1
|
Weekes A, Davern JW, Pinto N, Jenkins J, Li Z, Meinert C, Klein TJ. Enhancing compliance and extracellular matrix properties of tissue-engineered vascular grafts through pulsatile bioreactor culture. BIOMATERIALS ADVANCES 2025; 175:214346. [PMID: 40378643 DOI: 10.1016/j.bioadv.2025.214346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/06/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Biofabrication techniques represent a promising avenue for the production of small diameter vascular grafts. However, while current tissue-engineered vascular grafts (TEVGs) fulfil certain functional requirements of native blood vessels, most exhibit very poor mechanical compliance, directly reducing patency in vivo. Here, highly compliant TEVGs were cultured in a dynamic pulsatile bioreactor which ensured enhanced compliance, using biomimetic melt electrowritten (MEW) tubular scaffolds as substrates for tissue growth. Through 6-week in vitro culture, we investigated differences in extracellular matrix (ECM) production and mechanical performance of TEVGs cultured with placental mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) in static and dynamic conditions. Pulsatile stimulation successfully maintained the high compliance (12.4 ± 0.8 % per 100 mmHg) of our biomimetic scaffolds, substantially greater than existing small diameter grafts. Dynamic TEVGs demonstrated physiologically relevant burst pressure (1125 ± 212 mmHg) and suture pull-out force (3.0 ± 0.4 N), while also accumulating greater ECM components than static TEVGs. To assess off-the-shelf suitability, grafts were decellularized and lyophilised to produce d-TEVGs, which exhibited negligible loss of mechanics or ECM integrity. Finally, rehydrated d-TEVGs were seeded with endothelial cells in vitro, with an intimal endothelial lining forming after 7 days. These findings demonstrate the production of TEVGs with specifically engineered mechanical compliance which has been maintained by dynamic in vitro culture, supporting continued work toward biofabrication of the next generation of vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia.
| | - Jordan W Davern
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Bondi E, Bloise N, Soccio M, Guidotti G, Motta I, Gazzano M, Ruggeri M, Fassina L, Genini E, Visai L, Pasquinelli G, Lotti N. Synthesis of Flexible Random Copolymers of Poly(butylene trans-1,4-ciclohexanedicarboxylate) Containing Pripol Moiety as Potential Candidates for Vascular Applications: Solid-State Characterization and Preliminary In Vitro Biocompatibility and Hemocompatibility. Biomacromolecules 2025; 26:2882-2899. [PMID: 40304031 PMCID: PMC12076511 DOI: 10.1021/acs.biomac.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
In order to envisage new solutions for complications associated with cardiovascular diseases, including the occlusion of small vessels, a family of random copolymers of poly(butylene trans-1,4-ciclohexanedicarboxylate) (PBCE), containing Pripol moiety, namely, poly(butylene trans-1,4-ciclohexaendicarboxylate/Pripol), were successfully synthesized. The copolymers display reduced crystallinity and stiffness compared with PBCE, exhibiting elastic modulus values that are comparable to those of materials previously investigated for similar applications. The stability of the materials under physiological conditions was demonstrated over an extended time. Cytotoxicity was confirmed by a direct contact assay with human umbilical vein endothelial cells (HUVECs), and blood compatibility was established by the absence of any change in the values of activated prothrombin time and activated partial thromboplastin time, in addition to the low adhesion of blood components. The results demonstrated that the ad hoc design is pivotal in regulating solid state and functional properties, thereby facilitating the development of innovative materials for vascular tissue engineering.
Collapse
Affiliation(s)
- Edoardo Bondi
- Department
of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Nora Bloise
- Molecular
Medicine Department (DMM), Centre for Health Technologies (CHT), Unità
di Ricerca (UdR) INSTM, University of Pavia, Pavia 27100, Italy
- UOR6 Nanotechnology
Laboratory, Department of Prevention and Rehabilitation in Occupational
Medicine and Specialty Medicine, Istituti
Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
- Interuniversity
Center for the Promotion of the 3Rs Principles in Teaching and Research
(Centro 3R), Operative Unit (OU) of University
of Pavia, Pavia 27100, Italy
| | - Michelina Soccio
- Department
of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Giulia Guidotti
- Department
of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Ilenia Motta
- Department
of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Massimo Gazzano
- Institute
for Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, Bologna 40129, Italy
| | - Marco Ruggeri
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Lorenzo Fassina
- Department
of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia 27100, Italy
| | - Emilia Genini
- Fondazione
IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Livia Visai
- Molecular
Medicine Department (DMM), Centre for Health Technologies (CHT), Unità
di Ricerca (UdR) INSTM, University of Pavia, Pavia 27100, Italy
- UOR6 Nanotechnology
Laboratory, Department of Prevention and Rehabilitation in Occupational
Medicine and Specialty Medicine, Istituti
Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
- Interuniversity
Center for the Promotion of the 3Rs Principles in Teaching and Research
(Centro 3R), Operative Unit (OU) of University
of Pavia, Pavia 27100, Italy
| | - Gianandrea Pasquinelli
- Department
of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, Bologna 40138, Italy
- Pathology
Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Nadia Lotti
- Department
of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, Bologna 40131, Italy
| |
Collapse
|
3
|
Jia Y, Xu X, Lu H, Fatima K, Zhang Y, Du H, Yang J, Zhou X, Sui X, Hou L, Pang Y, He C. A super soft thermoplastic biodegradable elastomer with high elasticity for arterial regeneration. Biomaterials 2025; 316:122985. [PMID: 39637585 DOI: 10.1016/j.biomaterials.2024.122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Elastomers with innovative performance will provide new opportunities for solving problems in soft tissue repair, such as arterial regeneration. Herein, we present a thermoplastic biodegradable elastomer (PPS) that differs from the rigid, low-elastic traditional ones. It shows super softness (0.41 ± 0.052 MPa), high stretchability (3239 ± 357 %), and viscoelasticity similar to natural soft tissues. In addition, it also has good processability and appropriate degradability, estimated at 4-8 months for complete degradation in vivo. This excellent overall performance makes it a great support material for soft tissue repair and a powerful modifying agent for improving existing materials. For example, introducing it into poly(l-lactide) scaffolds through thermally induced phase separation can create a unique microporous structure with interconnected large pores (diameter >10 μm), demonstrating high efficiency in inducing cell infiltration. Blending it with poly(ε-caprolactone) through electrospinning can produce a composite fibrous film with significantly improved comprehensive performance, displaying artery-matched mechanical properties. Building on the above, we constructed a tri-layer tissue-engineered vascular graft for arterial regeneration, exhibiting promising remodeling outcomes in rabbits.
Collapse
Affiliation(s)
- Yating Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China; Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Xu
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Hao Lu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kanwal Fatima
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yali Zhang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaofeng Sui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Hou
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Yanan Pang
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China; Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
4
|
Ramos A, Angel VG, Siqueiros M, Sahagun T, Gonzalez L, Ballesteros R. Reviewing Additive Manufacturing Techniques: Material Trends and Weight Optimization Possibilities Through Innovative Printing Patterns. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1377. [PMID: 40141660 PMCID: PMC11943502 DOI: 10.3390/ma18061377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
Additive manufacturing is transforming modern industries by enabling the production of lightweight, complex structures while minimizing material waste and energy consumption. This review explores its evolution, covering historical developments, key technologies, and emerging trends. It highlights advancements in material innovations, including metals, polymers, composites, and ceramics, tailored to enhance mechanical properties and expand functional applications. Special emphasis is given to bioinspired designs and their contribution to enhancing structural efficiency. Additionally, the potential of these techniques for sustainable manufacturing and industrial scalability is discussed. The findings contribute to a broader understanding of Additive Manufacturing's impact on design optimization and material performance, offering insights into future research and industrial applications.
Collapse
Affiliation(s)
- Arturo Ramos
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Virginia G. Angel
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Miriam Siqueiros
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Thaily Sahagun
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Luis Gonzalez
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Rogelio Ballesteros
- Honeywell Aerospace, ETS (Engineering Test Services) Materials Laboratory, Col. Parque el Vigía No. 2, Mexicali 21395, BC, Mexico;
| |
Collapse
|
5
|
Liu Z, Tang C, Han N, Jiang Z, Liang X, Wang S, Hu Q, Xiong C, Yao S, Wang Z, Wang ZL, Zou D, Li L. Electronic vascular conduit for in situ identification of hemadostenosis and thrombosis in small animals and nonhuman primates. Nat Commun 2025; 16:2671. [PMID: 40102408 PMCID: PMC11920275 DOI: 10.1038/s41467-025-58056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Patients suffering from coronary artery disease (CAD) or peripheral arterial disease (PAD) can benefit from bypass graft surgery. For this surgery, arterial vascular grafts have become promising alternatives when autologous grafts are inaccessible but suffer from numerous postimplantation challenges, particularly delayed endothelialization, intimal hyperplasia, high risk of thrombogenicity and restenosis, and difficulty in timely detection of these subtle pathological changes. We present an electronic vascular conduit that integrates flexible electronics into bionic vascular grafts for in situ, real-time and long-term monitoring for hemadostenosis and thrombosis concurrent with postoperative vascular repair. Following bypass surgery, the integrated bioelectronic sensor based on the triboelectric effect enables monitoring of the blood flow in the vascular graft and identification of lesions in real time for up to three months. In male nonhuman primate cynomolgus monkeys, the electronic vascular conduit, with an integrated wireless signal transmission module, enables wireless and real-time hemodynamic monitoring and timely identification of thrombi. This electronic vascular conduit demonstrates potential as a treatment-monitoring platform, providing a sensitive and intuitive monitoring technique during the critical period after bypass surgery in patients with CAD and PAD.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuyu Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nannan Han
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoheng Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Cheng Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China.
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Shi A, Shi Y, Li J, Ye M, Ma X, Peng Y, Gai K, Chen J. Advancements in 3D gel culture systems for enhanced angiogenesis in bone tissue engineering. J Mater Chem B 2025; 13:3516-3527. [PMID: 39998426 DOI: 10.1039/d4tb01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Angiogenesis-osteogenesis coupling is a crucial process in bone tissue engineering, requiring a suitable material structure for vessel growth. Recently, the 3D culture system has gained significant attention due to its benefits in cell growth, proliferation and tissue regeneration. Its most notable advantage is its ECM-like function, which supports endothelial cell adhesion and facilitates the formation of vascular-like networks-crucial for angiogenesis-osteogenesis coupling. Hydrogels, with their highly hydrophilic polymer network resembling the extracellular matrix, make the 3D gel culture system an ideal approach for angiogenesis due to its cellular integrity and adjustable properties. This article reviews the current use of 3D gel culture systems in bone tissue engineering, covering substrates, characteristics and processing technologies, thereby offering readers profound insights into these systems.
Collapse
Affiliation(s)
- Aijing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yixin Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Minghan Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaoqing Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yuke Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Kuo Gai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yuan L, Gao Y, Wang Q, Zhu K, Ren L, Yuan X. Construction of small-diameter vascular grafts by electrospun zwitterionic diselenide-containing poly(ester urethane)urea with enhanced endothelialization. Acta Biomater 2025:S1742-7061(25)00116-3. [PMID: 39952342 DOI: 10.1016/j.actbio.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cardiovascular diseases are the leading threat to human health. However, as an essential tool of vascular transplantation, small-diameter vascular grafts are still needed to intensify in rapid endothelialization and enhanced elasticity for vascular reconstruction. Herein, a series of zwitterionic diselenide-containing poly(ester urethane)ureas (zSePEUUs) are synthesized through modulation of the molar ratios of sulfobetaine-diol (SB-diol) and poly(ε-caprolactone)-diol (PCL-diol) (SB-diol/PCL-diol=1/0∼0/1) as diol components, along with selenocystamine and 1,4-butanediamine (7:3) as chain extenders. At the equal amount of SB-diol and PCL-diol, the synthesized zSePEUU polymer with enhanced hydrophilicity and suitable mechanical properties is subsequently utilized for preparation of electrospun tubular scaffolds. In vitro assays demonstrate that the zSePEUU electrospun membranes can inhibit protein adsorption and facilitate cell proliferation. Due to the in situ catalysis of diselenide, it is supposed that vasoregulatory nitric oxide (NO) can be generated to promote endothelialization. Then, the zSePEUU electrospun tubular scaffold remains vascular patency with formation of endothelial coverage and collagen deposition during in vivo implantation in a rat abdominal aorta interposition model for 4 weeks in comparison with the PCL control. Therefore, zwitterionic diselenide-containing zSePEUU with controllable NO generation provides a synergistic strategy for vascular regeneration. STATEMENT OF SIGNIFICANCE: Transplantation of vascular grafts is one of the effective approaches for treating cardiovascular diseases, however, this remains a challenge with the small-diameter vascular grafts. Herein, electrospun fibrous scaffolds made from elastic zwitterionic diselenide-containing poly(ester urethane)urea (zSePEUU) are reported, displaying increased hydrophilicity and compliance. By using equal amounts of sulfobetaine-diol and poly(ε-caprolactone)-diol, the zSePEUU electrospun scaffold exhibits optimal mechanical properties and nitric oxide-generating ability. Evaluation in a rat abdominal aorta interposition model suggests that the zSePEUU electrospun scaffold can achieve a high level of endothelial coverage and vascular regeneration. This finding provides a feasible method to address the issue of rapid endothelialization for long-term patency in vascular regeneration.
Collapse
Affiliation(s)
- Liang Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yong Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qing Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
8
|
Khatun MR, Bhattacharyya A, Gunbayar M, Jo YO, Noh I. Gelatin-alginate hydrogel for near-field electrospinning assisted 3D and 4-axis bioprinting. Carbohydr Polym 2025; 348:122853. [PMID: 39562122 DOI: 10.1016/j.carbpol.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
A near-field electrospinnable and three-dimensional (3D) bioprintable gelatin-alginate hydrogel was synthesized by controlling a moderate amount of alginate and a limited amount of crosslinker, tannic acid. This cytocompatible gelatin-alginate tough hydrogel exhibited excellent shape fidelity, a self-standing height exceeding 20 mm, and the capability for multilayer and four-axis 3D printing of complex scaffold shapes. The control of gel strength and rheology enables this hydrogel for successful stretching extrusion under an electric field in near-field electrospinning-induced 3D printing and four-axis printing. Nearly 74 % diameter reduction was achieved using near-field electrospinning-assisted 3D printing from a 20 mm distance, while a reduction of around 60 % was obtained in near-field electrospinning-assisted four-axis printing (with a 10 mm distance). Secondary crosslinking with Ca2+ ions provided the hydrogel ink with enhanced mechanical properties, improved post-printing shape fidelity, and prolonged degradation or disintegration (up to 21 days) of the 3D printed scaffolds. Tannic acid release from the degraded scaffold was very low (~2 mg at the end of 72 h). The success of multilayered and four-axis printing with near-field electrospinning, the controllable mechanical properties, high cytocompatibility, and cell supportiveness of this hydrogel suggest its strong potential for diverse applications, including complex scaffolds for tissue regeneration, porous tubes, controlled drug delivery, active membranes, flexible neurotransmitters, and strain sensors.
Collapse
Affiliation(s)
- Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Medical Electronics Research Center, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Maral Gunbayar
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yong Oh Jo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
9
|
Alkazemi H, Chai J, Allardyce BJ, Lokmic-Tomkins Z, O'Connor AJ, Heath DE. Glycerol-plasticized silk fibroin vascular grafts mimic key mechanical properties of native blood vessels. J Biomed Mater Res A 2025; 113:e37802. [PMID: 39311545 DOI: 10.1002/jbm.a.37802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 12/26/2024]
Abstract
Cardiovascular diseases are a major global health challenge. Blood vessel disease and dysfunction are major contributors to this healthcare burden, and the development of tissue-engineered vascular grafts (TEVGs) is required, particularly for the replacement of small-diameter vessels. Silk fibroin (SF) is a widely used biomaterial for TEVG fabrication due to its high strength and biocompatibility. However, the stiffness of SF is much higher than that of native blood vessels (NBVs), which limits its application for vascular tissue engineering. In this study, SF was plasticized with glycerol to produce TEVGs exhibiting similar stiffness and ultimate tensile strength to those of NBVs. The electrospun SF/glycerol TEVGs exhibited mechanical properties comparable to NBVs and supported the in vitro proliferation of essential vascular cells-endothelial and smooth muscle cells. After 5 days of culture, the TEVGs exhibited an endothelial monolayer in the lumen, demonstrating their potential for functional vascular tissue regeneration. Our study demonstrates the feasibility of producing TEVGs from SF with tailored mechanical properties, paving the way for more functional and durable TEVGs for future clinical applications.
Collapse
Affiliation(s)
- Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jaydon Chai
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin J Allardyce
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Zerina Lokmic-Tomkins
- Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Chen T, Jiang H, Zhang R, He F, Han N, Wang Z, Jia J. Leveraging printability and biocompatibility in materials for printing implantable vessel scaffolds. Mater Today Bio 2024; 29:101366. [PMID: 39698000 PMCID: PMC11652949 DOI: 10.1016/j.mtbio.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/10/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
Vessel scaffolds are crucial for treating cardiovascular diseases (CVDs). It is currently feasible to fabricate vessel scaffolds from a variety of materials using traditional fabrication methods, but the risks of thrombus formation, chronic inflammation, and atherosclerosis associated with these scaffolds have led to significant limitations in the clinical usages. Bioprinting, as an emerging technology, has great potential in constructing implantable vessel scaffolds. During the fabrication of the constructs, the biomaterials used for bioprinting have offered significant contributions for the successful fabrications of the vessel scaffolds. Herein, we review recent advances in biomaterials for bioprinting implantable vessel scaffolds. First, we briefly introduce the requirements for implantable vessel scaffolds and its conventional manufacturing methods. Next, a brief overview of the classic methods for bioprinting vessel scaffolds is presented. Subsequently, we provide an in-depth analysis of the properties of the representative natural, synthetic, composite and hybrid biomaterials that can be used for bioprinting implantable vessel scaffolds. Ultimately, we underscore the necessity of leveraging biocompatibility and printability for biomaterials, and explore the unmet needs and potential applications of these biomaterials in the field of bioprinted implantable vessel scaffolds.
Collapse
Affiliation(s)
- Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruoxuan Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fan He
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Ning Han
- Department of Orthopedic Traumatology, Shanghai East Hospital, Tongji University, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Zuo X, Xiao Y, Yang J, He Y, He Y, Liu K, Chen X, Guo J. Engineering collagen-based biomaterials for cardiovascular medicine. COLLAGEN AND LEATHER 2024; 6:33. [DOI: 10.1186/s42825-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractCardiovascular diseases have been the leading cause of global mortality and disability. In addition to traditional drug and surgical treatment, more and more studies investigate tissue engineering therapeutic strategies in cardiovascular medicine. Collagen interweaves in the form of trimeric chains to form the physiological network framework of the extracellular matrix of cardiac and vascular cells, possessing excellent biological properties (such as low immunogenicity and good biocompatibility) and adjustable mechanical properties, which renders it a vital tissue engineering biomaterial for the treatment of cardiovascular diseases. In recent years, promising advances have been made in the application of collagen materials in blood vessel prostheses, injectable cardiac hydrogels, cardiac patches, and hemostatic materials, although their clinical translation still faces some obstacles. Thus, we reviewed these findings and systematically summarizes the application progress as well as problems of clinical translation of collagen biomaterials in the cardiovascular field. The present review contributes to a comprehensive understanding of the application of collagen biomaterials in cardiovascular medicine.
Graphical abstract
Collapse
|
12
|
Qu B, Hu Z, Tan W, Li B, Xin Y, Mo J, Huang M, Wu Q, Li Y, Wu Y. Tetramethylpyrazine-derived polyurethane for improved hemocompatibility and rapid endothelialization. J Mater Chem B 2024; 12:11810-11816. [PMID: 39434545 DOI: 10.1039/d4tb01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Thrombosis and intimal hyperplasia (IH) are the main factors affecting the long-term patency of small-diameter vascular grafts (SDVGs). Fabricating a confluent endothelial cell (EC) layer on surfaces with physiological elasticity to mimic vascular endothelium should be an effective strategy to prevent restenosis that is caused by thrombosis and IH. However, the vascular endothelialization process is time-consuming and always constrained by hemocompatibility of the vascular grafts, since excellent hemocompatibility could guarantee a sufficient time window for the endothelialization process. Tetramethylpyrazine (TMP)-derived polyurethane (PU) with improved hemocompatibility and accelerated endothelialization ability is synthesized by incorporating TMP moieties into PU backbones. Results show that TMP-contained PU films possess improved hemocompatibility by down-regulating platelet adhesion/activation and increasing the clotting time. Furthermore, the in vitro human umbilical vein endothelial cell (HUVEC) test demonstrates that the introduction of TMP can significantly promote HUVEC adhesion and proliferation, and thus accelerate luminal endothelialization of vascular grafts. Moreover, the TMP-containing PU films exhibit excellent biocompatibility especially for HUVECs, and their excellent, adjustable elasticity (1123%) guarantees compliance accommodation of vascular grafts. This newly synthesized TMP-containing material with multiple biological functions is expected to make up for the shortcomings of available SDVGs in clinical practice, and has significant potential in improving the long-term patency of SDVGs.
Collapse
Affiliation(s)
- Baoliu Qu
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Zhenzhen Hu
- Food Inspection Institute of Jiangmen, 36 Xinghe Road, Pengjiang District, Jiangmen 529000, Guangdong, P. R. China
| | - Weilong Tan
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Bingyan Li
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Jinpeng Mo
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Meilin Huang
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Qinghua Wu
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Yangling Li
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Yingzhu Wu
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| |
Collapse
|
13
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
14
|
Zakeri Z, Salehi R, Rahbarghazi R, Taghipour YD, Mahkam M, Sokullu E. Electrospun polyhedral oligomeric silsequioxane-poly(carbonate-urea) urethane for fabrication of hemocompatible small-diameter vascular grafts with angiogenesis capacity. Int J Biol Macromol 2024; 277:134064. [PMID: 39048012 DOI: 10.1016/j.ijbiomac.2024.134064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The clinical utility of small-diameter vascular grafts (SDVGs) is limited due to the possibility of thrombosis and intimal hyperplasia. These features can delay the development of a functional endothelial cell (EC) monolayer on the luminal surface of grafts. Therefore, the development and fabrication of vascular grafts (VGs) with comparable extracellular matrix (ECM) functions are mandatory to elicit hemocompatible confluent EC monolayers, and angiogenesis behavior inside the body. To promote the interactions between ECs and the surface of electrospun polyacrylic acid-grafted polyhedral oligomeric silsesquioxane-poly(carbonate-urea)-urethane (PAAc-POSS-PCUU), in this research, the surface of nanofibers was modified by covalently immobilizing extracted soluble proteins from aorta (ESPA) using EDC/NHS chemistry. The ATR-FTIR spectroscopy, WCA, and SEM microscopy confirmed the binding of acrylic acid and soluble vascular proteins on the surface of electrospun fibers. The PAAc-POSS-PCUU nanofibers and engineered biomimetic Pro-PAAc-POSS-PCUU nanofibers exhibited excellent biocompatibility indicated by increased survival rate (p < 0.05). Western blotting revealed the increase of VE-cadherin, Tie-2, vWF, and VEGFR-2 in HUVECs after being plated on PAAc-POSS-PCUU and Pro-PAAc-POSS-PCUU scaffolds, indicating appropriate angiogenesis behavior (p < 0.05). Besides, the antioxidant capacity was induced by the increase of SOD and GPx activity (p < 0.05). Additionally, blood compatibility tests revealed that Pro-PAAc-POSS-PCUU nanofibers accelerate the formation of a single EC layer without hemolysis and platelet adhesion. Taken together, Pro-PAAc-POSS-PCUU nanofibers exhibited excellent blood compatibility, and angiogenesis behavior, making them a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Ziba Zakeri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey; Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
15
|
Rezvova MA, Ovcharenko EA, Klyshnikov KY, Glushkova TV, Kostyunin AE, Shishkova DK, Matveeva VG, Velikanova EA, Shabaev AR, Kudryavtseva YA. Electrospun bioresorbable polymer membranes for coronary artery stents. Front Bioeng Biotechnol 2024; 12:1440181. [PMID: 39234270 PMCID: PMC11371781 DOI: 10.3389/fbioe.2024.1440181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
Percutaneous coronary intervention, a common treatment for atherosclerotic coronary artery lesions, occasionally results in perforations associated with increased mortality rates. Stents coated with a bioresorbable polymer membrane may offer an effective solution for sealing coronary artery perforations. Additionally, such coatings could be effective in mitigating neointimal hyperplasia within the vascular lumen and correcting symptomatic aneurysms. This study examines polymer membranes fabricated by electrospinning of polycaprolactone, polydioxanone, polylactide-co-caprolactone, and polylactide-co-glycolide. In uniaxial tensile tests, all the materials appear to surpass theoretically derived elongation thresholds necessary for stent deployment, albeit polydioxanone membranes are found to disintegrate during the experimental balloon expansion. As revealed by in vitro hemocompatibility testing, polylactide-co-caprolactone membranes exhibit higher thrombogenicity compared to other evaluated polymers, while polylactide-co-glycolide samples fail within the first day post-implantation into the abdominal aorta in rats. The PCL membrane exhibited significant water leakage in the permeability test. Comprehensive evaluation of mechanical testing, bio- and hemocompatibility, as well as biodegradation dynamics shows the advantage of membranes based on and the mixture of polylactide-co-caprolactone and polydioxanone over other polymer groups. These findings lay a foundational framework for conducting preclinical studies on stent configurations in large laboratory animals, emphasizing that further investigations under conditions closely mimicking clinical use are imperative for making definitive conclusions.
Collapse
Affiliation(s)
- Maria A Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Evgeny A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Kirill Yu Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Tatiana V Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | | | - Daria K Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Vera G Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Elena A Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Amin R Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Yulia A Kudryavtseva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
16
|
Wolfe JT, Chen V, Chen Y, Tefft BJ. Identification of a subpopulation of highly adherent endothelial cells for seeding synthetic vascular grafts. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00550-6. [PMID: 38972570 PMCID: PMC11700231 DOI: 10.1016/j.jtcvs.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE There is an unmet clinical need for alternatives to autologous vessel grafts. Small-diameter (<6 mm) synthetic vascular grafts are not suitable because of unacceptable patency rates. This mainly occurs due to the lack of an endothelial cell (EC) monolayer to prevent platelet activation, thrombosis, and intimal hyperplasia. There are no reliable methods to endothelialize small-diameter grafts because most seeded ECs are lost due to exposure to fluid shear stress after implantation. The goal of this work is to determine if EC loss is a random process or if it is possible to predict which cells are more likely to remain adherent. METHODS In initial studies, we sorted ECs using fluid shear stress and identified a subpopulation of ECs that are more likely to resist detachment. We use RNA sequencing to examine gene expression of adherent ECs compared with the whole population. Using fluorescence activated cell sorting, we sorted ECs based on the expression level of a candidate marker and studied their retention in small-diameter vascular grafts in vitro. RESULTS Transcriptomic analysis revealed that fibronectin leucine rich transmembrane protein 2 (FLRT2), encoding protein FLRT2, is downregulated in the ECs that are more likely to resist detachment. When seeded onto vascular grafts and exposed to shear stress, ECs expressing low levels of FLRT2 exhibit 59.2% ± 7.4% retention compared with 24.5% ± 6.1% retention for the remainder of the EC population. CONCLUSIONS For the first time, we show EC detachment is not an entirely random process. This provides validation for the concept that we can seed small-diameter vascular grafts only with highly adherent ECs to maintain a stable endothelium and improve graft patency rates.
Collapse
Affiliation(s)
- Jayne T Wolfe
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis
| | - Vaya Chen
- Versiti Blood Research Institute, Milwaukee, Wis
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wis; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis
| | - Brandon J Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
17
|
Bartolf-Kopp M, Jungst T. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process? Adv Healthc Mater 2024; 13:e2400426. [PMID: 38607966 DOI: 10.1002/adhm.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.
Collapse
Affiliation(s)
- Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
- Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
19
|
Weekes A, Wasielewska JM, Pinto N, Jenkins J, Patel J, Li Z, Klein TJ, Meinert C. Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs). J Tissue Eng Regen Med 2024; 2024:8707377. [PMID: 40225752 PMCID: PMC11919237 DOI: 10.1155/2024/8707377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/08/2024] [Indexed: 04/15/2025]
Abstract
Tissue engineering is a promising approach for the production of small-diameter vascular grafts; however, there are limited data directly comparing the suitability of applicable cell types for vessel biofabrication. Here, we investigated the potential of adult smooth muscle cells (SMCs), placental mesenchymal stem cells (MSCs), placental endothelial colony-forming cells (ECFCs), and a combination of MSCs and ECFCs on highly porous biocompatible poly(ɛ-caprolactone) (PCL) scaffolds produced via melt electrowriting (MEW) for the biofabrication of tissue-engineered vascular grafts (TEVGs). Cellular attachment, proliferation, and deposition of essential extracellular matrix (ECM) components were analysed in vitro over four weeks. TEVGs cultured with MSCs accumulated the highest levels of collagenous components within a dense ECM, while SMCs and the coculture were more sparsely populated, ascertained via histological and immunofluorescence imaging, and biochemical assessment. Scanning electron microscopy (SEM) enabled visualisation of morphological differences in cell attachment and growth, with MSCs and SMCs infiltrating and covering scaffolds completely within the 28-day culture period. Coverage and matrix deposition by ECFCs was limited. However, ECFCs lined the ECM formed by MSCs in coculture, visualised via immunostaining. Thus, of cells investigated, placental MSCs were identified as the preferred cell source for the fabrication of tissue-engineered constructs, exhibiting extensive population of porous polymer scaffolds and production of ECM components; with the inclusion of ECFCs for luminal endothelialisation, an encouraging outcome warranting further consideration in future studies. In combination, these findings represent a substantial step toward the development of the next generation of small-diameter vascular grafts in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Joanna M. Wasielewska
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jatin Patel
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Woolloongabba, QLD, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Travis J. Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| |
Collapse
|
20
|
Ding H, Hou X, Gao Z, Guo Y, Liao B, Wan J. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts. Adv Healthc Mater 2024; 13:e2304432. [PMID: 38462702 DOI: 10.1002/adhm.202304432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.
Collapse
Affiliation(s)
- Heng Ding
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
21
|
Han Y, Wang H, Guan Y, Li S, Yuan Z, Lu L, Zheng X. High-precision 3D printing of multi-branch vascular scaffold with plasticized PLCL thermoplastic elastomer. Biomed Mater 2024; 19:035042. [PMID: 38636492 DOI: 10.1088/1748-605x/ad407c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Three-dimensional (3D) printing has emerged as a transformative technology for tissue engineering, enabling the production of structures that closely emulate the intricate architecture and mechanical properties of native biological tissues. However, the fabrication of complex microstructures with high accuracy using biocompatible, degradable thermoplastic elastomers poses significant technical obstacles. This is primarily due to the inherent soft-matter nature of such materials, which complicates real-time control of micro-squeezing, resulting in low fidelity or even failure. In this study, we employ Poly (L-lactide-co-ϵ-caprolactone) (PLCL) as a model material and introduce a novel framework for high-precision 3D printing based on the material plasticization process. This approach significantly enhances the dynamic responsiveness of the start-stop transition during printing, thereby reducing harmful errors by up to 93%. Leveraging this enhanced material, we have efficiently fabricated arrays of multi-branched vascular scaffolds that exhibit exceptional morphological fidelity and possess elastic moduli that faithfully approximate the physiological modulus spectrum of native blood vessels, ranging from 2.5 to 45 MPa. The methodology we propose for the compatibilization and modification of elastomeric materials addresses the challenge of real-time precision control, representing a significant advancement in the domain of melt polymer 3D printing. This innovation holds considerable promise for the creation of detailed multi-branch vascular scaffolds and other sophisticated organotypic structures critical to advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yunda Han
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, People's Republic of China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Yuheng Guan
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Song Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Zewei Yuan
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, People's Republic of China
| | - Lihua Lu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| |
Collapse
|
22
|
Shen Y, Pan Y, Liang F, Song J, Yu X, Cui J, Cai G, EL-Newehy M, Abdulhameed MM, Gu H, Sun B, Yin M, Mo X. Development of 3D printed electrospun vascular graft loaded with tetramethylpyrazine for reducing thrombosis and restraining aneurysmal dilatation. BURNS & TRAUMA 2024; 12:tkae008. [PMID: 38596623 PMCID: PMC11002459 DOI: 10.1093/burnst/tkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
Background Small-diameter vascular grafts have become the focus of attention in tissue engineering. Thrombosis and aneurysmal dilatation are the two major complications of the loss of vascular access after surgery. Therefore, we focused on fabricating 3D printed electrospun vascular grafts loaded with tetramethylpyrazine (TMP) to overcome these limitations. Methods Based on electrospinning and 3D printing, 3D-printed electrospun vascular grafts loaded with TMP were fabricated. The inner layer of the graft was composed of electrospun poly(L-lactic-co-caprolactone) (PLCL) nanofibers and the outer layer consisted of 3D printed polycaprolactone (PCL) microfibers. The characterization and mechanical properties were tested. The blood compatibility and in vitro cytocompatibility of the grafts were also evaluated. Additionally, rat abdominal aortas were replaced with these 3D-printed electrospun grafts to evaluate their biosafety. Results Mechanical tests demonstrated that the addition of PCL microfibers could improve the mechanical properties. In vitro experimental data proved that the introduction of TMP effectively inhibited platelet adhesion. Afterwards, rat abdominal aorta was replaced with 3D-printed electrospun grafts. The 3D-printed electrospun graft loaded with TMP showed good biocompatibility and mechanical strength within 6 months and maintained substantial patency without the occurrence of acute thrombosis. Moreover, no obvious aneurysmal dilatation was observed. Conclusions The study demonstrated that 3D-printed electrospun vascular grafts loaded with TMP may have the potential for injured vascular healing.
Collapse
Affiliation(s)
- Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Jiahui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hongbing Gu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201600, PR China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
23
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
Kwon H, Lee S, Byun H, Huh SJ, Lee E, Kim E, Lee J, Shin H. Engineering pre-vascularized 3D tissue and rapid vascular integration with host blood vessels via co-cultured spheroids-laden hydrogel. Biofabrication 2024; 16:025029. [PMID: 38447223 DOI: 10.1088/1758-5090/ad30c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in regenerative medicine and tissue engineering have enabled the biofabrication of three-dimensional (3D) tissue analogues with the potential for use in transplants and disease modeling. However, the practical use of these biomimetic tissues has been hindered by the challenge posed by reconstructing anatomical-scale micro-vasculature tissues. In this study, we suggest that co-cultured spheroids within hydrogels hold promise for regenerating highly vascularized and innervated tissues, bothin vitroandin vivo. Human adipose-derived stem cells (hADSCs) and human umbilical vein cells (HUVECs) were prepared as spheroids, which were encapsulated in gelatin methacryloyl hydrogels to fabricate a 3D pre-vascularized tissue. The vasculogenic responses, extracellular matrix production, and remodeling depending on parameters like co-culture ratio, hydrogel strength, and pre-vascularization time forin vivointegration with native vessels were then delicately characterized. The co-cultured spheroids with 3:1 ratio (hADSCs/HUVECs) within the hydrogel and with a pliable storage modulus showed the greatest vasculogenic potential, and ultimately formedin vitroarteriole-scale vasculature with a longitudinal lumen structure and a complex vascular network after long-term culturing. Importantly, the pre-vascularized tissue also showed anastomotic vascular integration with host blood vessels after transplantation, and successful vascularization that was positive for both CD31 and alpha-smooth muscle actin covering 18.6 ± 3.6μm2of the luminal area. The described co-cultured spheroids-laden hydrogel can therefore serve as effective platform for engineering 3D vascularized complex tissues.
Collapse
Affiliation(s)
- Hyunseok Kwon
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
25
|
Li S, Yang L, Zhao Z, Yang X, Lv H. A polyurethane-based hydrophilic elastomer with multi-biological functions for small-diameter vascular grafts. Acta Biomater 2024; 176:234-249. [PMID: 38218359 DOI: 10.1016/j.actbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Thrombosis and intimal hyperplasia (IH) are two major problems faced by the small-diameter vascular grafts. Mimicking the native endothelium and physiological elasticity of blood vessels is considered an ideal strategy. Polyurethane (PU) is suitable for vascular grafts in mechanics because of its molecular designability and elasticity; however, it generally lacks the endothelium-like biofunctions and hydrophilicity. To solve this contradiction, a hydrophilic PU elastomer is developed by crosslinking the hydrophobic hard-segment chains containing diselenide with diaminopyrimidine-capped polyethylene glycol (PEG). In this network, the hydrophobic aggregation occurs underwater due to the uninterrupted hard-segment chains, leading to a significant self-enhancement in mechanics, which can be tailored to the elasticity similar to natural vessels by adjusting the crosslinking density. A series of in vitro studies confirm that the hydrophilicity of PEG and biological activities of aminopyrimidine and diselenide give the PU multi-biological functions similar to the native endothelium, including stable catalytic release of nitric oxide (NO) in the physiological level; anti-adhesion and anti-activation of platelets; inhibition of migration, adhesion, and proliferation of smooth muscle cells (SMCs); and antibacterial effect. In vivo studies further prove the good histocompatibility with both significant reduction in immune response and calcium deposition. STATEMENT OF SIGNIFICANCE: Constructing small-diameter vascular grafts similar to the natural vessels is considered an ideal method to solve the restenosis caused by thrombosis and intimal hyperplasia (IH). Because of the long-term stability, bulk modification is more suitable for implanted materials, however, how to achieve the biofunctions, hydrophilicity, and elasticity simultaneously is still a big challenge. In this work, a kind of polyurethane-based elastomer has been designed and prepared by crosslinking the functional long hard-segment chains with PEG soft segments. The underwater elasticity based on hydration-induced stiffening and the multi-biological functions similar to the native endothelium are compatible with natural vessels. Both in vitro and in vivo experiments demonstrate the potential of this PU as small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| |
Collapse
|
26
|
Zhang W, Fukazawa K, Mahara A, Jiang H, Yamaoka T. Photo-induced universal modification of small-diameter decellularized blood vessels with a hemocompatible peptide improves in vivo patency. Acta Biomater 2024; 176:116-127. [PMID: 38232911 DOI: 10.1016/j.actbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Decellularized vessels (DVs) have the potential to serve as available grafts for small-diameter vascular (<6 mm) reconstruction. However, the absence of functional endothelia makes them likely to trigger platelet aggregation and thrombosis. Luminal surface modification is an efficient approach to prevent thrombosis and promote endothelialization. Previously, we identified a hemocompatible peptide, HGGVRLY, that showed endothelial affinity and antiplatelet ability. By conjugating HGGVRLY with a phenylazide group, we generated a photoreactive peptide that can be modified onto multiple materials, including non-denatured extracellular matrices. To preserve the natural collagen of DVs as much as possible, we used a lower ultrahydrostatic pressure than that previously reported to prepare decellularized grafts. The photoreactive HGGVRLY peptide could be modified onto DV grafts via UV exposure for only 2 min. Modified DVs showed improved endothelial affinity and antiplatelet ability in vitro. When rat abdominal aortas were replaced with DVs, modified DVs with more natural collagen demonstrated the highest patent rate after 10 weeks. Moreover, the photoreactive peptide remained on the lumen surface of DVs over two months after implantation. Therefore, the photoreactive peptide could be efficiently and sustainably modified onto DVs with more natural collagens, resulting in improved hemocompatibility. STATEMENT OF SIGNIFICANCE: We employed a relatively lower ultrahydrostatic pressure to prepare decellularized vessels (DVs) with less denatured collagens to provide a more favorable environment for cell migration and proliferation. The hemocompatibility of DV luminal surface can be enhanced by peptide modification, but undenatured collagens are difficult to modify. We innovatively introduce a phenylazide group into the hemocompatible peptide HGGVRLY, which we previously identified to possess endothelial affinity and antiplatelet ability, to generate a photoreactive peptide. The photoreactive peptide can be efficiently and stably modified onto DVs with more natural collagens. DV grafts modified with photoreactive peptide exhibit enhanced in vivo patency. Furthermore, the sustainability of photoreactive peptide modification on DV grafts within bloodstream is evident after two months of transplantation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan; Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Kyoko Fukazawa
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
27
|
Baldwin CS, Iyer S, Rao RR. The challenges and prospects of smooth muscle tissue engineering. Regen Med 2024; 19:135-143. [PMID: 38440898 PMCID: PMC10941056 DOI: 10.2217/rme-2023-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Many vascular disorders arise as a result of dysfunctional smooth muscle cells. Tissue engineering strategies have evolved as key approaches to generate functional vascular smooth muscle cells for use in cell-based precision and personalized regenerative medicine approaches. This article highlights some of the challenges that exist in the field and presents some of the prospects for translating research advancements into therapeutic modalities. The article emphasizes the need for better developing synergetic intracellular and extracellular cues in the processes to generate functional vascular smooth muscle cells from different stem cell sources for use in tissue engineering strategies.
Collapse
Affiliation(s)
- Christofer S Baldwin
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts & Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Raj R Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
28
|
Yang L, Wang X, Xiong M, Liu X, Luo S, Luo J, Wang Y. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering. Sci Rep 2024; 14:3942. [PMID: 38365964 PMCID: PMC10873321 DOI: 10.1038/s41598-024-54638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Electrospun scaffolds play important roles in the fields of regenerative medicine and vascular tissue engineering. The aim of the research described here was to develop a vascular scaffold that mimics the structural and functional properties of natural vascular scaffolding. The mechanical properties of artificial vascular tissue represent a key issue for successful transplantation in small diameter engineering blood vessels. We blended silk fibroin (SF) and fibrin to fabricate a composite scaffold using electrospinning to overcome the shortcomings of fibrin with respect to its mechanical properties. Subsequently, we then carefully investigated the morphological, mechanical properties, hydrophilicity, hemocompatibility, degradation, cytocompatibility and biocompatibility of the SF/fibrin (0:100), SF/fibrin (15:85), SF/fibrin (25:75), and SF/fibrin (35:65) scaffolds. Based on these in vitro results, we implanted SF/fibrin (25:75) vascular scaffold subcutaneously and analyzed its in vivo degradation and histocompatibility. The fiber structure of the SF/fibrin hybrid scaffold was smooth and uniform, and its fiber diameters were relatively small. Compared with the fibrin scaffold, the SF/fibrin scaffold clearly displayed increased mechanical strength, but the hydrophilicity weakened correspondingly. All of the SF/fibrin scaffolds showed excellent blood compatibility and appropriate biodegradation rates. The SF/fibrin (25:75) scaffold increased the proliferation and adhesion of MSCs. The results of animal experiments confirmed that the degradation of the SF/fibrin (25:75) scaffold was faster than that of the SF scaffold and effectively promoted tissue regeneration and cell infiltration. All in all, the SF/fibrin (25:75) electrospun scaffold displayed balanced and controllable biomechanical properties, degradability, and good cell compatibility. Thus, this scaffold proved to be an ideal candidate material for artificial blood vessels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Surgical Base, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xu Wang
- Biomedical College, Guangdong University of Technology, Guangzhou, China
| | - Man Xiong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfang Liu
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sidong Luo
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinxian Luo
- Department of Thyroid and Mammary Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yeyang Wang
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- Orthopaedic Center, Zhaoqing Central People's Hospital, Zhaoqing, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Behr JM, Wong YS, Venkatraman S. Small-Diameter Blood Vessel Substitutes: Biomimetic Approaches to Improve Patency. Biomimetics (Basel) 2024; 9:97. [PMID: 38392143 PMCID: PMC10886630 DOI: 10.3390/biomimetics9020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
Small-dimeter blood vessels (<6 mm) are required in coronary bypass and peripheral bypass surgery to circumvent blocked arteries. However, they have poor patency rates due to thrombus formation, intimal hyperplasia at the distal anastomosis, and compliance mismatch between the native artery and the graft. This review covers the state-of-the-art technologies for improving graft patency with a focus on reducing compliance mismatch between the prosthesis and the native artery. The focus of this article is on biomimetic design strategies to match the compliance over a wide pressure range.
Collapse
Affiliation(s)
- Jean-Marc Behr
- SMD Swiss Medical Devices AG, 8222 Beringen, Switzerland
| | - Yee Shan Wong
- Biomedical Engineering, School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Subbu Venkatraman
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthTech, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
30
|
Cevik M, Dikici S. Development of tissue-engineered vascular grafts from decellularized parsley stems. SOFT MATTER 2024; 20:338-350. [PMID: 38088147 DOI: 10.1039/d3sm01236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cardiovascular diseases are mostly associated with narrowing or blockage of blood vessels, and it is the most common cause of death worldwide. The use of vascular grafts is a promising approach to bypass or replace the blocked vessels for long-term treatment. Although autologous arteries or veins are the most preferred tissue sources for vascular bypass, the limited presence and poor quality of autologous vessels necessitate seeking alternative biomaterials. Recently, synthetic grafts have gained attention as an alternative to autologous grafts. However, the high failure rate of synthetic grafts has been reported primarily due to thrombosis, atherosclerosis, intimal hyperplasia, or infection. Thrombosis, the main reason for failure upon implantation, is associated with damage or absence of endothelial cell lining in the vascular graft's luminal surface. To overcome this, tissue-engineered vascular grafts (TEVGs) have come into prominence. Alongside the well-established scaffold manufacturing techniques, decellularized plant-based constructs have recently gained significant importance and are an emerging field in tissue engineering and regenerative medicine. Accordingly, in this study, we demonstrated the fabrication of tubular scaffolds from decellularized parsley stems and recellularized them with human endothelial cells to be used as a potential TEVG. Our results suggested that the native plant DNA was successfully removed, and soft tubular biomaterials were successfully manufactured via the chemical decellularization of the parsley stems. The decellularized parsley stems showed suitable mechanical and biological properties to be used as a TEVG material, and they provided a suitable environment for the culture of human endothelial cells to attach and create a pseudo endothelium prior to implantation. This study is the first one to demonstrate the potential of the parsley stems to be used as a potential TEVG biomaterial.
Collapse
Affiliation(s)
- Merve Cevik
- Department of Biotechnology, Graduate School of Education, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
31
|
Weekes A, Wehr G, Pinto N, Jenkins J, Li Z, Meinert C, Klein TJ. Highly compliant biomimetic scaffolds for small diameter tissue-engineered vascular grafts (TEVGs) produced via melt electrowriting (MEW). Biofabrication 2023; 16:015017. [PMID: 37992322 DOI: 10.1088/1758-5090/ad0ee1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Biofabrication approaches toward the development of tissue-engineered vascular grafts (TEVGs) have been widely investigated. However, successful translation has been limited to large diameter applications, with small diameter grafts frequently failing due to poor mechanical performance, in particular mismatched radial compliance. Herein, melt electrowriting (MEW) of poly(ϵ-caprolactone) has enabled the manufacture of highly porous, biocompatible microfibre scaffolds with physiological anisotropic mechanical properties, as substrates for the biofabrication of small diameter TEVGs. Highly reproducible scaffolds with internal diameter of 4.0 mm were designed with 500 and 250µm pore sizes, demonstrating minimal deviation of less than 4% from the intended architecture, with consistent fibre diameter of 15 ± 2µm across groups. Scaffolds were designed with straight or sinusoidal circumferential microfibre architecture respectively, to investigate the influence of biomimetic fibre straightening on radial compliance. The results demonstrate that scaffolds with wave-like circumferential microfibre laydown patterns mimicking the architectural arrangement of collagen fibres in arteries, exhibit physiological compliance (12.9 ± 0.6% per 100 mmHg), while equivalent control geometries with straight fibres exhibit significantly reduced compliance (5.5 ± 0.1% per 100 mmHg). Further mechanical characterisation revealed the sinusoidal scaffolds designed with 250µm pores exhibited physiologically relevant burst pressures of 1078 ± 236 mmHg, compared to 631 ± 105 mmHg for corresponding 500µm controls. Similar trends were observed for strength and failure, indicating enhanced mechanical performance of scaffolds with reduced pore spacing. Preliminaryin vitroculture of human mesenchymal stem cells validated the MEW scaffolds as suitable substrates for cellular growth and proliferation, with high cell viability (>90%) and coverage (>85%), with subsequent seeding of vascular endothelial cells indicating successful attachment and preliminary endothelialisation of tissue-cultured constructs. These findings support further investigation into long-term tissue culture methodologies for enhanced production of vascular extracellular matrix components, toward the development of the next generation of small diameter TEVGs.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Gabrielle Wehr
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
32
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
33
|
Thorsnes QS, Turner PR, Ali MA, Cabral JD. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature. Biomedicines 2023; 11:3139. [PMID: 38137359 PMCID: PMC10740633 DOI: 10.3390/biomedicines11123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
We demonstrate for the first time the combination of two additive manufacturing technologies used in tandem, fused deposition modelling (FDM) and melt electrowriting (MEW), to increase the range of possible MEW structures, with a focus on creating branched, hollow scaffolds for vascularization. First, computer-aided design (CAD) was used to design branched mold halves which were then used to FDM print conductive polylactic acid (cPLA) molds. Next, MEW was performed over the top of these FDM cPLA molds using polycaprolactone (PCL), an FDA-approved biomaterial. After the removal of the newly constructed MEW scaffolds from the FDM molds, complementary MEW scaffold halves were heat-melded together by placing the flat surfaces of each half onto a temperature-controlled platform, then pressing the heated halves together, and finally allowing them to cool to create branched, hollow constructs. This hybrid technique permitted the direct fabrication of hollow MEW structures that would otherwise not be possible to achieve using MEW alone. The scaffolds then underwent in vitro physical and biological testing. Specifically, dynamic mechanical analysis showed the scaffolds had an anisotropic stiffness of 1 MPa or 5 MPa, depending on the direction of the applied stress. After a month of incubation, normal human dermal fibroblasts (NHDFs) were seen growing on the scaffolds, which demonstrated that no deleterious effects were exerted by the MEW scaffolds constructed using FDM cPLA molds. The significant potential of our hybrid additive manufacturing approach to fabricate complex MEW scaffolds could be applied to a variety of tissue engineering applications, particularly in the field of vascularization.
Collapse
Affiliation(s)
- Quinn S. Thorsnes
- Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin 9054, New Zealand; (Q.S.T.); (M.A.A.)
| | - Paul R. Turner
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Mohammed Azam Ali
- Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin 9054, New Zealand; (Q.S.T.); (M.A.A.)
| | - Jaydee D. Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
34
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
35
|
Rohringer S, Grasl C, Ehrmann K, Hager P, Hahn C, Specht SJ, Walter I, Schneider KH, Zopf LM, Baudis S, Liska R, Schima H, Podesser BK, Bergmeister H. Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches. Adv Healthc Mater 2023; 12:e2300520. [PMID: 37173073 PMCID: PMC11468867 DOI: 10.1002/adhm.202300520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Katharina Ehrmann
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Pia Hager
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Clemens Hahn
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Sophie J. Specht
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Ingrid Walter
- Department of PathobiologyUniversity of Veterinary MedicineVeterinaerplatz 1Vienna1210Austria
| | - Karl H. Schneider
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Lydia M. Zopf
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Robert Liska
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| |
Collapse
|
36
|
Xu R, Li T, Li Z, Kong W, Wang T, Zhang X, Luo J, Li W, Jiao L. Knowledge fields and emerging trends about extracellular matrix in carotid artery disease from 1990 to 2021: analysis of the scientific literature. Eur J Med Res 2023; 28:284. [PMID: 37587506 PMCID: PMC10428572 DOI: 10.1186/s40001-023-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Stroke is a heavy burden in modern society, and carotid artery disease is a major cause. The role of the extracellular matrix (ECM) in the development and progression of carotid artery disease has become a popular research focus. However, there is no published bibliometric analysis to derive the main publication features and trends in this scientific area. We aim to conduct a bibliometric analysis to reveal current status of ECM in carotid artery disease and to predict future hot spots. METHODS We searched and downloaded articles from the Web of Science Core Collection with "Carotid" and "Extracellular Matrix" as subject words from 1990 to 2021. The complete bibliographic data were analyzed by Bibliometrics, BICOMB, gCLUTO and CiteSpace softwares. RESULTS Since 1990, the United States has been the leader in the number of publications in the field of ECM in carotid artery disease, followed by China, Japan and Germany. Among institutions, Institut National De La Sante Et De La Recherche Medicale Inserm, University of Washington Seattle and Harvard University are in the top 3. "Arteriosclerosis Thrombosis and Vascular Biology" is the most popular journal and "Circulation" is the most cited journal. "Clowes AW", "Hedin Ulf" and "Nilsson Jan" are the top three authors of published articles. Finally, we investigated the frontiers through the strongest citation bursts, conducted keyword biclustering analysis, and discovered five clusters of research hotspots. Our research provided a comprehensive analysis of the fundamental data, knowledge organization, and dynamic evolution of research about ECM in carotid artery disease. CONCLUSIONS The field of ECM in carotid artery disease has received increasing attention. We summarized the history of the field and predicted five future hotspots through bibliometric analysis. This study provided a reference for researchers in this fields, and the methodology can be extended to other fields.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
37
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
38
|
Antonova LV, Sevostianova VV, Silnikov VN, Krivkina EO, Velikanova EA, Mironov AV, Shabaev AR, Senokosova EA, Khanova MY, Glushkova TV, Akentieva TN, Sinitskaya AV, Markova VE, Shishkova DK, Lobov AA, Repkin EA, Stepanov AD, Kutikhin AG, Barbarash LS. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model. Int J Mol Sci 2023; 24:ijms24108540. [PMID: 37239889 DOI: 10.3390/ijms24108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of suitable autologous grafts and the impossibility of using synthetic prostheses for small artery reconstruction make it necessary to develop alternative efficient vascular grafts. In this study, we fabricated an electrospun biodegradable poly(ε-caprolactone) (PCL) prosthesis and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) (PHBV/PCL) prosthesis loaded with iloprost (a prostacyclin analog) as an antithrombotic drug and cationic amphiphile with antibacterial activity. The prostheses were characterized in terms of their drug release, mechanical properties, and hemocompatibility. We then compared the long-term patency and remodeling features of PCL and PHBV/PCL prostheses in a sheep carotid artery interposition model. The research findings verified that the drug coating of both types of prostheses improved their hemocompatibility and tensile strength. The 6-month primary patency of the PCL/Ilo/A prostheses was 50%, while all PHBV/PCL/Ilo/A implants were occluded at the same time point. The PCL/Ilo/A prostheses were completely endothelialized, in contrast to the PHBV/PCL/Ilo/A conduits, which had no endothelial cells on the inner layer. The polymeric material of both prostheses degraded and was replaced with neotissue containing smooth-muscle cells; macrophages; proteins of the extracellular matrix such as type I, III, and IV collagens; and vasa vasorum. Thus, the biodegradable PCL/Ilo/A prostheses demonstrate better regenerative potential than PHBV/PCL-based implants and are more suitable for clinical use.
Collapse
Affiliation(s)
- Larisa V Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Viktoriia V Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Vladimir N Silnikov
- Laboratory of Organic Synthesis, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgeniya O Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena A Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey V Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Amin R Shabaev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia A Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Yu Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Tatiana V Glushkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Tatiana N Akentieva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anna V Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria E Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria K Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy A Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, St. Petersburg 194064, Russia
| | - Egor A Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, St. Petersburg 199034, Russia
| | - Alexander D Stepanov
- Institute of Medicine, Kemerovo State University, 6 Krasnaya Street, Kemerovo 650000, Russia
| | - Anton G Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid S Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|
39
|
Le HT, Mahara A, Nagasaki T, Yamaoka T. Prevention of anastomotic stenosis for decellularized vascular grafts using rapamycin-loaded boronic acid-based hydrogels mimicking the perivascular tissue function. BIOMATERIALS ADVANCES 2023; 147:213324. [PMID: 36796198 DOI: 10.1016/j.bioadv.2023.213324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) induces graft anastomotic stenosis, resulting in graft failure. Herein, we developed a drug-loaded tissue-adhesive hydrogel as artificial perivascular tissue to suppress VSMCs proliferation. Rapamycin (RPM), an anti-stenosis drug, is selected as the drug model. The hydrogel was composed of poly (3-acrylamidophenylboronic acid-co-acrylamide) (BAAm) and polyvinyl alcohol. Since phenylboronic acid reportedly binds to sialic acid of glycoproteins which is distributed on the tissues, the hydrogel is expected to be adherent to the vascular adventitia. Two hydrogels containing 25 or 50 mg/mL of BAAm (BAVA25 and BAVA50, respectively) were prepared. A decellularized vascular graft with a diameter of <2.5 mm was selected as a graft model. Lap-shear test indicates that both hydrogels adhered to the graft adventitia. In vitro release test indicated that 83 and 73 % of RPM in BAVA25 and BAVA50 hydrogels was released after 24 h, respectively. When VSMCs were cultured with RPM-loaded BAVA hydrogels, their proliferation was suppressed at an earlier stage in RPM-loaded BAVA25 hydrogels compared to RPM-loaded BAVA50 hydrogels. An in vivo preliminary test reveals that the graft coated with RPM-loaded BAVA25 hydrogel shows better graft patency for at least 180 d than the graft coated with RPM-loaded BAVA50 hydrogel or without hydrogel. Our results suggest that RPM-loaded BAVA25 hydrogel with tissue adhesive characteristics has potential to improve decellularized vascular graft patency.
Collapse
Affiliation(s)
- Hue Thi Le
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
40
|
Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, Perán M. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1148768. [PMID: 37009489 PMCID: PMC10061140 DOI: 10.3389/fcell.2023.1148768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading causes of death and disability in the world. Among all CVD, the most common is coronary artery disease (CAD). CAD results from the complications promoted by atherosclerosis, which is characterized by the accumulation of atherosclerotic plaques that limit and block the blood flow of the arteries involved in heart oxygenation. Atherosclerotic disease is usually treated by stents implantation and angioplasty, but these surgical interventions also favour thrombosis and restenosis which often lead to device failure. Hence, efficient and long-lasting therapeutic options that are easily accessible to patients are in high demand. Advanced technologies including nanotechnology or vascular tissue engineering may provide promising solutions for CVD. Moreover, advances in the understanding of the biological processes underlying atherosclerosis can lead to a significant improvement in the management of CVD and even to the development of novel efficient drugs. To note, over the last years, the observation that inflammation leads to atherosclerosis has gained interest providing a link between atheroma formation and oncogenesis. Here, we have focused on the description of the available therapy for atherosclerosis, including surgical treatment and experimental treatment, the mechanisms of atheroma formation, and possible novel therapeutic candidates such as the use of anti-inflammatory treatments to reduce CVD.
Collapse
Affiliation(s)
- Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| |
Collapse
|
41
|
Cassano R, Perri P, Esposito A, Intrieri F, Sole R, Curcio F, Trombino S. Expanded Polytetrafluoroethylene Membranes for Vascular Stent Coating: Manufacturing, Biomedical and Surgical Applications, Innovations and Case Reports. MEMBRANES 2023; 13:240. [PMID: 36837743 PMCID: PMC9967047 DOI: 10.3390/membranes13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Coated stents are defined as innovative stents surrounded by a thin polymer membrane based on polytetrafluoroethylene (PTFE)useful in the treatment of numerous vascular pathologies. Endovascular methodology involves the use of such devices to restore blood flow in small-, medium- and large-calibre arteries, both centrally and peripherally. These membranes cross the stent struts and act as a physical barrier to block the growth of intimal tissue in the lumen, preventing so-called intimal hyperplasia and late stent thrombosis. PTFE for vascular applications is known as expanded polytetrafluoroethylene (e-PTFE) and it can be rolled up to form a thin multilayer membrane expandable by 4 to 5 times its original diameter. This membrane plays an important role in initiating the restenotic process because wrapped graft stent could be used as the treatment option for trauma devices during emergency situations and to treat a number of pathological vascular disease. In this review, we will investigate the multidisciplinary techniques used for the production of e-PTFE membranes, the advantages and disadvantages of their use, the innovations and the results in biomedical and surgery field when used to cover graft stents.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Paolo Perri
- Complex Operating Unit Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy
| | - Antonio Esposito
- Complex Operating Unit Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy
| | - Francesco Intrieri
- Complex Operating Unit Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
42
|
Infection of Vascular Prostheses: A Comprehensive Review. PROSTHESIS 2023. [DOI: 10.3390/prosthesis5010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular graft or endograft infection (VGEI) is a complex disease that complicates vascular-surgery and endovascular-surgery procedures and determines high morbidity and mortality. This review article provides the most updated general evidence on the pathogenesis, prevention, diagnosis, and treatment of VGEI. Several microorganisms are involved in VGEI development, but the most frequent one, responsible for over 75% of infections, is Staphylococcus aureus. Specific clinical, surgical, radiologic, and laboratory criteria are pivotal for the diagnosis of VGEI. Surgery and antimicrobial therapy are cornerstones in treatment for most patients with VGEI. For patients unfit for surgery, alternative treatment is available to improve the clinical course of VGEI.
Collapse
|
43
|
Blondeel P. The perpetual changing paradigm in reconstructive surgery: Developing a vision for the future. J Plast Reconstr Aesthet Surg 2023; 77:179-189. [PMID: 36574739 DOI: 10.1016/j.bjps.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Phillip Blondeel
- EURAPS President 2021-23, Chairman of the department of Plastic and Reconstructive Surgery, Chairman of the Burns Unit, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Gent, Belgium.
| |
Collapse
|
44
|
de Silva L, Bernal PN, Rosenberg A, Malda J, Levato R, Gawlitta D. Biofabricating the vascular tree in engineered bone tissue. Acta Biomater 2023; 156:250-268. [PMID: 36041651 DOI: 10.1016/j.actbio.2022.08.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm3) is the limited supply of nutrients, including oxygen to the core of the construct. Therefore, strategies to support vascularization are pivotal for the development of tissue engineered bone constructs. Creating a functional bone construct integrated with a vascular network, capable of delivering the necessary nutrients for optimal tissue development is imperative for translation into the clinics. The vascular system is composed of a complex network that runs throughout the body in a tree-like hierarchical branching fashion. A significant challenge for tissue engineering approaches lies in mimicking the intricate, multi-scale structures consisting of larger vessels (macro-vessels) which interconnect with multiple sprouting vessels (microvessels) in a closed network. The advent of biofabrication has enabled complex, out of plane channels to be generated and has laid the groundwork for the creation of multi-scale vasculature in recent years. This review highlights the key state-of-the-art achievements for the development of vascular networks of varying scales in the field of biofabrication with a particular focus for its application in developing a functional tissue engineered bone construct. STATEMENT OF SIGNIFICANCE: There is a growing need for bone substitutes to overcome the limited supply of patient-derived bone. Bone tissue engineering aims to overcome this by combining stem cells with scaffolds to restore missing bone. The current bottleneck in upscaling is the lack of an integrated vascular network, required for the delivery of nutrients to cells. 3D bioprinting techniques has enabled the creation of complex hollow structures of varying dimensions that resemble native blood vessels. The convergence of multiple materials, cell types and fabrication approaches, opens the possibility of developing clinically-relevant sized vascularized bone constructs. This review provides an up-to-date insight of the technologies currently available for the generation of complex vascular networks, with a focus on their application in bone tissue engineering.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| | - Paulina N Bernal
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands
| | - Ajw Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, the Netherlands
| | - Riccardo Levato
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, the Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
45
|
Xie X, Wu Q, Liu Y, Chen C, Chen Z, Xie C, Song M, Jiang Z, Qi X, Liu S, Tang Z, Wu Z. Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized small-diameter vascular grafts by modulating the local inflammatory response. Front Bioeng Biotechnol 2022; 10:1066266. [PMID: 36605251 PMCID: PMC9808043 DOI: 10.3389/fbioe.2022.1066266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Small-diameter vascular grafts (diameter <6 mm) are in high demand in clinical practice. Neointimal hyperplasia, a common complication after implantation of small-diameter vascular grafts, is one of the common causes of graft failure. Modulation of local inflammatory responses is a promising strategy to attenuates neointimal hyperplasia. Vascular endothelial growth factor (VEGF) is an angiogenesis stimulator that also induces macrophage polarization and modulates inflammatory responses. In the present study, we evaluated the effect of VEGF on the neointima hyperplasia and local inflammatory responses of decellularized vascular grafts. In the presence of rhVEGF-165 in RAW264.6 macrophage culture, rhVEGF-165 induces RAW264.6 macrophage polarization to M2 phenotype. Decellularized bovine internal mammary arteries were implanted into the subcutaneous and infrarenal abdominal aorta of New Zealand rabbits, with rhVEGF-165 applied locally to the adventitial of the grafts. The vascular grafts were removed en-bloc and submitted to histological and immunofluorescence analyses on days 7 and 28 following implantation. The thickness of the fibrous capsule and neointima was thinner in the VEGF group than that in the control group. In the immunofluorescence analysis, the number of M2 macrophages and the ratio of M2/M1 macrophages in vascular grafts in the VEGF group were higher than those in the control group, and the proinflammatory factor IL-1 was expressed less than in the control group, but the anti-inflammatory factor IL-10 was expressed more. In conclusion, local VEGF administration attenuates neointimal hyperplasia in decellularized small-diameter vascular grafts by inducing macrophage M2 polarization and modulating the inflammatory response.
Collapse
Affiliation(s)
- Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiying Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeguo Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan, China,*Correspondence: Zhongshi Wu,
| |
Collapse
|
46
|
Zhang X, Cheng Y, Liu R, Zhao Y. Globefish-Inspired Balloon Catheter with Intelligent Microneedle Coating for Endovascular Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204497. [PMID: 36257827 PMCID: PMC9731713 DOI: 10.1002/advs.202204497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Balloon catheters exhibit important values in treating cardiovascular diseases, while their functions are still under improvements. Here, inspired by the thorn-hiding and deflating-inflating characteristics of globefish, intelligent balloon catheters decorated with invisible microneedles are presented for endovascular drug delivery to inhibit postintervention restenosis (PIRS). These microneedle balloon catheters (MNBCs) fabricated by dipping and rolling-assisted template replication contain three coating layers of sandwiched drug-carrying microneedles and black phosphorus (BP)-carrying gelatin. During the emplacement, the microneedles of MNBCs are hidden under the outermost gelatin protective layer, allowing smooth movements inside the blood vessel. After reaching the destination, the embedded BP converts near infrared (NIR) into heat, increases local temperature, and melts the gelatin layer, enabling the exposure and vascular penetration of the microneedles. Besides, as the innermost gelatin also melts, the microneedles can detach from the balloon catheter and be left inside the blood vessel for continuous drug release. Based on advantages of responsiveness, penetration capacity, and biosafety, it is demonstrated that the MNBCs behave satisfactorily in delivering rapamycin to inhibit abdominal aorta restenosis in rats. All these features indicate that these MNBCs are promising medical devices for clinical applications.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yi Cheng
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
47
|
Antonova L, Kutikhin A, Sevostianova V, Lobov A, Repkin E, Krivkina E, Velikanova E, Mironov A, Mukhamadiyarov R, Senokosova E, Khanova M, Shishkova D, Markova V, Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel) 2022; 14:polym14235149. [PMID: 36501545 PMCID: PMC9736446 DOI: 10.3390/polym14235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Implementation of small-diameter tissue-engineered vascular grafts (TEVGs) into clinical practice is still delayed due to the frequent complications, including thrombosis, aneurysms, neointimal hyperplasia, calcification, atherosclerosis, and infection. Here, we conjugated a vasodilator/platelet inhibitor, iloprost, and an antimicrobial cationic amphiphilic drug, 1,5-bis-(4-tetradecyl-1,4-diazoniabicyclo [2.2.2]octan-1-yl) pentane tetrabromide, to the luminal surface of electrospun poly(ε-caprolactone) (PCL) TEVGs for preventing thrombosis and infection, additionally enveloped such TEVGs into the PCL sheath to preclude aneurysms, and implanted PCLIlo/CAD TEVGs into the ovine carotid artery (n = 12) for 6 months. The primary patency was 50% (6/12 animals). TEVGs were completely replaced with the vascular tissue, free from aneurysms, calcification, atherosclerosis and infection, completely endothelialised, and had clearly distinguishable medial and adventitial layers. Comparative proteomic profiling of TEVGs and contralateral carotid arteries found that TEVGs lacked contractile vascular smooth muscle cell markers, basement membrane components, and proteins mediating antioxidant defense, concurrently showing the protein signatures of upregulated protein synthesis, folding and assembly, enhanced energy metabolism, and macrophage-driven inflammation. Collectively, these results suggested a synchronised replacement of PCL with a newly formed vascular tissue but insufficient compliance of PCLIlo/CAD TEVGs, demanding their testing in the muscular artery position or stimulation of vascular smooth muscle cell specification after the implantation.
Collapse
Affiliation(s)
- Larisa Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
- Correspondence: ; Tel.: +7-9609077067
| | - Viktoriia Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, Saint Petersburg 194064, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, Saint Petersburg 199034, Russia
| | - Evgenia Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Rinat Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|
48
|
Dell AC, Wagner G, Own J, Geibel JP. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022; 14:2596. [PMID: 36559090 PMCID: PMC9784738 DOI: 10.3390/pharmaceutics14122596] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
3D bioprinting is transforming tissue engineering in medicine by providing novel methods that are precise and highly customizable to create biological tissues. The selection of a "cell ink", a printable formulation, is an integral part of adapting 3D bioprinting processes to allow for process optimization and customization related to the target tissue. Bioprinting hydrogels allows for tailorable material, physical, chemical, and biological properties of the cell ink and is suited for biomedical applications. Hydrogel-based cell ink formulations are a promising option for the variety of techniques with which bioprinting can be achieved. In this review, we will examine some of the current hydrogel-based cell inks used in bioprinting, as well as their use in current and proposed future bioprinting methods. We will highlight some of the biological applications and discuss the development of new hydrogels and methods that can incorporate the completed print into the tissue or organ of interest.
Collapse
Affiliation(s)
- Annika C. Dell
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, USA
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, 23562 Lübeck, Germany
| | | | - Jason Own
- Yale University, New Haven, CT 06520, USA
| | - John P. Geibel
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, USA
- Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
49
|
Wang H, Xia H, Xu Z, Hu B, Natsuki T, Ni QQ. Heat-Stimuli Shape Memory Effect of Poly (ε-Caprolactone)-Cellulose Acetate Composite Tubular Scaffolds. Biomacromolecules 2022; 23:4074-4084. [PMID: 36166624 DOI: 10.1021/acs.biomac.2c00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-diameter artery disease is the most common clinical occurrence, necessitating the development of small-diameter artificial blood vessels. In this study, seven types of poly(-caprolactone)-cellulose acetate (PCL-CA) composite nanofiber membranes were prepared with different proportions of PCL and CA. The adhesion and growth of Mc3t3-e1 cells were considered to confirm the in vitro cytocompatibility of PCL-CA membranes. A smooth stainless-steel mandrel with a diameter of 4 mm was used to roll up the prepared nanofiber membranes to produce the tubular scaffold with 50 °C hot water. The tubular scaffolds were subjected to axial and circumferential tensile tests. The mechanical performance of the PCL-CA tubular scaffold could be improved by increasing the layers. In addition, the burst pressure (BP) of the tubular scaffolds was increased with the layers, and the BPs of six-layer (2380 ± 36.8 mmHg) and eight-layer (3720 ± 80.5 mmHg) tubular scaffolds were much higher than that of the human saphenous vein (2000 mmHg). The compression shape memory performances of the PCL-CA tubular scaffold with different layers were also investigated to simulate and analyze the contraction and expansion of tubular scaffolds. The experimental results showed that the compression strain of the tubular scaffold in the diameter direction reached 35%, and the ultimate shape recovery rate reached 87%. However, the shape fixity rate and shape recovery rate increased, demonstrating that the optimum number of layers can improve the compression shape memory performance of the tubular scaffold. The results of this study, including comprehensive morphological and mechanical properties and cytocompatibility, indicated the potential applicability of PCL-CA tubular scaffolds as tissue engineering grafts.
Collapse
Affiliation(s)
- Hao Wang
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Hong Xia
- Department of Mechanical Engineering and Robotics, Shinshu University, Ueda 386-8567, Japan
| | - Zhenzhen Xu
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Baoji Hu
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Toshiaki Natsuki
- Department of Mechanical Engineering and Robotics, Shinshu University, Ueda 386-8567, Japan
| | - Qing-Qing Ni
- International Institute of Fiber Engineering, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|
50
|
Small Diameter Cell-Free Tissue-Engineered Vascular Grafts: Biomaterials and Manufacture Techniques to Reach Suitable Mechanical Properties. Polymers (Basel) 2022; 14:polym14173440. [PMID: 36080517 PMCID: PMC9460130 DOI: 10.3390/polym14173440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Vascular grafts (VGs) are medical devices intended to replace the function of a blood vessel. Available VGs in the market present low patency rates for small diameter applications setting the VG failure. This event arises from the inadequate response of the cells interacting with the biomaterial in the context of operative conditions generating chronic inflammation and a lack of regenerative signals where stenosis or aneurysms can occur. Tissue Engineered Vascular grafts (TEVGs) aim to induce the regeneration of the native vessel to overcome these limitations. Besides the biochemical stimuli, the biomaterial and the particular micro and macrostructure of the graft will determine the specific behavior under pulsatile pressure. The TEVG must support blood flow withstanding the exerted pressure, allowing the proper compliance required for the biomechanical stimulation needed for regeneration. Although the international standards outline the specific requirements to evaluate vascular grafts, the challenge remains in choosing the proper biomaterial and manufacturing TEVGs with good quality features to perform satisfactorily. In this review, we aim to recognize the best strategies to reach suitable mechanical properties in cell-free TEVGs according to the reported success of different approaches in clinical trials and pre-clinical trials.
Collapse
|