1
|
Nishimura A, Nishiyama K, Ito T, Mi X, Kato Y, Inoue A, Aoki J, Nishida M. Ligand-Independent Spontaneous Activation of Purinergic P2Y 6 Receptor Under Cell Culture Soft Substrate. Cells 2025; 14:216. [PMID: 39937007 PMCID: PMC11817550 DOI: 10.3390/cells14030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
G protein-coupled receptors (GPCRs) exist in the conformational equilibrium between inactive state and active state, where the proportion of active state in the absence of a ligand determines the basal activity of GPCRs. Although many GPCRs have different basal activity, it is still unclear whether physiological stresses such as substrate stiffness affect the basal activity of GPCRs. In this study, we identified that purinergic P2Y6 receptor (P2Y6R) induced spontaneous Ca2+ oscillation without a nucleotide ligand when cells were cultured in a silicon chamber. This P2Y6R-dependent Ca2+ oscillation was absent in cells cultured in glass dishes. Coating substrates, including collagen, laminin, and fibronectin, did not affect the P2Y6R spontaneous activity. Mutation of the extracellular Arg-Gly-Asp (RGD) motif of P2Y6R inhibited spontaneous activity. Additionally, extracellular Ca2+ was required for P2Y6R-dependent spontaneous Ca2+ oscillation. The GPCR screening assay identified cells expressing 10 GPCRs, including purinergic P2Y1R, P2Y2R, and P2Y6R, that exhibited spontaneous Ca2+ oscillation under cell culture soft substrate. Our results suggest that stiffness of the cell adhesion surface modulates spontaneous activities of several GPCRs, including P2Y6R, through a ligand-independent mechanism.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
- Laboratory of Prophylactic Pharmacology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka 598-8531, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| |
Collapse
|
2
|
Sturgess W, Packirisamy S, Geneidy R, Nordenfelt P, Swaminathan V. ECM-dependent regulation of septin 7 in focal adhesions promotes mechanosensing and functional response in fibroblasts. iScience 2024; 27:111355. [PMID: 39650732 PMCID: PMC11625310 DOI: 10.1016/j.isci.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/29/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Fibroblasts are adherent cells that maintain tissue homeostasis by sensing and responding to the extracellular matrix (ECM). Focal adhesions (FAs) link these ECM changes to actomyosin dynamics through changes in its composition, influencing cellular response. Septin-7 (Sept-7) has previously been found in FA proteomics studies and shown to influence ECM sensing. Using total internal reflection microscopy, we found that ECM-mediated integrin activation regulates spatially distinct Sept-7 structures in FAs. In perinuclear regions, ECM binding stabilized Sept-7 bundles at the back of FAs, while in the core of peripheral FAs high integrin activation promoted elongation of Sept-7 structures. Ventral Sept-7 structures were crucial for ECM sensing, impacting region-specific FA elongation, stabilization, and contributing to fibroblast mechanosensitivity. Taken together, our results suggest that ECM and integrin-dependent regulation of ventral Sept-7 structures plays a pivotal role in fibroblast ECM sensing and mechanotransduction through its recruitment and assembly into FA subpopulations.
Collapse
Affiliation(s)
- Wesley Sturgess
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Swathi Packirisamy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rodina Geneidy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund Universty, Lund, Sweden
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Ireland J, Kilian KA. The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity. Matrix Biol Plus 2024; 24:100160. [PMID: 39291079 PMCID: PMC11403269 DOI: 10.1016/j.mbplus.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.
Collapse
Affiliation(s)
- Jake Ireland
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Wang Y, Liu M, Zhang W, Liu H, Jin F, Mao S, Han C, Wang X. Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine. BURNS & TRAUMA 2024; 12:tkae039. [PMID: 39350780 PMCID: PMC11441985 DOI: 10.1093/burnst/tkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 10/04/2024]
Abstract
Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels. Optimization of the mechanical properties of scaffolds, including controlling scaffold stiffness, increasing surface roughness and anisotropic structure, and designing interconnected, hierarchical pore structures, is beneficial for the in vitro formation of vascular networks and the ingrowth of host blood vessels. The incorporation of hollow channels into scaffolds promotes the formation of patterned vascular networks. Dynamic stretching and perfusion can facilitate the formation and maturation of preformed vascular networks in vitro. Several indirect mechanical strategies provide sustained mechanical stimulation to engineered tissues in vivo, which further promotes the vascularization of implants within the body. Additionally, stiffness gradients, anisotropic substrates and hollow channels in scaffolds, as well as external cyclic stretch, boundary constraints and dynamic flow culture, can effectively regulate the alignment of vascular networks, thereby promoting better integration of prevascularized engineered tissues with host blood vessels. This review summarizes the influence and contribution of both scaffold-based and external stimulus-based mechanical strategies for vascularization in tissue engineering and elucidates the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Meixuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Huan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Fang Jin
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shulei Mao
- Department of Burns and Plastic Surgery, Quhua Hospital of Zhejiang, 62 Wenchang Road, Quhua, Quzhou 324004, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
5
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
6
|
Desa DE, Amitrano MJ, Murphy WL, Skala MC. Optical redox imaging to screen synthetic hydrogels for stem cell-derived cardiomyocyte differentiation and maturation. BIOPHOTONICS DISCOVERY 2024; 1:015002. [PMID: 39036366 PMCID: PMC11258857 DOI: 10.1117/1.bios.1.1.015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Significance Heart disease is the leading cause of death in the United States, yet research is limited by the inability to culture primary cardiac cells. Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) are a promising solution for drug screening and disease modeling. Aim Induced pluripotent stem cell-derived CM (iPSC-CM) differentiation and maturation studies typically use heterogeneous substrates for growth and destructive verification methods. Reproducible, tunable substrates and touch-free monitoring are needed to identify ideal conditions to produce homogenous, functional CMs. Approach We generated synthetic polyethylene glycol-based hydrogels for iPSC-CM differentiation and maturation. Peptide concentrations, combinations, and gel stiffness were tuned independently. Label-free optical redox imaging (ORI) was performed on a widefield microscope in a 96-well screen of gel formulations. We performed live-cell imaging throughout differentiation and early to late maturation to identify key metabolic shifts. Results Label-free ORI confirmed the expected metabolic shifts toward oxidative phosphorylation throughout the differentiation and maturation processes of iPSC-CMs on synthetic hydrogels. Furthermore, ORI distinguished high and low differentiation efficiency cell batches in the cardiac progenitor stage. Conclusions We established a workflow for medium throughput screening of synthetic hydrogel conditions with the ability to perform repeated live-cell measurements and confirm expected metabolic shifts. These methods have implications for reproducible iPSC-CM generation in biomanufacturing.
Collapse
Affiliation(s)
- Danielle E. Desa
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Margot J. Amitrano
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - William L. Murphy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
7
|
Zhou WH, Qiao LR, Xie SJ, Chang Z, Yin X, Xu GK. Mechanical guidance to self-organization and pattern formation of stem cells. SOFT MATTER 2024; 20:3448-3457. [PMID: 38567443 DOI: 10.1039/d4sm00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The self-organization of stem cells (SCs) constitutes the fundamental basis of the development of biological organs and structures. SC-driven patterns are essential for tissue engineering, yet unguided SCs tend to form chaotic patterns, impeding progress in biomedical engineering. Here, we show that simple geometric constraints can be used as an effective mechanical modulation approach that promotes the development of controlled self-organization and pattern formation of SCs. Using the applied SC guidance with geometric constraints, we experimentally uncover a remarkable deviation in cell aggregate orientation from a random direction to a specific orientation. Subsequently, we propose a dynamic mechanical framework, including cells, the extracellular matrix (ECM), and the culture environment, to characterize the specific orientation deflection of guided cell aggregates relative to initial geometric constraints, which agrees well with experimental observation. Based on this framework, we further devise various theoretical strategies to realize complex biological patterns, such as radial and concentric structures. Our study highlights the key role of mechanical factors and geometric constraints in governing SCs' self-organization. These findings yield critical insights into the regulation of SC-driven pattern formation and hold great promise for advancements in tissue engineering and bioactive material design for regenerative application.
Collapse
Affiliation(s)
- Wei-Hua Zhou
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lin-Ru Qiao
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - She-Juan Xie
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xu Yin
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
8
|
Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, Xu L, Wen S, Shi J, Cheng M, Dong N. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomater 2024; 178:181-195. [PMID: 38447808 DOI: 10.1016/j.actbio.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
Collapse
Affiliation(s)
- Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yan
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Sun X, Huang D, Li G, Sun J, Zhang Y, Hu B, Xie M, Zhao M, Zhang X, Yu J, Li G. Artificial heart valve reinforced with silk woven fabric and poly (ethylene glycol) diacrylate hydrogels composite. Int J Biol Macromol 2024; 260:129485. [PMID: 38237838 DOI: 10.1016/j.ijbiomac.2024.129485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The present study describes the preparation of woven silk fabric (WSF) and poly(ethylene glycol) diacrylate (PEGDA) hydrogel composite reinforced artificial heart valve (SPAHV). Interestingly, the longitudinal and latitudinal elastic modulus of the SPAHV composite can achieve at 54.08 ± 3.29 MPa and 23.96 ± 2.18 MPa, respectively, while its volume/mass swelling ratio and water permeability was 1.9 %/2.8 % and 3 mL/(cm2∙min), respectively, revealing remarkable anisotropic mechanical properties, low water swelling property and water permeability. The in vitro & in vivo biocompatibility and anti-calcification ability of SPAHV were further examined using L929 mouse fibroblasts and Sprague Dawley (SD) male rat model under 8 weeks of subcutaneous implantation. The expression of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine IL-10 was determined by immunohistochemical staining, as well as the H&E staining and alizarin red staining were accessed. The results showed that the composites possess better biocompatibility, resistance to degradation and anti-calcification ability compared to the control group (p < 0.05). Thus, the SPAHV composite with robust mechanical properties and biocompatibility has potential application for artificial heart valves.
Collapse
Affiliation(s)
- Xuan Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Di Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guanqiang Li
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Jing Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yaoyu Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Bo Hu
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xicheng Zhang
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China.
| | - Jia Yu
- School of Physical Education, Department of Orthopedics, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Suzhou 215021, China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Xu X, Xiao Z, Zhang F, Wang C, Wei B, Wang Y, Cheng B, Jia Y, Li Y, Li B, Guo H, Xu F. CellVisioner: A Generalizable Cell Virtual Staining Toolbox based on Few-Shot Transfer Learning for Mechanobiological Analysis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0285. [PMID: 38434246 PMCID: PMC10907024 DOI: 10.34133/research.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 03/05/2024]
Abstract
Visualizing cellular structures especially the cytoskeleton and the nucleus is crucial for understanding mechanobiology, but traditional fluorescence staining has inherent limitations such as phototoxicity and photobleaching. Virtual staining techniques provide an alternative approach to addressing these issues but often require substantial amount of user training data. In this study, we develop a generalizable cell virtual staining toolbox (termed CellVisioner) based on few-shot transfer learning that requires substantially reduced user training data. CellVisioner can virtually stain F-actin and nuclei for various types of cells and extract single-cell parameters relevant to mechanobiology research. Taking the label-free single-cell images as input, CellVisioner can predict cell mechanobiological status (e.g., Yes-associated protein nuclear/cytoplasmic ratio) and perform long-term monitoring for living cells. We envision that CellVisioner would be a powerful tool to facilitate on-site mechanobiological research.
Collapse
Affiliation(s)
- Xiayu Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Zhanfeng Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Changxiang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Bo Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Bin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Hui Guo
- Department of Medical Oncology,
The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
11
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
13
|
Chen X, Dong N, Xu X, Zhou Y, Shi J, Qiao W, Hong H. Re-endothelialization of Decellularized Scaffolds With Endothelial Progenitor Cell Capturing Aptamer: A New Strategy for Tissue-Engineered Heart Valve. ASAIO J 2023; 69:885-893. [PMID: 37506117 DOI: 10.1097/mat.0000000000001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Tissue-engineered heart valve (TEHV) is a promising alternative to current heart valve substitute. Decellularized porcine aortic heart valves (DAVs) are the most common scaffolds of TEHV. Hard to endothelialization is one of the disadvantages of DAVs. Therefore, we aimed to immobilize endothelial progenitor cell (EPC)-aptamer onto DAVs for accelerating endothelialization. In this study, three groups of scaffolds were constructed: DAVs, aptamer-immobilized DAVs (aptamer-DAVs), and glutaraldehyde crosslinked DAVs (GA-DAVs). The results of flow cytometry revealed that EPC-aptamer was specific to EPCs and was immobilized onto DAVs. Cells adhesion experiments demonstrated that EPCs adhered more tightly onto aptamer-DAVs group than other two groups of scaffolds. And cell proliferation assay indicated that EPCs seeded onto aptamer-DAVs group grew faster than DAVs group and GA-DAVs group. Moreover, dynamic capture experiment in flow conditions revealed that the number of EPCs captured by aptamer-DAVs group was more than other two groups. In conclusion, aptamer-DAVs could specifically promote adhesion and proliferation of EPCs and had ability to capture EPCs in simulated flow condition. This could promote re-endothelialization of scaffolds.
Collapse
Affiliation(s)
- Xue Chen
- From the Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Noh KM, Park SJ, Moon SH, Jung SY. Extracellular matrix cues regulate the differentiation of pluripotent stem cell-derived endothelial cells. Front Cardiovasc Med 2023; 10:1169331. [PMID: 37435057 PMCID: PMC10330705 DOI: 10.3389/fcvm.2023.1169331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
The generation of endothelial cells (ECs) from human pluripotent stem cells (PSCs) has been a promising approach for treating cardiovascular diseases for several years. Human PSCs, particularly induced pluripotent stem cells (iPSCs), are an attractive source of ECs for cell therapy. Although there is a diversity of methods for endothelial cell differentiation using biochemical factors, such as small molecules and cytokines, the efficiency of EC production varies depending on the type and dose of biochemical factors. Moreover, the protocols in which most EC differentiation studies have been performed were in very unphysiological conditions that do not reflect the microenvironment of native tissue. The microenvironment surrounding stem cells exerts variable biochemical and biomechanical stimuli that can affect stem cell differentiation and behavior. The stiffness and components of the extracellular microenvironment are critical inducers of stem cell behavior and fate specification by sensing the extracellular matrix (ECM) cues, adjusting the cytoskeleton tension, and delivering external signals to the nucleus. Differentiation of stem cells into ECs using a cocktail of biochemical factors has been performed for decades. However, the effects of mechanical stimuli on endothelial cell differentiation remain poorly understood. This review provides an overview of the methods used to differentiate ECs from stem cells by chemical and mechanical stimuli. We also propose the possibility of a novel EC differentiation strategy using a synthetic and natural extracellular matrix.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Republic of Korea
| | - Seok Yun Jung
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| |
Collapse
|
15
|
Zhang L, Liang L, Su T, Guo Y, Yu Q, Zhu D, Cui Z, Zhang J, Chen J. Regulation of the Keratocyte Phenotype and Cell Behavior Derived from Human Induced Pluripotent Stem Cells by Substrate Stiffness. ACS Biomater Sci Eng 2023; 9:856-868. [PMID: 36668685 DOI: 10.1021/acsbiomaterials.2c01003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Substrate stiffness has been indicated as an important factor to control stem cell fate, including proliferation and differentiation. To optimize the stiffness for the differentiation process from h-iPSCs (human induced pluripotent stem cells) into h-iCSCs (human corneal stromal cells derived from h-iPSCs) and the phenotypic maintenance of h-iCSCs in vitro, h-iPSCs were cultured on matrigel-coated tissue culture plate (TCP) (106 kPa), matrigel-coated polydimethylsiloxane (PDMS) 184 (1250 kPa), and matrigel-coated PDMS 527 (4 kPa) before they were differentiated to h-iCSCs. Immunofluorescence staining, quantitative real-time polymerase chain reaction (RT-qPCR), and western blot demonstrated that the stiffer substrate TCP promoted the h-iCSCs' differentiation from h-iPSCs. On the contrary, softer PDMS 527 was more effective to maintain the phenotype of h-iCSCs cultured in vitro. Finally, we cultured h-iCSCs on PDMS 527 until P3 and seeded them on a biomimetic collagen membrane to form the single-layer and multiple-layer bioengineered corneal stroma with high transparency properties and cell survival rate. In conclusion, the study is helpful for differentiating h-iPSCs to h-iCSCs and corneal tissue engineering by manipulating stiffness mechanobiology.
Collapse
Affiliation(s)
- Lan Zhang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Liying Liang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ting Su
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yonglong Guo
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou 510632, China
| | - Deliang Zhu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China
| | - Zekai Cui
- Aier Eye Institute, Changsha 410015, Hunan Province, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.,Aier Eye Institute, Changsha 410015, Hunan Province, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Spiaggia G, Taladriz-Blanco P, Hengsberger S, Septiadi D, Geers C, Lee A, Rothen-Rutishauser B, Petri-Fink A. A Near-Infrared Mechanically Switchable Elastomeric Film as a Dynamic Cell Culture Substrate. Biomedicines 2022; 11:biomedicines11010030. [PMID: 36672538 PMCID: PMC9855853 DOI: 10.3390/biomedicines11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Commercial static cell culture substrates can usually not change their physical properties over time, resulting in a limited representation of the variation in biomechanical cues in vivo. To overcome this limitation, approaches incorporating gold nanoparticles to act as transducers to external stimuli have been employed. In this work, gold nanorods were embedded in an elastomeric matrix and used as photothermal transducers to fabricate biocompatible light-responsive substrates. The nanocomposite films analysed by lock-in thermography and nanoindentation show a homogeneous heat distribution and a greater stiffness when irradiated with NIR light. After irradiation, the initial stiffness values were recovered. In vitro experiments performed during NIR irradiation with NIH-3T3 fibroblasts demonstrated that these films were biocompatible and cells remained viable. Cells cultured on the light stiffened nanocomposite exhibited a greater proliferation rate and stronger focal adhesion clustering, indicating increased cell-surface binding strength.
Collapse
Affiliation(s)
- Giovanni Spiaggia
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- Correspondence: (P.T.-B.); (A.P.-F.)
| | - Stefan Hengsberger
- School of Engineering and Architecture (HEIA-FR), HES-SO, University of Applied Science and Arts in Western Switzerland, Boulevard de Pérolles 80, 1700 Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Geers
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Aaron Lee
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Correspondence: (P.T.-B.); (A.P.-F.)
| |
Collapse
|
17
|
Hu M, Peng X, Shi S, Wan C, Cheng C, Lei N, Yu X. Sulfonated, oxidized pectin-based double crosslinked bioprosthetic valve leaflets for synergistically enhancing hemocompatibility and cytocompatibility and reducing calcification. J Mater Chem B 2022; 10:8218-8234. [PMID: 36173240 DOI: 10.1039/d2tb01704k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinically frequently-used glutaraldehyde (GA)-crosslinked bioprosthetic valve leaflets (BVLs) are still curbed by acute thrombosis, malignant immunoreaction, calcification, and poor durability. In this study, an anticoagulant heparin-like biomacromolecule, sulfonated, oxidized pectin (SAP) with a dialdehyde structure was first obtained by modifying citrus pectin with sulfonation of 3-amino-1-propane sulfonic acid and then oxidating with periodate. Notably, a novel crosslinking approach was established by doubly crosslinking BVLs with SAP and the nature-derived crosslinking agent quercetin (Que), which play a synergistic role in both crosslinking and bioactivity. The double crosslinked BVLs also presented enhanced mechanical properties and enzymatic degradation resistance owing to the double crosslinking networks formed via CN bonds and hydrogen bonds, respectively, and good HUVEC-cytocompatibility. The in vitro and ex vivo assay manifested that the double-crosslinked BVLs had excellent anticoagulant and antithrombotic properties, owing to the introduction of SAP. The subcutaneous implantation also demonstrated that the obtained BVLs showed a reduced inflammatory response and great resistance to calcification, which is attributed to quercetin with multiple physiological activities and depletion of aldehyde groups by hydroxyl aldehyde reaction. With excellent stability, hemocompatibility, anti-inflammatory, anti-calcification, and pro-endothelialization properties, the obtained double-crosslinked BVLs, SAP + Que-PP, would have great potential to substitute the current clinical GA-crosslinked BVLs.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
18
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|