1
|
Pueyo Moliner A, Ito K, Zaucke F, Kelly DJ, de Ruijter M, Malda J. Restoring articular cartilage: insights from structure, composition and development. Nat Rev Rheumatol 2025; 21:291-308. [PMID: 40155694 DOI: 10.1038/s41584-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Articular cartilage can withstand substantial compressive and shear forces within the joint and also reduces friction during motion. The exceptional mechanical properties of articular cartilage stem from its highly organized extracellular matrix (ECM). The ECM is composed mainly of collagen type II and is pivotal in conferring mechanical durability to the tissue within its proteoglycan-rich matrix. Articular cartilage is prone to injury and degeneration, and current treatments often fail to restore the mechanical function of this tissue. A key challenge is replicating the intricate collagen-proteoglycan network, which is essential for the long-lasting restoration and mechanical durability of the tissue. Understanding articular cartilage development, which arises between late embryonic and early juvenile development, is vital for the creation of durable therapeutic strategies. The development of the articular ECM involves the biosynthesis, fibrillogenesis and self-assembly of the collagen type II network, which, along with proteoglycans and minor ECM components, shapes the architecture of adult articular cartilage. A deeper understanding of these processes could inform biomaterial-based therapies aimed at improving therapeutic outcomes. Emerging biofabrication technologies offer new opportunities to integrate developmental principles into the creation of durable articular cartilage implants. Bridging fundamental biology with innovative engineering offers novel approaches to generating more-durable 3D implants for articular cartilage restoration.
Collapse
Affiliation(s)
- Alba Pueyo Moliner
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Hu J, Zheng K, Sherlock BE, Zhong J, Mansfield J, Green E, Toms AD, Winlove CP, Chen J. Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage. Acta Biomater 2025; 195:104-116. [PMID: 39870148 DOI: 10.1016/j.actbio.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion formation and managing degenerative conditions like osteoarthritis. This study employs polarisation-resolved second harmonic generation (pSHG) microscopy to quantify the ultrastructural organisation of collagen fibrils and their spatial gradient along the depth of bone-cartilage explants under a close-to-in vivo condition. By combining with in-situ loading, we examined the responses of collagen fibrils by quantifying changes in their principal orientation and degree of alignment. The spatial gradient and heterogeneity of collagen organisation were captured at high resolution (1 μm) along the longitudinal plane of explants (0.5 mm by 2 mm). Zone-specific ultrastructural characteristics were quantified to aid in defining zonal borders, revealing consistent zonal proportions with varying overall thicknesses. Under compression, the transitional zone exhibited the most significant re-organisation of collagen fibrils. It initially allowed large deformation through the re-orientation of fibrils, which then tightened fibril alignment to prevent excessive deformation, indicating a dynamic adaptation mechanism in response to increasing strain levels. Our results provide comprehensive, zone-specific baselines of cartilage ultrastructure and micromechanics, crucial for investigating the onset and progression of degenerative conditions, setting therapeutic intervention targets, and guiding cartilage repair and regeneration efforts. STATEMENT OF SIGNIFICANCE: Achieved unprecedented quantification of the spatial gradient and heterogeneity of collagen ultrastructural organisation at a high resolution (1 μm) along the full depth of the longitudinal plane of osteochondral explants (0.5 mm by 2 mm) under close-to-in vivo condition. Suggested new anatomical landmarks based on ultrastructural features for determining zonal borders and found consistent zonal proportions in explants with different overall thicknesses. Demonstrated that collagen fibrils initially respond by reorienting themselves at low strain levels, playing a significant role in cartilage deformation, particularly within the transitional zone. At higher strain levels, more collagen fibrils re-aligned, indicating a dynamic shift in the response mechanism at varying strain levels.
Collapse
Affiliation(s)
- Jingrui Hu
- Biomedical Engineering, Faculty of Environment, Science and Economy, University of Exeter, UK
| | - Keke Zheng
- Institute for Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Benjamin E Sherlock
- Biomedical Physics, Faculty of Environment, Science and Economy, University of Exeter, UK
| | - Jingxiao Zhong
- Biomedical Engineering, Faculty of Environment, Science and Economy, University of Exeter, UK; School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Jessica Mansfield
- Biomedical Physics, Faculty of Environment, Science and Economy, University of Exeter, UK
| | - Ellen Green
- Biomedical Physics, Faculty of Environment, Science and Economy, University of Exeter, UK
| | - Andrew D Toms
- Exeter Knee Reconstruction Unit, Princess Elizabeth Orthopaedic Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - C Peter Winlove
- Biomedical Physics, Faculty of Environment, Science and Economy, University of Exeter, UK
| | - Junning Chen
- Biomedical Engineering, Faculty of Environment, Science and Economy, University of Exeter, UK.
| |
Collapse
|
3
|
Badar W, Inamdar SR, Fratzl P, Snow T, Terrill NJ, Knight MM, Gupta HS. Nonlinear Stress-Induced Transformations in Collagen Fibrillar Organization, Disorder and Strain Mechanisms in the Bone-Cartilage Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407649. [PMID: 39527673 PMCID: PMC11714194 DOI: 10.1002/advs.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Waqas Badar
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Sheetal R. Inamdar
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Peter Fratzl
- Max Planck Institute of Colloids and InterfacesResearch Campus Golm14424PotsdamGermany
| | - Tim Snow
- Diamond Light SourceHarwell Science CampusHarwellOX11 0DEUK
| | | | - Martin M. Knight
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Himadri S. Gupta
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
4
|
Dejea H, Pierantoni M, Orozco GA, B Wrammerfors ET, Gstöhl SJ, Schlepütz CM, Isaksson H. In Situ Loading and Time-Resolved Synchrotron-Based Phase Contrast Tomography for the Mechanical Investigation of Connective Knee Tissues: A Proof-of-Concept Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308811. [PMID: 38520713 DOI: 10.1002/advs.202308811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time-resolved synchrotron-based X-ray phase-contrast tomography (SR-PhC-µCT) allows to capture the tissue dynamics. This proof-of-concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR-PhC-µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress-relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.
Collapse
Affiliation(s)
- Hector Dejea
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
- MAX IV Laboratory, Lund University, Lund, 224 84, Sweden
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
| | - Gustavo A Orozco
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
| | | | - Stefan J Gstöhl
- Swiss Light Source, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
| |
Collapse
|
5
|
Song J, Zeng X, Li C, Yin H, Mao S, Ren D. Alteration in cartilage matrix stiffness as an indicator and modulator of osteoarthritis. Biosci Rep 2024; 44:BSR20231730. [PMID: 38014522 PMCID: PMC10794814 DOI: 10.1042/bsr20231730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and destruction, leading to joint ankylosis and disability. The major challenge in diagnosing OA at early stage is not only lack of clinical symptoms but also the insufficient histological and immunohistochemical signs. Alteration in cartilage stiffness during OA progression, especially at OA initiation, has been confirmed by growing evidences. Moreover, the stiffness of cartilage extracellular matrix (ECM), pericellular matrix (PCM) and chondrocytes during OA development are dynamically changed in unique and distinct fashions, revealing possibly inconsistent conclusions when detecting cartilage matrix stiffness at different locations and scales. In addition, it will be discussed regarding the mechanisms through which OA-related cartilage degenerations exhibit stiffened or softened matrix, highlighting some critical events that generally incurred to cartilage stiffness alteration, as well as some typical molecules that participated in constituting the mechanical properties of cartilage. Finally, in vitro culturing chondrocytes in various stiffness-tunable scaffolds provided a reliable method to explore the matrix stiffness-dependent modulation of chondrocyte metabolism, which offers valuable information on optimizing implant scaffolds to maximally promote cartilage repair and regeneration during OA. Overall, this review systematically and comprehensively elucidated the current progresses in the relationship between cartilage stiffness alteration and OA progression. We hope that deeper attention and understanding in this researching field will not only develop more innovative methods in OA early detection and diagnose but also provide promising ideas in OA therapy and prognosis.
Collapse
Affiliation(s)
- Jing Song
- Qingdao University Affiliated Qingdao Women and Children’s Hospital, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Xuemin Zeng
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Chenzhi Li
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Hongyan Yin
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Sui Mao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Dapeng Ren
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| |
Collapse
|
6
|
Silva Barreto I, Pierantoni M, Nielsen LC, Hammerman M, Diaz A, Novak V, Eliasson P, Liebi M, Isaksson H. Micro- and nanostructure specific X-ray tomography reveals less matrix formation and altered collagen organization following reduced loading during Achilles tendon healing. Acta Biomater 2024; 174:245-257. [PMID: 38096959 DOI: 10.1016/j.actbio.2023.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Recovery of the collagen structure following Achilles tendon rupture is poor, resulting in a high risk for re-ruptures. The loading environment during healing affects the mechanical properties of the tendon, but the relation between loading regime and healing outcome remains unclear. This is partially due to our limited understanding regarding the effects of loading on the micro- and nanostructure of the healing tissue. We addressed this through a combination of synchrotron phase-contrast X-ray microtomography and small-angle X-ray scattering tensor tomography (SASTT) to visualize the 3D organization of microscale fibers and nanoscale fibrils, respectively. The effect of in vivo loading on these structures was characterized in early healing of rat Achilles tendons by comparing full activity with immobilization. Unloading resulted in structural changes that can explain the reported impaired mechanical performance. In particular, unloading led to slower tissue regeneration and maturation, with less and more disorganized collagen, as well as an increased presence of adipose tissue. This study provides the first application of SASTT on soft musculoskeletal tissues and clearly demonstrates its potential to investigate a variety of other collagenous tissues. STATEMENT OF SIGNIFICANCE: Currently our understanding of the mechanobiological effects on the recovery of the structural hierarchical organization of injured Achilles tendons is limited. We provide insight into how loading affects the healing process by using a cutting-edge approach to for the first time characterize the 3D micro- and nanostructure of the regenerating collagen. We uncovered that, during early healing, unloading results in a delayed and more disorganized regeneration of both fibers (microscale) and fibrils (nanoscale), as well as increased presence of adipose tissue. The results set the ground for the development of further specialized protocols for tendon recovery.
Collapse
Affiliation(s)
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ana Diaz
- Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Vladimir Novak
- Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland; Institute of materials, Ecole Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Chen Y, Wang K, Huang J, Li X, Rui Y. An extensive evaluation of laser tissue welding and soldering biotechnologies: Recent advancements, progress, and applications. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 8:100234. [DOI: 10.1016/j.crbiot.2024.100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
|
8
|
Jia Y, Le H, Wang X, Zhang J, Liu Y, Ding J, Zheng C, Chang F. Double-edged role of mechanical stimuli and underlying mechanisms in cartilage tissue engineering. Front Bioeng Biotechnol 2023; 11:1271762. [PMID: 38053849 PMCID: PMC10694366 DOI: 10.3389/fbioe.2023.1271762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/07/2023] Open
Abstract
Mechanical stimuli regulate the chondrogenic differentiation of mesenchymal stem cells and the homeostasis of chondrocytes, thus affecting implant success in cartilage tissue engineering. The mechanical microenvironment plays fundamental roles in the maturation and maintenance of natural articular cartilage, and the progression of osteoarthritis Hence, cartilage tissue engineering attempts to mimic this environment in vivo to obtain implants that enable a superior regeneration process. However, the specific type of mechanical loading, its optimal regime, and the underlying molecular mechanisms are still under investigation. First, this review delineates the composition and structure of articular cartilage, indicating that the morphology of chondrocytes and components of the extracellular matrix differ from each other to resist forces in three top-to-bottom overlapping zones. Moreover, results from research experiments and clinical trials focusing on the effect of compression, fluid shear stress, hydrostatic pressure, and osmotic pressure are presented and critically evaluated. As a key direction, the latest advances in mechanisms involved in the transduction of external mechanical signals into biological signals are discussed. These mechanical signals are sensed by receptors in the cell membrane, such as primary cilia, integrins, and ion channels, which next activate downstream pathways. Finally, biomaterials with various modifications to mimic the mechanical properties of natural cartilage and the self-designed bioreactors for experiment in vitro are outlined. An improved understanding of biomechanically driven cartilage tissue engineering and the underlying mechanisms is expected to lead to efficient articular cartilage repair for cartilage degeneration and disease.
Collapse
Affiliation(s)
- Yao Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
- The Fourth Treatment Area of Trauma Hip Joint Surgery Department, Tianjin Hospital, Tianjin, China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Yan Liu
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Jiacheng Ding
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
9
|
Yu S, Shu X, Chen L, Wang C, Wang X, Jing J, Yan G, Zhang Y, Wu C. Construction of ultrasonically treated collagen/silk fibroin composite scaffolds to induce cartilage regeneration. Sci Rep 2023; 13:20168. [PMID: 37978248 PMCID: PMC10656553 DOI: 10.1038/s41598-023-43397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
A novel tissue-specific functional tissue engineering scaffold for cartilage repair should have a three-dimensional structure, good biosafety and biological activity, and should be able to promote cartilage tissue regeneration. This study aimed to determine the effect of ultrasound-treated collagen/silk fibroin (Col/SF) composite scaffolds with good mechanical properties and high biological activity on cartilage repair. The characteristics of the scaffolds with different Col/SF ratios (7:3, 8:2, and 9:1) were determined by scanning electron microscopy, Fourier-transform infrared spectroscopy, and porosity, water absorption, and compression tests. In vitro evaluations revealed the biocompatibility of the Col/SF scaffolds. Results suggested that the optimal ratio of Col/SF composite scaffolds was 7:3. The Col/SF scaffolds induced adipose-derived stem cells to undergo chondrogenic differentiation under chondrogenic culture conditions. The efficiency of Col/SF scaffolds for cartilage regeneration applications was further evaluated using an in vivo model of full-thickness articular cartilage defects in New Zealand rabbits. The Col/SF scaffolds effectively promoted osteochondral regeneration as evidenced by macroscopic, histological, and immunohistochemical evaluation. The study demonstrates that ultrasound-treated Col/SF scaffolds show great potential for repairing cartilage defects.
Collapse
Affiliation(s)
- Shunan Yu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Xiong Shu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Lei Chen
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Chao Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Xinyu Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Jinzhu Jing
- Animal Laboratory Laboratory, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Guoqiang Yan
- Animal Laboratory Laboratory, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Yanzhuo Zhang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China
| | - Chengai Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing, 100035, People's Republic of China.
| |
Collapse
|
10
|
Pierantoni M, Silva Barreto I, Hammerman M, Novak V, Diaz A, Engqvist J, Eliasson P, Isaksson H. Multimodal and multiscale characterization reveals how tendon structure and mechanical response are altered by reduced loading. Acta Biomater 2023; 168:264-276. [PMID: 37479155 DOI: 10.1016/j.actbio.2023.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Tendons are collagen-based connective tissues where the composition, structure and mechanics respond and adapt to the local mechanical environment. Adaptation to prolonged inactivity can result in stiffer tendons that are more prone to injury. However, the complex relation between reduced loading, structure, and mechanical performance is still not fully understood. This study combines mechanical testing with high-resolution synchrotron X-ray imaging, scattering techniques and histology to elucidate how reduced loading affects the structural properties and mechanical response of rat Achilles tendons on multiple length scales. The results show that reduced in vivo loading leads to more crimped and less organized fibers and this structural inhomogeneity could be the reason for the altered mechanical response. Unloading also seems to change the fibril response, possibly by altering the strain partitioning between hierarchical levels, and to reduce cell density. This study elucidates the relation between in vivo loading, the Achilles tendon nano-, meso‑structure and mechanical response. The results provide fundamental insights into the mechanoregulatory mechanisms guiding the intricate biomechanics, tissue structural organization, and performance of complex collagen-based tissues. STATEMENT OF SIGNIFICANCE: Achilles tendon properties allow a dynamic interaction between muscles and tendon and influence force transmission during locomotion. Lack of physiological loading can have dramatic effects on tendon structure and mechanical properties. We have combined the use of cutting-edge high-resolution synchrotron techniques with mechanical testing to show how reduced loading affects the tendon on multiple hierarchical levels (from nanoscale up to whole organ) clarifying the relation between structural changes and mechanical performance. Our findings set the first step to address a significant healthcare challenge, such as the design of tailored rehabilitations that take into consideration structural changes after tendon immobilization.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | | | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | | | - Ana Diaz
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jonas Engqvist
- Department of Solid Mechanics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
11
|
Silva Barreto I, Pierantoni M, Hammerman M, Törnquist E, Le Cann S, Diaz A, Engqvist J, Liebi M, Eliasson P, Isaksson H. Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons. Matrix Biol 2023; 115:32-47. [PMID: 36435426 DOI: 10.1016/j.matbio.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The specific viscoelastic mechanical properties of Achilles tendons are highly dependent on the structural characteristics of collagen at and between all hierarchical levels. Research has been conducted on the deformation mechanisms of positional tendons and single fibrils, but knowledge about the coupling between the whole tendon and nanoscale deformation mechanisms of more commonly injured energy-storing tendons, such as Achilles tendons, remains sparse. By exploiting the highly periodic arrangement of tendons at the nanoscale, in situ loading of rat Achilles tendons during small-angle X-ray scattering acquisition was used to investigate the collagen structural response during load to rupture, cyclic loading and stress relaxation. The fibril strain was substantially lower than the applied tissue strain. The fibrils strained linearly in the elastic region of the tissue, but also exhibited viscoelastic properties, such as an increased stretchability and recovery during cyclic loading and fibril strain relaxation during tissue stress relaxation. We demonstrate that the changes in the width of the collagen reflections could be attributed to strain heterogeneity and not changes in size of the coherently diffracting domains. Fibril strain heterogeneity increased with applied loads and after the toe region, fibrils also became increasingly disordered. Additionally, a thorough evaluation of radiation damage was performed. In conclusion, this study clearly displays the simultaneous structural response and adaption of the collagen fibrils to the applied tissue loads and provide novel information about the transition of loads between length scales in the Achilles tendon.
Collapse
Affiliation(s)
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sophie Le Cann
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, Créteil F-94010, France
| | - Ana Diaz
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Jonas Engqvist
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - Marianne Liebi
- Paul Scherrer Institut, Villigen PSI, Switzerland; Department of Physics, Chalmers University, Gothenburg, Sweden; Center of X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St.Gallen, Switzerland
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Momot KI. Hydrated Collagen: Where Physical Chemistry, Medical Imaging, and Bioengineering Meet. J Phys Chem B 2022; 126:10305-10316. [PMID: 36473185 DOI: 10.1021/acs.jpcb.2c06217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well-known that collagen is the most abundant protein in the human body; however, what is not often appreciated is its fascinating physical chemistry and molecular physics. In this Perspective, we aim to expose some of the physicochemical phenomena associated with the hydration of collagen and to examine the role collagen's hydration water plays in determining its biological function as well as applications ranging from radiology to bioengineering. The main focus is on the Magic-Angle Effect, a phenomenon observed in Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) of anisotropic collagenous tissues such as articular cartilage and tendon. While the effect has been known in NMR and MRI for decades, its exact molecular mechanism remains a topic of debate and continuing research in scientific literature. We survey some of the latest research aiming to develop a comprehensive molecular-level model of the Magic-Angle Effect. We also touch on other fields where understanding of collagen hydration is important, particularly nanomechanics and mechanobiology, biomaterials, and piezoelectric sensors.
Collapse
Affiliation(s)
- Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
13
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|