-layer and heparin composite for enhanced antifouling and antithrombotic performance. Carbohydr Polym 2025; 348:122875. [PMID: 39567120 DOI: 10.1016/j.carbpol.2024.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
When implantable medical devices come into contact with blood, acute thrombosis and inflammation often occur due to the adhesion and denaturation of plasma proteins, ultimately degrading device performance. To address this issue, we developed a gel-like coating with superhydrophilic properties, incorporating a heparin based outer layer designed to minimize foreign body reactions and enhance hemocompatibility. The coating was engineered using a layer-by-layer (LbL) assembly of poly-l-lysine (PLL), laponite (Lap), and heparin (Hep), utilizing electrostatic interactions. The successful formation of stable layers was confirmed by QCM-D analysis. The inner layer, composed of PLL/Lap multilayers, formed a gel-like structure that maintained superhydrophilicity and effectively prevented cell adhesion. The outermost PLL/Hep multilayers significantly suppressed thrombus formation by inhibiting plasma protein and red blood cell adsorption as well as platelet activation. The coating exhibited excellent stability, retaining its superhydrophilic properties and heparin functionality even after 7 days of immersion in DPBS. Additionally, in vitro hemocompatibility and cytocompatibility tests confirmed its non-toxicity and overall biocompatibility. These results highlight the potential application of this coating to various implantable medical devices, providing a robust solution for improving device performance and safety.
Collapse
Affiliation(s)
- Se Youn Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soonjong Roh
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungwon Seo
- Department of Petrochemical Materials Engineering, Chonnam National University, Yeosu, 59631, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Electrical Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai Yen Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jeong F Kim
- Department of Chemical Engineering, KyungHee University, Yongin, 17104, Republic of Korea
| | - Hyosung An
- Department of Petrochemical Materials Engineering, Chonnam National University, Yeosu, 59631, Republic of Korea
| | - Hojeong Jeon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jin Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST school, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Wang Z, Kulkarni S, Nong J, Zamora M, Ebrahimimojarad A, Hood E, Shuvaeva T, Zaleski M, Gullipalli D, Wolfe E, Espy C, Arguiri E, Wang Y, Marcos-Contreras OA, Song W, Muzykantov VR, Fu J, Radhakrishnan R, Myerson JW, Brenner JS. A percolation-type criticality threshold controls immune protein coating of surfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618530. [PMID: 39464129 PMCID: PMC11507815 DOI: 10.1101/2024.10.15.618530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
When a material enters the body, it is immediately attacked by hundreds of proteins, organized into complex networks of binding interactions and reactions. How do such complex systems interact with a material, "deciding" whether to attack? We focus on the "complement" system of ∼40 blood proteins that bind microbes, nanoparticles, and medical devices, initiating inflammation. We show a sharp threshold for complement activation upon varying a fundamental material parameter, the surface density of potential complement attachment points. This sharp threshold manifests at scales spanning single nanoparticles to macroscale pathologies, shown here for diverse engineered and living materials. Computational models show these behaviors arise from a minimal subnetwork of complement, manifesting percolation-type critical transitions in the complement response. This criticality switch explains the "decision" of a complex signaling network to interact with a material, and elucidates the evolution and engineering of materials interacting with the body.
Collapse
|
7
|
Cruz-Gómez A, Burillo G, Perez-Calixto D, Palomino K, Magaña H. Interpenetrated Polymer Network Systems (PEG/PNIPAAm) Using Gamma Irradiation: Biological Evaluation for Potential Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4998. [PMID: 39459702 PMCID: PMC11509373 DOI: 10.3390/ma17204998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The potential antimicrobial and antibiofouling properties of previously synthesized PEG/NiPAAm interpenetrated polymer networks (IPNs) were investigated against three of the most common bacteria (E. coli, S. aureus, and S. epidermidis). The main goal was to evaluate the material's biocompatibility and determine its potential use as an antifouling component in medical devices. This was intended to provide an alternative option that avoids drug usage as the primary treatment, thus contributing to the fight against antimicrobial resistance (AMR). Additionally, characterization and mechanical testing of the IPN were carried out to determine its resistance to manipulation processes in medical/surgical procedures. IPNs with different NiPAAm ratios exhibited excellent cytocompatibility with BALB/3T3 murine fibroblast cells, with cell viability values of between 90 and 98%. In addition, the results regarding the adsorption of albumin as a model protein showed a nearly constant adsorption percentage of almost zero. Furthermore, the bacterial inhibition tests yielded promising results, demonstrating effective pathogen growth inhibition after 48 h. These findings suggest the material's suitability for use in biomedical applications.
Collapse
Affiliation(s)
- Angélica Cruz-Gómez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (A.C.-G.); (G.B.)
| | - Guillermina Burillo
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (A.C.-G.); (G.B.)
| | - Daniel Perez-Calixto
- Instituto Nacional de Medicina Genómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Kenia Palomino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| |
Collapse
|
8
|
Wang M, Zheng Y, Yin C, Dai S, Fan X, Jiang Y, Liu X, Fang J, Yi B, Zhou Q, Wang T. Recent Progress in antibacterial hydrogel coatings for targeting biofilm to prevent orthopedic implant-associated infections. Front Microbiol 2023; 14:1343202. [PMID: 38188584 PMCID: PMC10768665 DOI: 10.3389/fmicb.2023.1343202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
The application of orthopedic implants for bone tissue reconstruction and functional restoration is crucial for patients with severe bone fractures and defects. However, the abiotic nature of orthopedic implants allows bacterial adhesion and colonization, leading to the formation of bacterial biofilms on the implant surface. This can result in implant failure and severe complications such as osteomyelitis and septic arthritis. The emergence of antibiotic-resistant bacteria and the limited efficacy of drugs against biofilms have increased the risk of orthopedic implant-associated infections (OIAI), necessitating the development of alternative therapeutics. In this regard, antibacterial hydrogels based on bacteria repelling, contact killing, drug delivery, or external assistance strategies have been extensively investigated for coating orthopedic implants through surface modification, offering a promising approach to target biofilm formation and prevent OIAI. This review provides an overview of recent advancements in the application of antibacterial hydrogel coatings for preventing OIAI by targeting biofilm formation. The topics covered include: (1) the mechanisms underlying OIAI occurrence and the role of biofilms in exacerbating OIAI development; (2) current strategies to impart anti-biofilm properties to hydrogel coatings and the mechanisms involved in treating OIAI. This article aims to summarize the progress in antibacterial hydrogel coatings for OIAI prevention, providing valuable insights and facilitating the development of prognostic markers for the design of effective antibacterial orthopedic implants.
Collapse
Affiliation(s)
- Mengxuan Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yawen Zheng
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuqiang Yin
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xiao Fan
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Ying Jiang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuequan Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqiang Fang
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Chen Q, Zhang X, Zhang D, Liu G, Ma K, Liu J, Ma K, Chen M, Li Y, Liu R. Universal and One-Step Modification to Render Diverse Materials Bioactivation. J Am Chem Soc 2023; 145:18084-18093. [PMID: 37527432 DOI: 10.1021/jacs.3c05928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Bioactive materials that can support cell adhesion and tissue regeneration are greatly in demand in clinical applications. Surface modification with bioactive molecules is an efficient strategy to convert conventional bioinert materials into bioactive materials. However, there is an urgent need to find a universal and one-step modification strategy to realize the above transformation for bioactivation. In this work, we report a universal and one-step modification strategy to easily modify and render diverse materials bioactivation by dipping materials into the solution of dibutylamine-DOPA-lysine-DOPA (DbaYKY) tripeptide-terminated cell-adhesive molecules, β-peptide polymer, or RGD peptide for only 5 min. This strategy provides materials with a stable surface modification layer and does not cause an undesired surface color change like the widely used polydopamine coating. This one-step strategy can endow material surfaces with cell adhesion properties without concerns on nonspecific conjugation of proteins and macromolecules. This universal and one-step surface bioactivation strategy implies a wide range of applications in implantable biomaterials.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guojian Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ke Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiqian Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Chu X, Wu F, Liu Z, Yin L, Luan S, Tang H. Brush Polymer Coatings with Hydrophilic Main-Chains for Improving Surface Antibacterial Properties. ACS Macro Lett 2023; 12:428-432. [PMID: 36926830 DOI: 10.1021/acsmacrolett.2c00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Polymer coatings with improved surface antibacterial properties are of great importance for the application and development of implantable medical devices. Herein, we report the design, preparation, and antibacterial properties of a series of brush polymers (Dex-KEs) with hydrophilic dextran main-chains and mixed-charge polypeptide (KE) side-chains. Dex-KEs showed higher bactericidal activity and antifouling and antibiofilm properties than maleic acid modified dextran (Dex-Ma), KE, Dex-Ma/KE blend coatings, and brush polymer coatings with hydrophobic main-chains (AcDex-KEs). They also showed negligible in vitro cytotoxicity toward different mammalian cells and good in vivo biocompatibility. Dex-KE-coated implants exhibited potent in vivo resistance to bacterial infection before or after implantation.
Collapse
Affiliation(s)
- Xiaotang Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhiwei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Shifang Luan
- Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications. Int J Biol Macromol 2023; 231:123328. [PMID: 36681215 DOI: 10.1016/j.ijbiomac.2023.123328] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Among biomedical community, great efforts have been realized to develop antibacterial coatings that avoid implant-associated infections. To date, conventional mono-functional antibacterial strategies have not been effective enough for successful long-term implantations. Consequently, researchers have recently focused their attention on novel bifunctional or multifunctional antibacterial coatings, in which two or more antibacterial mechanisms interact synergistically. Thus, in this work different chitosan-based (CHI) hydrogel coatings were created on Ti6Al4V surface using genipin (Ti-CHIGP) and polyethylene glycol (Ti-CHIPEG) crosslinking agents. Hydrogel coatings demonstrated an exceptional in vivo biocompatibility plus a remarkable ability to promote cell proliferation and differentiation. Lastly, hydrogel coatings demonstrated an outstanding bacteria-repelling (17-28 % of S. aureus and 33-43 % of E. coli repelled) and contact killing (186-222 % of S. aureus and 72-83 % of E. coli damaged) ability. Such bifunctional antibacterial activity could be further improved by the controlled release of drugs resulting in powerful multifunctional antibacterial coatings.
Collapse
|
12
|
Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248727. [PMID: 36557865 PMCID: PMC9781125 DOI: 10.3390/molecules27248727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In orthopedic, dental, and maxillofacial fields, joint prostheses, plates, and screws are widely used in the treatment of problems related to bone tissue. However, the use of these prosthetic systems is not free from complications: the fibrotic encapsulation of endosseous implants often prevents optimal integration of the prostheses with the surrounding bone. To overcome these issues, biomimetic titanium implants have been developed where synthetic peptides have been selectively grafted on titanium surfaces via Schiff base formation. We used the retro-inverted sequence (DHVPX) from [351-359] human Vitronectin and its dimer (D2HVP). Both protease-resistant peptides showed increased human osteoblast adhesion and proliferation, an augmented number of focal adhesions, and cellular spreading with respect to the control. D2HVP-grafted samples significantly enhance Secreted Phosphoprotein 1, Integrin Binding Sialoprotein, and Vitronectin gene expression vs. control. An estimation of peptide surface density was determined by Two-photon microscopy analysis on a silanized glass model surface labeled with a fluorescent analog.
Collapse
|
13
|
Electrochemistry combined-surface plasmon resonance biosensors: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Su Z, Zhang J, Tan P, Zhu S, Jiang N. Selective Polyetheretherketone Implants Combined with Graphene Cause Definitive Cell Adhesion and Osteogenic Differentiation. Int J Nanomedicine 2022; 17:5327-5338. [PMID: 36411765 PMCID: PMC9675333 DOI: 10.2147/ijn.s380345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/30/2022] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Polyetheretherketone (PEEK) has good biosafety and chemical stability for bone repair. However, PEEK is biologically inert and cannot promote bone apposition. This study investigated whether graphene-modified PEEK (G-PEEK) could improve cell adhesion and osteogenic differentiation. METHODS G-PEEK was prepared by melted blending and was characterized. In vitro, the biocompatibility of G-PPEK and the ability to promote cell adhesion and osteogenic differentiation in rabbit bone marrow mesenchymal stem cells (rBMSCs) were examined using live and dead cell double staining, the cell counting kit-8 (CCK-8) assay, immunofluorescence and quantitative real-time PCR (qRT‒PCR). An in vivo rabbit extra-articular graft-to-bone healing model was established. At 4 and 12 weeks after surgery, CT analysis and histological evaluation were performed. RESULTS In vitro, G-PEEK significantly improved the adhesion and proliferation of rBMSCs, with good biocompatibility. In vivo, G-PEEK promoted new bone formation at the site of the bone defect. CONCLUSION G-PEEK showed excellent osteogenesis performance, which promises new applications in implant materials.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
15
|
del Olmo JA, Alonso JM, Martínez VS, Cid SB, González RP, Vilas-Vilela JL, Pérez-Álvarez L. Hyaluronic acid-based hydrogel coatings on Ti6Al4V implantable biomaterial with multifunctional antibacterial activity. Carbohydr Polym 2022; 301:120366. [DOI: 10.1016/j.carbpol.2022.120366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
16
|
Huang T, Tu C, Zhou T, Yu Z, Wang Y, Yu Q, Yu K, Jiang Z, Gao C, Yang G. Antifouling poly(PEGMA) grafting modified titanium surface reduces osseointegration through resisting adhesion of bone marrow mesenchymal stem cells. Acta Biomater 2022; 153:585-595. [PMID: 36167235 DOI: 10.1016/j.actbio.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/01/2022]
Abstract
As an alternative strategy to achieve the desired bone augmentation, tenting screw technology (TST) has considerably broadened the indications for implant treatment. Titanium tenting screws are typically used in TST to maintain the space for bone regeneration. However, a high degree of osteogenic integration complicate titanium tenting screw removal and impact the bone healing micro-environment. Previous efforts have been focused on modifying titanium surfaces to enhance osseointegration while ignoring the opposite process. Due to the vital role of bone marrow mesenchymal stem cells (BMSCs) in bone regeneration, it might be feasible to reduce osseointegration around titanium tenting screws by resisting the adhesion of BMSCs. Herein, poly(ethylene glycol)methyl ether methacrylate (poly(PEGMA)) with an optimal length of PEG chain was incorporated with a Ti surface in terms of surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The cell apoptosis analysis showed that the new surface would not induce the apoptosis of BMSCs. Then, the adhesive and proliferative behaviors of BMSCs on the surface were analyzed which indicated that the poly(PEGMA) surface could inhibit the proliferation of BMSCs through resisting the adhesion process. Furthermore, in vivo experiments revealed the presence of the poly(PEGMA) on the surface resulted in a lower bone formation and osseointegration compared with the Ti group. Collectively, this dense poly(PEGMA) surface of Ti may serve as a promising material for clinical applications in the future. STATEMENT OF SIGNIFICANCE: The significance of this research includes: The poly(ethylene glycol)methyl ether methacrylate (poly(PEGMA)) with an optimal length of PEG chain was grafted onto a Ti surface by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The PEGMA surface could reduce the osteogenic integration by preventing the adhesion of cells, resulting in a lower pullout force of the modified implant and thereby desirable and feasible applications in dental surgery.
Collapse
Affiliation(s)
- Tingben Huang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhou Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuchen Wang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiong Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ke Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhiwei Jiang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Guoli Yang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
17
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
18
|
Shen X, Wang H, Zhao Y, Liang J, Lu B, Sun W, Lu K, Wang H, Yuan L. Recycling protein selective adsorption on fluorine-modified surface through fluorine-fluorine interaction. Colloids Surf B Biointerfaces 2022; 214:112486. [PMID: 35364454 DOI: 10.1016/j.colsurfb.2022.112486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
Abstract
Low surface energy materials with micro-nano structures have been widely developed to prevent non-specific adhesion of biomolecules. Herein we put forward a new approach based on the antifouling and self-assembly properties of fluorine components, to construct a non-specific protein resistance surface with selective protein adsorption property. Briefly, the antifouling surface (SN-F) was obtained by a simple one-step modification on silicon nanowire arrays (SiNWAs) with fluorine coupling agent 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane (FAS). And protein was fluorinated by conjugation with an amphiphilic fluoro-copolymer, produced from 2-methacrylamido glucopyranose (MAG) and trifluoroethyl methacrylate (TFEMA) via RAFT polymerization. The properties of the materials were characterized by 1H nuclear magnetic resonance (1H NMR), infrared spectroscopy (FTIR), water contact angle, and X-ray photoelectron spectroscopy (XPS) etc., and protein adsorption was investigated by protein content measurement, fluorescence detection, and electrophoresis. It was observed that the adsorption for native proteins on SN-F was at an extremely low level, while the adsorption for the fluoro-copolymer conjugated protein (PFG-BSA) was significantly increased. When the percentage of TFEMA in the fluoro-copolymer was as high as 52.0%, the fluorinated protein adsorbed on SN-F was more than 35 times of native proteins on the surface. Moreover, the platform could resist IgG adhesion in serum after the adsorption of fluorinated protein, and it could be recycled three times after 75% ethanol treatment. In conclusion, SN-F showed non-specific protein resistance through low surface energy and specific protein adsorption by fluorine-fluorine self-assembly. The fluorinated nanostructured platform has a great potential in controlling protein adsorption and release.
Collapse
Affiliation(s)
- Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hengxiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Yingxian Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jinwei Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Benben Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
19
|
Li S, Wang K, Hao S, Dang F, Zhang ZQ, Zhang J. Antifouling Gold-Inlaid BSA Coating for the Highly Efficient Capture of Circulating Tumor Cells. Anal Chem 2022; 94:6754-6759. [PMID: 35481373 DOI: 10.1021/acs.analchem.2c00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Large amounts of coexisting contamination in complex biofluid samples impede the quantified veracity of biomarkers, which is the key problem for disease confirmation. Herein, amyloid-like transformed bovine serum albumin inlaid with gold nanoparticles was used as a coating (BGC) on a substrate composed of silicon nanowires (SW; BGC-SW) under ambient conditions. After modification with the recognition group, BGC-SW could serve as an outstanding platform for the selective separation and sensitive detection of biomarkers in complicated biosamples. First, the BGC on SW with a large surface area exhibits excellent adhesion resistance. The attached amounts of contaminations in biofluids were decreased by over 78% compared with native bovine serum albumin (BSA) as the blocking agent. This is because the phase-transformed BSA coating provides stronger interactions with the SW than bare BSA, which results in a tighter attachment and more uniform coverage of the BGC. Furthermore, the gold matrix laid inside the antiadhesive coating ensures simple cross-linking with the recognition groups to selectively capture various biomarkers in complex biofluids and create a gentle release method. Circulating tumor cells (CTCs) were chosen as template biomarkers to verify the application of A-BGC-SW (BGC-SW modified with sgc8-aptamer) in various separation processes of untreated biofluids. The results showed that approximately six cells could be captured from a 1 mL fresh blood sample containing only 10 CTCs. The easy fabrication and excellent antiadhesion property endow A-BGC-SW with great potential in the field of biological separation.
Collapse
Affiliation(s)
- Shuming Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shasha Hao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
20
|
Zheng SY, Ni Y, Zhou J, Gu Y, Wang Y, Yuan J, Wang X, Zhang D, Liu S, Yang J. Photo-switchable supramolecular comb-like polymer brush based on host-guest recognition for use as antimicrobial smart surface. J Mater Chem B 2022; 10:3039-3047. [PMID: 35355043 DOI: 10.1039/d2tb00206j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial infections from biomedical devices pose a great threat to the health of humans and thus place a heavy burden on society. Therefore, developing efficient antibacterial surfaces has attracted much attention. However, it is a challenge to identify or develop a combination that efficiently integrates multiple functions via topological tailoring and on-demand function-switch via non-contact and noninvasive stimuli. To resolve this issue, a highly hydrophilic comb polymer brush was constructed here based on supramolecular host-guest recognition. Azobenzene (azo)-modified antifouling and antibacterial polymers were incorporated into cyclodextrin (CD)-modified antifouling polymer brushes grafted on the surface. The surface thus obtained possessed excellent antifouling performance with a low bacterial density of ∼6.25 × 105 cells per cm2 after 48 h and exhibited a high efficiency of ∼88.2% for killing bacteria. Besides, irradiation with UV light resulted in the desorption of the azo-polymers and a release of ∼85.1% attached bacteria. Irradiating visible light led to the re-adsorption of azo-polymers, which regenerated the fresh surface; the process could be repeated for at least three cycles, and the surface still maintained low bacterial attachments with a cell density of ∼7.10 × 105 cells per cm2, high sterilization efficiency of ∼93.8%, and a bacteria release rate of ∼83.1% in the 3rd cycle. The photo-switchable antibacterial surface presented in this research will provide new insights into the development of smart biomedical surfaces.
Collapse
Affiliation(s)
- Si Yu Zheng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yifeng Ni
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jiahui Zhou
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yucong Gu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiting Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingfeng Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Ohio 44325, USA.
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
21
|
Zhuo Y, Cheng X, Fang H, Zhang Y, Wang B, Jia S, Li W, Yang X, Zhang Y, Wang X. Medical gloves modified by a one-minute spraying process with blood-repellent, antibacterial and wound-healing abilities. Biomater Sci 2022; 10:939-946. [PMID: 35037011 DOI: 10.1039/d1bm01212f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During clinical surgery, bleeding that occurs in the operative region is inevitable. Due to the blood adhesion on ordinary medical gloves, it reduces surgery quality to a certain extent and even prolongs operation time. Herein, we show that medical blood-repellent gloves (MBRG) can be obtained by spraying the blood-repellent mist spray (MS) on the surface of ordinary medical gloves, which are available for immediate use in around one minute. After the modification, MBRG not only have a significantly higher blood repellent rate than that of ordinary medical gloves, but also can effectively inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and even promote the healing of infected wounds. MS is easy to prepare, low-toxic, and can be widely used on the surface of various medical gloves, such as rubber gloves, polyethylene film gloves, and nitrile gloves, which may have an impact on the development of future medical gloves.
Collapse
Affiliation(s)
- Yi Zhuo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Xinyan Cheng
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Hua Fang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Yi Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Bing Wang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Shuang Jia
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Weihao Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Xuetao Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Yan Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, China.
| |
Collapse
|
22
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
23
|
Zhang D, Liu J, Chen Q, Jiang W, Wang Y, Xie J, Ma K, Shi C, Zhang H, Chen M, Wan J, Ma P, Zou J, Zhang W, Zhou F, Liu R. A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat Commun 2021; 12:6331. [PMID: 34732724 PMCID: PMC8566497 DOI: 10.1038/s41467-021-26659-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used in many fields. Current synthesis of functional hydrogels requires incorporation of functional molecules either before or during gelation via the pre-organized reactive site along the polymer chains within hydrogels, which is tedious for polymer synthesis and not flexible for different types of hydrogels. Inspired by sandcastle worm, we develop a simple one-step strategy to functionalize wet hydrogels using molecules bearing an adhesive dibutylamine-DOPA-lysine-DOPA tripeptide. This tripeptide can be easily modified with various functional groups to initiate diverse types of polymerizations and provide functional polymers with a terminal adhesive tripeptide. Such functional molecules enable direct modification of wet hydrogels to acquire biological functions such as antimicrobial, cell adhesion and wound repair. The strategy has a tunable functionalization degree and a stable attachment of functional molecules, which provides a tool for direct and convenient modification of wet hydrogels to provide them with diverse functions and applications.
Collapse
Affiliation(s)
- Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingjing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaiqian Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haodong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianglin Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengcheng Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|