1
|
Sahu MR, Yamamoto A. Effect of diffusion in the model tissue on biocorrosion of Mg alloys. Colloids Surf B Biointerfaces 2025; 251:114621. [PMID: 40101462 DOI: 10.1016/j.colsurfb.2025.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Current in vitro test fails in predicting the in vivo corrosion behaviour of Mg and its alloys. The diffusion of ions and gases through the tissue remains the critical factor influencing the discrepancy between the in vitro and in vivo corrosion rates. To overcome this, the in vitro model tissue with different diffusion rate was developed by the addition of appropriate concentrations of a thickener to the cell culture medium. The corrosion behaviour of WE43 and AZ31 alloys were analysed by immersion studies up to 28 days, electrochemical impedance spectroscopy, and potentiodynamic polarization studies. Both the immersion and electrochemical tests demonstrated the decrease in the corrosion rate of Mg alloys by the addition of thickener. The corrosion rate of WE43 decreased with increase in the thickener concentration whereas those of AZ31 was not obviously influenced by the thickener concentration. This low susceptibility of AZ31 against the change in diffusion rate might be attributed to its slower charge transfer process, as confirmed by the smaller Icorr and larger Rct values. Immersion in the model tissue reduced Ca and P concentrations in the insoluble salt layer on WE43. The lower susceptibility of AZ31 in the model tissue suggests the stability of AZ31 corrosion behaviour in the different tissue with different diffusion rate, which even derives from the difference in the individual patient's pathological condition. The developed model tissue provides an important information on the biocorrosion behaviour of various Mg alloys in consideration of biodegradable implant application.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Research Centre for Macromolecules and Biomaterials, National Institute of Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan.
| | - Akiko Yamamoto
- Research Centre for Macromolecules and Biomaterials, National Institute of Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan.
| |
Collapse
|
2
|
Pan X, Hu M, Wu L, Wei E, Zhu Q, Lv L, Xv X, Dong X, Liu H, Liu Y. Biomedical Applications of Gadolinium-Containing Biomaterials: Not Only MRI Contrast Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501722. [PMID: 40279569 DOI: 10.1002/advs.202501722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/18/2025] [Indexed: 04/27/2025]
Abstract
The potential applications of rare earth elements (REEs) in biomedical fields have been intensively investigated. Numerous studies have shown that doping biomaterials with REEs can enhance their properties. Gadolinium (Gd) is a biocompatible REE that holds promise in biomedical applications. This review examines the use of Gd-doped biomaterials in osteogenic, antimicrobial, anticancer applications, and in bioimaging and bioprobes, as reported in the literature until December 2024. The included studies demonstrate that Gd-containing biomaterials promote osteogenesis, enhance antimicrobial properties, and perform well in anticancer applications and bioimaging. Taken together, they point to the considerable potential of Gd-doped biomaterials and thus to avenues for future research.
Collapse
Affiliation(s)
- Xingtong Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Erfan Wei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Qiyue Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Letian Lv
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiuyun Xv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Xinyi Dong
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Hao Liu
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
3
|
Li H, Ma L, Li Y. Unraveling the synergistic effects of Ag, Li and Sr on Zn alloys in enhancing orthopedic repair potential. J Mater Chem B 2025; 13:4006-4019. [PMID: 40035139 DOI: 10.1039/d5tb00111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Recently, Li, which can greatly enhance the mechanical characteristics of zinc alloys, Ag, which has antibacterial properties, and Sr, which promotes bone formation, have been widely applied in biodegradable alloys. However, to our knowledge, there has been no research on the combined effects of Ag, Li, and Sr in zinc alloys. To address this, we have created a new quaternary alloy (Zn-3Ag-0.1Li-0.1Sr). The incorporation of Ag, Li, and Sr increased the yield strength (YS) of the at-cast (AC) zinc alloy to 188.83 ± 12.38 MPa. After extrusion and hot rolling, the strong plasticity of the alloy was further significantly enhanced, with ultimate tensile strength (UTS) exceeding 400 MPa, YS exceeding 350 MPa, and elongation (EL) greater than 50%. An in vitro cell study revealed that after three days of culture with a 50% extract, the proliferation rate of MC3T3-E1 cells was 101.527 ± 0.129%, and the cells maintained a healthy spindle-shaped appearance. The antibacterial experiments also demonstrated that the Zn-3Ag-0.1Li-0.1Sr quaternary alloy has strong antibacterial properties against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Therefore, the biodegradable Zn-3Ag-0.1Li-0.1Sr quaternary alloy, which exhibits high strength, good cytocompatibility, and satisfactory antibacterial performance, has greater potential for application in the field of orthopedic repair.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Luqing Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yingying Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Jain S, Bhowmik A, Lee J. Machine learning approaches for predicting and validating mechanical properties of Mg rare earth alloys for light weight applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2449811. [PMID: 39906548 PMCID: PMC11792136 DOI: 10.1080/14686996.2025.2449811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025]
Abstract
In this work, we have attempted to predict the mechanical behaviour of light weight Mg-based rare earth alloys fabricated through different mechanical and thermal processes. Our approach involves machine learning techniques across a range of different thermomechanical processes such as solution treatment, homogenization, extrusion and aging behaviour. The effectiveness of machine learning models is evaluated using performance metrics, including Coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). After modeling and selection of best model, the mechanical behaviour of new alloys was predicted in terms of ultimate tensile strength, yield strength and total elongation. The predicted results highlight the superior predictive accuracy of the K-Nearest Neighbors (KNN) machine learning model, demonstrating its better performance metrics compared with other machine learning approaches. This model has been found to predict the material properties with an effective evaluation matrix (R2 = 0.955, MAE = 3.4% and RMSE = 4.5%).
Collapse
Affiliation(s)
- Sandeep Jain
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Ayan Bhowmik
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Jaichan Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
He W, MacRenaris KW, Griebel A, Kwesiga MP, Freitas E, Gillette A, Schaffer J, O'Halloran TV, Guillory II RJ. Semi-quantitative elemental imaging of corrosion products from bioabsorbable Mg vascular implants in vivo. Bioact Mater 2025; 43:225-239. [PMID: 39386222 PMCID: PMC11462046 DOI: 10.1016/j.bioactmat.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024] Open
Abstract
While metal materials historically have served as permanent implants and were designed to avoid degradation, next generation bioabsorbable metals for medical devices such as vascular stents are under development, which would elute metal ions and corrosion byproducts into tissues. The fate of these eluted products and their local distribution in vascular tissue largely under studied. In this study, we employ a high spatial resolution spectrometric imaging modality, laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) to map the metal distribution, (herein refered to as laser ablation mapping, or LAM) from Mg alloys within the mouse vascular system and approximate their local concentrations. We used a novel rare earth element bearing Mg alloy (WE22) wire implanted within the abdominal aorta of transgenic hypercholesterolemic mice (APOE-/-) to simulate a bioabsorbable vascular prosthesis for up to 30 days. We describe qualitatively and semi-quantitatively implant-derived corrosion product presence throughout the tissue cross sections, and their approximate concentrations within the various vessel structures. Additionally, we report the spatial changes of corrosion products, which we postulate are mediated by phagocytic inflammatory cells such as macrophages (MΦ's).
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith W. MacRenaris
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | | | - Maria P. Kwesiga
- Department of Biomedical Sciences, Grand Valley State University, USA
| | - Erico Freitas
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Amani Gillette
- Department of Biomedical Engineering, Morgridge Institute for Research, USA
| | | | - Thomas V. O'Halloran
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | - Roger J. Guillory II
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, USA
| |
Collapse
|
6
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
7
|
Gu Y, Liu Y, Bühring J, Tian L, Koblenzer M, Schröder KU, Li F, Van Dessel J, Politis C, Jahr H, Sun Y. Biocompatibility and osteogenic capacity of additively manufactured biodegradable porous WE43 scaffolds: An in vivo study in a canine model. BIOMATERIALS ADVANCES 2024; 164:213984. [PMID: 39153456 DOI: 10.1016/j.bioadv.2024.213984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Magnesium is the most promising absorbable metallic implant material for bone regeneration and alloy WE43 is already FDA approved for cardiovascular applications. This study investigates the cyto- and biocompatibility of novel additively manufactured (AM) porous WE43 scaffolds as well as their osteogenic potential and degradation characteristics in an orthotopic canine bone defect model. The cytocompatibility was demonstrated using modified ISO 10993-conform extract-based indirect and direct assays, respectively. Additionally, degradation rates of WE43 scaffolds were quantified in vitro prior to absorption tests in vivo. Complete blood cell counts, blood biomarker analyses, blood trace element analyses as well as multi-organ histopathology demonstrated excellent biocompatibility of porous y WE43 scaffolds for bone defect repair. Micro-CT analyses further showed a relatively higher absorption rate during the initial four weeks upon implantation (i.e., 36 % ± 19 %) than between four and 12 weeks (41 % ± 14 %), respectively. Of note, the porous WE43 implants were surrounded by newly formed bony tissue as early as four weeks after implantation when unmineralized trabecular ingrowth was detected. After 12 weeks, a substantial amount of mineralized bone was detected inside and around the gradually disappearing implants. This first study on AM porous WE43 implants in canine bone defects demonstrates the potential of this alloy for in vivo applications in humans. Our data further underscore the need to control initial bulk absorption kinetics through surface modifications.
Collapse
Affiliation(s)
- Yifei Gu
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, 215000 Suzhou, China; OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yiwen Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Craniofacial Trauma and Orthognathic Surgery, School of Stomatology, FMMU, 710000 Xi'an, China
| | - Jannik Bühring
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Lei Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Craniofacial Trauma and Orthognathic Surgery, School of Stomatology, FMMU, 710000 Xi'an, China.
| | - Maximilian Koblenzer
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Kai-Uwe Schröder
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Feng Li
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Jeroen Van Dessel
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Constantinus Politis
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Holger Jahr
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany; Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| | - Yi Sun
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
9
|
Kumar A, Choudhari A, Gupta AK, Kumar A. Rare-Earth based magnesium alloys as a potential biomaterial for the future. JOURNAL OF MAGNESIUM AND ALLOYS 2024; 12:3841-3897. [DOI: 10.1016/j.jma.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Li H, Ma L. A comprehensive review on the role of strontium in biodegradable metals. J Mater Chem B 2024; 12:8267-8284. [PMID: 39072558 DOI: 10.1039/d4tb00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biodegradable metals, including magnesium, iron, and zinc alloys, have attracted extensive attention due to their good biodegradability and biocompatibility. However, the mechanical properties and corrosion rates of most biodegradable metallic materials have not yet reached the ideal level required for clinical applications. Strontium, as an element of Group IIA in the periodic table of elements, has similar chemical and biological properties to calcium. It can promote bone tissue development and increase bone strength. In addition, strontium can also promote angiogenesis and facilitate the repair of infarcted heart activity. Thus, strontium is commonly used as one of the most alloying elements to improve the in vitro and in vivo properties of biodegradable metals. Besides, strontium is also widely used in various bioactive coatings to improve the comprehensive properties of biodegradable metals. This paper outlines the role of strontium in the human body and summarizes recent research and applications of strontium-containing biodegradable metallic materials. Finally, this paper also provides an outlook on the challenges faced in applying and researching strontium in biodegradable metals.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Luqing Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Wu YC, Hsieh MCW, Wang WT, Chang YH, Lee SS, Huang SH, Hou MF, Tseng CC, Kuo YR. A novel biodegradable magnesium skin staple: A safety and functional evaluation. Asian J Surg 2024; 47:3048-3055. [PMID: 38431472 DOI: 10.1016/j.asjsur.2024.02.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The potential of biodegradable magnesium (Mg) skin staple has recently garnered widespread attention due to their biodegradability and biocompatibility rather than traditional stainless steel staples, the most commonly used in current clinical practice. The aim of this study is to evaluate the safety and mechanical properties of a novel biodegradable Mg skin staple. METHODS A prototype of Mg skin staple was designed using a novel ZK60 Mg alloy. The mechanical properties of the staple were evaluated using a universal testing machine. The cytotoxicity of the staple was examined in vitro and the efficacy of the staple in wound closure was assessed in New Zealand rabbits for one and three weeks, respectively. RESULTS The tensile strength of this Mg alloy is 258.4 MPa with 6.9% elongation. The treatment of HaCaT and L929 cells with the staple extract resulted in over 95% cell viability, indicating no cytotoxicity. In vivo, no tissue irritation was observed. No difference was found in wound healing between the Mg skin staple and the stainless steel staple after one and three weeks in the cutting wound on the back of rabbits. Some Mg skin staples spontaneously dislodged from the skin within three weeks, while others were easily removed. CONCLUSION Our results confirm the safety, biocompatibility, and functionality of the novel Mg skin staple in wound closure. The efficacy of the staple in wound closure was demonstrated to be as effectively as conventional staples, with the added benefit of decreased long-term retention of skin staples in the wounds.
Collapse
Affiliation(s)
- Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan; Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Meng-Chien Willie Hsieh
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Wei-Ting Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Yen-Hao Chang
- Combination Medical Device Technology Division, Medical Devices and Opto-Electronics Equipment Department, Metal Industries Research & Development Centre, Kaohsiung, 82151, Taiwan
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 81267, Taiwan
| | - Ming-Feng Hou
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chun-Chieh Tseng
- Combination Medical Device Technology Division, Medical Devices and Opto-Electronics Equipment Department, Metal Industries Research & Development Centre, Kaohsiung, 82151, Taiwan.
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
12
|
Tong X, Dong Y, Han Y, Zhou R, Zhu L, Zhang D, Dai Y, Shen X, Li Y, Wen C, Lin J. A biodegradable Zn-5Gd alloy with biomechanical compatibility, cytocompatibility, antibacterial ability, and in vitro and in vivo osteogenesis for orthopedic applications. Acta Biomater 2024; 177:538-559. [PMID: 38253302 DOI: 10.1016/j.actbio.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.% gadolinium (Zn-5Gd) samples were prepared by casting and respectively combining with hot rolling and hot extrusion for bone-implant applications. Their microstructure evolution, mechanical properties, corrosion behavior, cytotoxicity, antibacterial ability, and in vitro and in vivo osteogenesis were systematically evaluated. The HR and HE Zn-5Gd exhibited significantly improved mechanical properties compared with those of their pure Zn counterparts and the HR Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%, all of which are greater than the mechanical properties required for bone-implant materials. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution and the HE Zn-5Gd had the lowest corrosion rate of 155 µm/y measured by electrochemical corrosion and degradation rate of 26.9 µm/y measured by immersion testing. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, high antibacterial effects against S. aureus, and better in vitro osteogenic activity than their pure Zn counterparts. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion behaviors, cytocompatibility, antibacterial ability, in vitro and in vivo osteogenesis of biodegradable Zn-Gd alloy for bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, good antibacterial effects against S. aureus, and better in vitro osteogenic activity. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
13
|
Liu Y, Wang L, Zhang T, Wang C, Fan Y, Wang C, Song N, Zhou P, Yan CH, Tang Y. Tumor Microenvironment-Regulating Two-Photon Probe Based on Bimetallic Post-Coordinated MOF Facilitating the Dual-Modal and Deep Imaging-Guided Synergistic Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12289-12301. [PMID: 38418381 DOI: 10.1021/acsami.3c18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The intricate tumor microenvironment (TME) always brings about unsatisfactory therapeutic effects for treatments, although nanomedicines have been demonstrated to be highly beneficial for synergistic therapies to avoid the side effects caused by the complexity and heterogeneity of cancer. Developing nanotheranostics with the functionalities of both synergistic therapies and TME regulation is a good strategy but is still in its infancy. Herein, an "all-in-one" nanoplatform for integrated diagnosis and treatment, namely, Carrier@ICG@DOX@FA (CIDF), is constructed. Benefiting from the bimetallic coordination of Eu3+-HTHA (4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione) and Fe3+ with the ligands in UiO-67, CIDF can simultaneously achieve two-photon fluorescence imaging, fluorescent lifetime imaging in deep tumors, and regulation of TME. Owing to its porosity, CIDF can encapsulate indocyanine green as photosensitizers and doxorubicin as chemotherapeutic agent, further realizing light-controlled drug release. Moreover, CIDF exhibited good biocompatibility and tumor targeting by coating with folic-acid-modified polymers. Both in vitro and in vivo experiments demonstrate the excellent therapeutic efficacy of CIDF through dual-modal-imaging-guided synergistic photothermal-, photodynamic-, and chemotherapy. CIDF provides a new paradigm for the construction of TME-regulated synergistic nanotheranostics and realizes the complete elimination of tumors without recurrence.
Collapse
Affiliation(s)
- Yanjun Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lu Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tong Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunya Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yifan Fan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Congcong Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nan Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chun-Hua Yan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| |
Collapse
|
14
|
He Y, Jiang H, Dong S. Bioactives and Biomaterial Construction for Modulating Osteoclast Activities. Adv Healthc Mater 2024; 13:e2302807. [PMID: 38009952 DOI: 10.1002/adhm.202302807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Bone tissue constitutes 15-20% of human body weight and plays a crucial role in supporting the body, coordinating movement, regulating mineral homeostasis, and hematopoiesis. The maintenance of bone homeostasis relies on a delicate balance between osteoblasts and osteoclasts. Osteoclasts, as the exclusive "bone resorbers" in the human skeletal system, are of paramount significance yet often receive inadequate attention. When osteoclast activity becomes excessive, it frequently leads to various bone metabolic disorders, subsequently resulting in secondary bone injuries, such as fractures. This not only reduces life quality of patients, but also imposes a significant economic burden on society. In response to the pressing need for biomaterials in the treatment of osteoclast dysregulation, there is a surge of research and investigations aimed at osteoclast regulation. Promising progress is achieved in this domain. This review seeks to provide a comprehensive understanding of how to modulate osteoclast activities. It summarizes bioactive substances that influence osteoclasts and elucidates strategies for constructing related biomaterial systems. It offers practical insights and ideas for the development and application of biomaterials and tissue engineering, with the hope of guiding the clinical treatment of osteoclast-related bone diseases using biomaterials in the future.
Collapse
Affiliation(s)
- Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
15
|
Ju T, Meng Y, Han S, Meng F, Lin L, Li J, Jiang J. Analysis of enrichment, correlation, and leaching patterns of rare earth elements in coal fly ash assisted by statistical measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166070. [PMID: 37558077 DOI: 10.1016/j.scitotenv.2023.166070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Coal fly ash (CFA) is a typical industrial solid waste, which has recently been reported to contain rare earth elements (REEs). REEs are important materials in many industrial fields. Therefore, extracting REEs from CFA becomes a win-win strategy to both make full use of CFA and reclaim REEs. However, the stable crystalline structure of CFA is hard to break, which limits the extraction of REEs. The inter-correlation and the leaching patterns of the REEs in CFA also remain unclear. In this work, REEs were enriched by desilication, and the correlation and the influences of multiple acids of the leached REEs were investigated. It was found that desilication could increase the leachable amount of REEs from 137.37 ppm to 346.12 ppm. The light rare earth elements (LREEs) were less inter-correlated than heavy rare earth elements (HREEs) and desilication enhanced the leaching of LREEs more than that of HREEs. The ratio and type of the leaching acids both influenced the extraction of REEs from CFA: HCl and HF played important roles in the extraction from the untreated CFA while HNO3 and HF were more decisive for the desilicated CFA. In addition, we used statistical analysis to quantificationally confirm that desilication and acids both significantly influenced the extraction of REEs. This work provides evidence for the enrichment of REEs in CFA and acid choosing when leaching REEs from CFA.
Collapse
Affiliation(s)
- Tongyao Ju
- CCCC Highway Consultants Co., Ltd, Beijing 100088, China; CCCC Green and Low Carbon Development Research Center, Beijing 100088, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Wu L, Yang F, Xue Y, Gu R, Liu H, Xia D, Liu Y. The biological functions of europium-containing biomaterials: A systematic review. Mater Today Bio 2023; 19:100595. [PMID: 36910271 PMCID: PMC9996443 DOI: 10.1016/j.mtbio.2023.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
The biological functions of rare-earth elements (REEs) have become a focus of intense research. Recent studies have demonstrated that ion doping or alloying of some REEs can optimize the properties of traditional biomaterials. Europium (Eu), which is an REE with low toxicity and good biocompatibility, has promising applications in biomedicine. This article systematically reviews the osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties of Eu-containing biomaterials, thereby paving the way for biomedical applications of Eu. Data collection for this review was completed in October 2022, and 30 relevant articles were finally included. Most articles indicated that doping of Eu ions or Eu-compound nanoparticles in biomaterials can improve their osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties. The angiogenic, antibacterial, and potential neuritogenic effects of Eu(OH)3 nanoparticles have also been demonstrated.
Collapse
Affiliation(s)
- Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Corresponding author. Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Corresponding author. Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
17
|
Influence of Polyols on the In Vitro Biodegradation and Bioactivity of 58S Bioactive Sol-Gel Coatings on AZ31B Magnesium Alloys. Polymers (Basel) 2023; 15:polym15051273. [PMID: 36904514 PMCID: PMC10007392 DOI: 10.3390/polym15051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The mechanical qualities of AZ31B magnesium alloys make them a promising material for biodegradable metallic implants. However, rapid degradation limits the application of these alloys. In the present study, 58S bioactive glasses were synthesized using the sol-gel method and several polyols such as glycerol, ethylene glycol, and polyethylene glycol, were used to improve the sol stability and to control the degradation of AZ31B. The synthesized bioactive sols were dip-coated onto AZ31B substrates and then, characterized by various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical techniques (potentiodynamic and electrochemical impedance spectroscopy), among them. FTIR analysis confirmed the formation of a silica, calcium, and phosphate system and the XRD the amorphous nature of the 58S bioactive coatings obtained by sol-gel. The contact angle measurements confirmed that all the coatings were hydrophilic. The biodegradability response under physiological conditions (Hank's solution) was investigated for all the 58S bioactive glass coatings, observing a different behaviour depending on the polyols incorporated. Thus, for 58S PEG coating, an efficient control of the release of H2 gas was observed, and showing a pH control between 7.6 and 7.8 during all the tests. A marked apatite precipitation was also observed on the surface of the 58S PEG coating after the immersion test. Thus, the 58S PEG sol-gel coating is considered a promising alternative for biodegradable magnesium alloy-based medical implants.
Collapse
|
18
|
Sahu MR, Sampath Kumar TS, Chakkingal U, Dewangan VK, Doble M. Influence of fine‐grained structure produced by groove pressing on the properties of pure Mg and commercial
ZE41
alloy. J Biomed Mater Res A 2023. [DOI: 10.1002/jbm.a.37502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Manas Ranjan Sahu
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras Chennai India
| | - T. S. Sampath Kumar
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras Chennai India
| | - Uday Chakkingal
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras Chennai India
| | - Vimal Kumar Dewangan
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras Chennai India
- Department of Biotechnology Indian Institute of Technology Madras Chennai India
| | - Mukesh Doble
- Department of Biotechnology Indian Institute of Technology Madras Chennai India
| |
Collapse
|
19
|
Aggarwal D, Kumar V, Sharma S. Effect of rare earth oxide microparticles on mechanical, corrosion, antibacterial, and hemolytic behavior of Mg-Hydroxyapatite composite for orthopedic applications - A preliminary in-vitro study. J Biomed Mater Res B Appl Biomater 2023; 111:1232-1246. [PMID: 36773030 DOI: 10.1002/jbm.b.35228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
The current study focused on developing a multifunctional Mg-based biodegradable composite that mitigates the trade-off between strength, antibacterial, and cytotoxicity behavior for orthopedic bone implants. The composite has been reinforced with natural mineral-based Hydroxyapatite and rare earth oxide (REO): Neodymium oxide. The effect of different concentrations of REO on the mechanical, antibacterial, and corrosion properties was analyzed. The antibacterial properties were assessed against gram-positive B. Subtilis and gram-negative E. Coli bacterial pathogens. Moreover, the cytotoxicity of the composites was assessed via Hemolysis percentage calculations. In addition, the microstructure characterization was performed via FESEM, XRD, and EDS techniques, and different intermetallic phase formations were recorded. Contact angle measurements were done via the sessile drop method to analyze the impact of rare earth oxide on the surface properties of the synthesized composites and their relationship with bacterial adhesion. The corrosion studies and swelling rates were performed under PBS and DMEM solutions. The composite with the addition of 1.5% REO outperformed the experiments with a compressive strength of 126.4 MPa, and a corrosion rate less than 0.2 mm/yr. The corrosion rates and degree of swelling were seen to be more stable in DMEM solution as compared to PBS. Improved antibacterial rates were observed against both pathogens after the addition of REO along with a hemolysis percentage less than 5% for Mg-HA-1.5Nd2 O3 . The composites showed increased hydrophobicity (>75%) by the addition of 1.5% REO. Hence, it was concluded that REO (Nd2 O3 ) addition to the Mg-Hydroxyapatite composite is a feasible choice as a biomaterial for bone implant applications.
Collapse
Affiliation(s)
- Divyanshu Aggarwal
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vinod Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
20
|
Fila D, Kołodyńska D. Fixed-Bed Column Adsorption Studies: Comparison of Alginate-Based Adsorbents for La(III) Ions Recovery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1058. [PMID: 36770065 PMCID: PMC9920093 DOI: 10.3390/ma16031058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The paper investigated the adsorption of the packed-bed column with the alginate-based adsorbents (ALG-based adsorbents) such as alginate-biochar, alginate-clinoptilolite, alginate-lignin, and alginate-cellulose for La(III) ions' removal. Fixed-bed adsorption studies with various alginate-based adsorbents were carried out and compared to the La(III) ions adsorption. The columns were filled with ALG-based adsorbent beads of approximately 1.1 ± 0.005 mm spherical shapes. The effects of the inlet concentrations on the breakthrough curves were studied in terms of the adsorption performance of the ALG-based adsorbents. The experimental data were correlated with the Adams-Bohart, Yoon-Nelson, Thomas, and Wolborska models to determine the best operational parameters. Based on the comparison of R2 values, the Thomas and Yoon-Nelson models were found to be more suitable than the Adams-Bohart and Wolborska models. In the desorption study, the ALG-based adsorbents packed columns showed the maximum desorption of La(III) just after passing 100 cm3 of 1 mol/dm3 HCl. Overall, the results show that ALG-based adsorbents could be used for continuous recovery of La(III) ions from aqueous solutions and were not only cost-effective but also environmentally friendly.
Collapse
|
21
|
Zhu W, Li C, Yao M, Wang X, Wang J, Zhang W, Chen W, Lv H. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair. Regen Biomater 2023; 10:rbad030. [PMID: 37181680 PMCID: PMC10172150 DOI: 10.1093/rb/rbad030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023] Open
Abstract
At this stage, bone defects caused by trauma, infection, tumor, or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation, but this treatment method has limited sources, potential disease transmission and other problems. Ideal bone-graft materials remain continuously explored, and bone defect reconstruction remains a significant challenge. Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials. Magnesium, strontium, zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth, and bone repair and reconstruction. This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components, such as magnesium, strontium and zinc.
Collapse
Affiliation(s)
| | | | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Wei Zhang
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Wei Chen
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Hongzhi Lv
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| |
Collapse
|
22
|
Tong X, Han Y, Zhou R, Jiang W, Zhu L, Li Y, Huang S, Ma J, Wen C, Lin J. Biodegradable Zn-Dy binary alloys with high strength, ductility, cytocompatibility, and antibacterial ability for bone-implant applications. Acta Biomater 2023; 155:684-702. [PMID: 36328128 DOI: 10.1016/j.actbio.2022.10.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
The unique combination of biodegradability, biocompatibility, and functionality of zinc (Zn)-based alloys makes them highly desirable for a wide range of medical applications. However, a long-standing problem associated with this family of biodegradable alloys in the as-cast state is their limited mechanical strength and slow degradation rate. Here we report the development of Zn-xDy (x = 1, 3, and 5 wt.%) alloys with high strength, ductility, cytocompatibility, antibacterial ability, and appropriate degradation rate for biodegradable bone-implant applications. Our results indicate that the mechanical properties of Zn-xDy alloys were effectively improved with increasing Dy addition and hot-rolling due to the second-phase strengthening. The hot-rolled (HR) Zn-3Dy alloy showed the best combined mechanical performance with an ultimate tensile strength of 270.5 MPa, a yield strength of 214.8 MPa, an elongation of 55.1%, and Brinell hardness of 75.9 HB. The corrosion and degradation rates of HR Zn-xDy alloys in Hanks' solution gradually increased with increasing Dy addition due to the intensification of galvanic corrosion. The HR Zn-3Dy alloy showed high antibacterial ability against S. aureus and cytocompatibility toward MC3T3-E1 cells among all the HR alloys. Overall, the HR Zn-3Dy alloy can be considered a promising biodegradable material for bone implants. STATEMENT OF SIGNIFICANCE: This work reports on Zn-xDy (x = 1, 3, and 5%) alloys fabricated by Dy alloying followed by hot-rolling for biodegradable bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn-3Dy alloy showed the best combined mechanical performance with an ultimate tensile strength of 270.5 MPa, a yield strength of 214.8 MPa, an elongation of 55.1%, and Brinell hardness of 75.9 HB. The corrosion and degradation rates of HR Zn-xDy alloys in Hanks' solution gradually increased with increasing Dy addition due to the intensification of galvanic corrosion. Furthermore, the HR Zn-3Dy alloy showed greater antibacterial ability against S. aureus and the best cytocompatibility toward MC3T3-E1 cells among all the HR alloys.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wanying Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
23
|
Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. Int J Nanomedicine 2022; 17:4367-4381. [PMID: 36160469 PMCID: PMC9507452 DOI: 10.2147/ijn.s385590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatitis is an inflammatory reaction of pancreatic tissue digestion, edema, bleeding and even necrosis caused by activation of pancreatin due to various causes. In particular, patients with severe acute pancreatitis (SAP) often suffer from secondary infection, peritonitis and shock, and have a high mortality rate. Chronic pancreatitis (CP) can cause permanent damage to the pancreas. Due to the innate characteristics, structure and location of the pancreas, there is no effective treatment, only relief of symptoms. Especially, AP is an unpredictable and potentially fatal disease, and the timely diagnosis and treatment remains a major challenge. With the rapid development of nanomedicine technology, many potential tools can be used to address this problem. In this review, we have introduced the pathophysiological processes of pancreatitis to understanding its etiology and severity. Most importantly, the current progress in the diagnosis and treatment tools of pancreatitis based on nanomedicine is summarized and prospected.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610000, People's Republic of China
| | - Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400712, People's Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| |
Collapse
|
24
|
Cho DH, Avey T, Nam KH, Dean D, Luo AA. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications. Acta Biomater 2022; 150:442-455. [DOI: 10.1016/j.actbio.2022.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
|
25
|
Effect of Parylene C on the Corrosion Resistance of Bioresorbable Cardiovascular Stents Made of Magnesium Alloy 'Original ZM10'. MATERIALS 2022; 15:ma15093132. [PMID: 35591466 PMCID: PMC9102321 DOI: 10.3390/ma15093132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Magnesium (Mg) alloy has attracted significant attention as a bioresorbable scaffold for use as a next-generation stent because of its mechanical properties and biocompatibility. However, Mg alloy quickly degrades in the physiological environment. In this study, we investigated whether applying a parylene C coating can improve the corrosion resistance of a Mg alloy stent, which is made of 'Original ZM10', free of aluminum and rare earth elements. The coating exhibited a smooth surface with no large cracks, even after balloon expansion of the stent, and improved the corrosion resistance of the stent in cell culture medium. In particular, the parylene C coating of a hydrofluoric acid-treated Mg alloy stent led to excellent corrosion resistance. In addition, the parylene C coating did not affect a polymer layer consisting of poly(ε-caprolactone) and poly(D,L-lactic acid) applied as an additional coating for the drug release to suppress restenosis. Parylene C is a promising surface coating for bioresorbable Mg alloy stents for clinical applications.
Collapse
|
26
|
Bai M, Liu X, Sakai N, Ebina Y, Jia L, Tang D, Sasaki T, Ma R. General Synthesis of Layered Rare-Earth Hydroxides (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) and Direct Exfoliation into Monolayer Nanosheets with High Color Purity. J Phys Chem Lett 2021; 12:10135-10143. [PMID: 34637310 DOI: 10.1021/acs.jpclett.1c03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layered rare-earth hydroxides (LREHs) are promising optical and magnetic materials, while it is hard to obtain monolayer nanosheets through a direct exfoliation. In this study, organic dodecyl sulfate (C12H25SO4-, DS-) was used to prepare LREHs. In-plane lattice parameters of the LREHs decreased from Sm3+ to Er3+, correlating well with the monotonically decreasing ionic radius. Conversely, the interlayer spacing slightly increased with the increase of host layer charge density and corresponding intercalated DS- contents. By a direct sonication of the LREHs in formamide, nanosheets were obtained with a thickness of ∼1 nm and size of ∼500 nm. Compared to the bulk crystals, exfoliation resulted in a slight elongation of in-plane lattice constants and a more asymmetric coordination environment. The suspension of europium hydroxide nanosheets exhibited a remarkably high red-light emission purity (91.4%). This work demonstrated an important strategy toward an efficient synthesis of well-defined LREH nanosheets with high color purity.
Collapse
Affiliation(s)
- Mingjun Bai
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaohe Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Nobuyuki Sakai
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasuo Ebina
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Lulu Jia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Daiming Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayoshi Sasaki
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|