1
|
Yan Y, Song F, Liu Y, Wang W, Zhu H, Sun J. Analysis of biomechanical passive synergistic vibration reduction inspired by the structure, morphology, nano-mechanics of the beetles' hindwing. Micron 2025; 188:103725. [PMID: 39378717 DOI: 10.1016/j.micron.2024.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Using scanning electron microscopy (SEM), a small animal imaging system, and biological tissue sections, the relationships between the flapping vibrations in the hindwings of Trypoxylus dichotomus and their morphology, structure, and hemolymph dynamics were investigated. Based on these findings, a three-degree-of-freedom (3-DOF) model incorporating nano-mechanical properties was developed to investigate spanwise passive synergistic vibration reduction (PSVR) in the hindwing elements. To ensure precision, the Runge-Kutta and incremental harmonic balance (IHB) methods were employed for both solving and comparing solutions. Analysis of the spanwise force (FOX) signals confirmed the validity of the PSVR model. Parametric analysis revealed that reducing system mass and stiffness increased the resonance amplitude while shifting the resonance frequency in the opposite direction. The resonance frequency and flexible deformation amplitude of the hindwing system could be controlled by adjusting mass and stiffness within the synergistic framework. The mass and damping of the wing base, along with the stiffness of the wing membrane, were identified as critical factors in the system. This model provides valuable insights into the PSVR mechanism, potentially informing the design and manufacture of bionic flexible flapping wings.
Collapse
Affiliation(s)
- Yongwei Yan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Fa Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Yuping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Wenzhe Wang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Haochen Zhu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Jiyu Sun
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China.
| |
Collapse
|
2
|
Sun D, Lin S, Wang Y, Cui J, Tuo Z, Lin Z, Liang Y, Ren L. Study of Self-Locking Structure Based on Surface Microstructure of Dung Beetle Leg Joint. Biomimetics (Basel) 2024; 9:622. [PMID: 39451828 PMCID: PMC11505528 DOI: 10.3390/biomimetics9100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Dung beetle leg joints exhibit a remarkable capacity to support substantial loads, which is a capability significantly influenced by their surface microstructure. The exploration of biomimetic designs inspired by the surface microstructure of these joints holds potential for the development of efficient self-locking structures. However, there is a notable absence of research focused on the surface microstructure of dung beetle leg joints. In this study, we investigated the structural characteristics of the surface microstructures present in dung beetle leg joints, identifying the presence of fish-scale-like, brush-like, and spike-like microstructures on the tibia and femur. Utilizing these surface microstructural characteristics, we designed a self-locking structure that successfully demonstrated functionality in both the rotational direction of the structure and self-locking in the reverse direction. At a temperature of 20 °C, the biomimetic closure featuring a self-locking mechanism was capable of generating a self-locking force of 18 N. The bionic intelligent joint, characterized by its unique surface microstructure, presents significant potential applications in aerospace and various engineering domains, particularly as a critical component in folding mechanisms. This research offers innovative design concepts for folding mechanisms, such as those utilized in satellite solar panels and solar panels for asteroid probes.
Collapse
Affiliation(s)
- Dexin Sun
- College of Mechatronics, Changchun Polytechnic, Changchun 130033, China;
| | - Sen Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Yubo Wang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
| | - Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
| | - Zhiwei Tuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (Y.W.); (J.C.); (Y.L.); (L.R.)
| |
Collapse
|
3
|
Cui J, Wang Y, Lin S, Tuo Z, Lin Z, Liang Y, Ren L. Bionic Design of High-Performance Joints: Differences in Failure Mechanisms Caused by the Different Structures of Beetle Femur-Tibial Joints. Biomimetics (Basel) 2024; 9:605. [PMID: 39451812 PMCID: PMC11505458 DOI: 10.3390/biomimetics9100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Beetle femur-tibial joints can bear large loads, and the joint structure plays a crucial role. Differences in living habits will lead to differences in femur-tibial joint structure, resulting in different mechanical properties. Here, we determined the structural characteristics of the femur-tibial joints of three species of beetles with different living habits. The tibia of Scarabaeidae Protaetia brevitarsis and Cetoniidae Torynorrhina fulvopilosa slide through cashew-shaped bumps on both sides of the femur in a guide rail consisting of a ring and a cone bump. The femur-tibial joint of Buprestidae Chrysodema radians is composed of a conical convex tibia and a circular concave femur. A bionic structure design was developed out based on the characteristics of the structure of the femur-tibial joints. Differences in the failure of different joint models were obtained through experiments and finite element analysis. The experimental results show that although the spherical connection model can bear low loads, it can maintain partial integrity of the structure and avoid complete failure. The cuboid connection model shows a higher load-bearing capacity, but its failure mode is irreversible deformation. As key parts of rotatable mechanisms, the bionic models have the potential for wide application in the high-load engineering field.
Collapse
Affiliation(s)
- Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
| | - Yubo Wang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
| | - Sen Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Zhiwei Tuo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (S.L.); (Z.L.)
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; (J.C.); (Y.W.); (Y.L.); (L.R.)
| |
Collapse
|
4
|
Tuo Z, Yang K, Ma S, Cui J, Shi Y, Zhao H, Liang Y, Liu C, Lin Z, Han Z, Ren L. Multi-Level Structural Enhancement Mechanism of the Excellent Mechanical Properties of Dung Beetle Leg Joint. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311588. [PMID: 38497502 DOI: 10.1002/smll.202311588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Indexed: 03/19/2024]
Abstract
The multi-level structure is a strategy to enhance the mechanical properties of dung beetle leg joints. Under external loads, the microstructure facilitates energy dissipation and prevents crack extension. The macrostructure aids in transferring the load to more reliable parts. The connection established by the two hemispheres is present in the dung beetle leg joint. The micron-layered and nanoscale crystal structures further constitute the leg joint with excellent mechanical properties. The maximum compression fracture force is ≈101000 times the weight of the leg. Here, the structural design within the dung beetle leg joints and reveal the resulting mechanical response and enhancement mechanisms is determined. A series of beetle leg joints where the macrostructure and microstructure of the dung beetle leg provide mechanical strength at critical strains while avoiding catastrophic failure by transferring the load from the joint to the exoskeleton of the femur is highlighted. Nanocrystalline structures and fiber layers contribute to crack propagation of the exoskeleton. Based on this, the bionic joint with multi-level structures using resin and conducted a series of tests to verify their effectiveness is prepared. This study provides a new idea for designing and optimizing high-load joints in engineering.
Collapse
Affiliation(s)
- Zhiwei Tuo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Kaisheng Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Yu Shi
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Changchun, 130025, China
| | - Changyi Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
5
|
Asano T. Multicopper oxidase-2 mediated cuticle formation: Its contribution to evolution and success of insects as terrestrial organisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104111. [PMID: 38508343 DOI: 10.1016/j.ibmb.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The insect cuticle is a non-cellular matrix composed of polysaccharide chitins and proteins. The cuticle covers most of the body surface, including the trachea, foregut, and hindgut, and it is the body structure that separates the intraluminal environment from the external environment. The cuticle is essential to sustain their lives, both as a physical barrier to maintain homeostasis and as an exoskeleton that mechanically supports body shape and movement. Previously, we proposed a theory about the possibility that the cuticle-forming system contributes to the "evolution and success of insects." The main points of our theory are that 1) insects evolved an insect-specific system of cuticle formation and 2) the presence of this system may have provided insects with a competitive advantage in the early land ecosystems. The key to this theory is that insects utilize molecular oxygen abundant in the atmosphere, which differs from closely related crustaceans that form their cuticles with calcium ions. With newly obtained knowledge, this review revisits the significance of the insect-specific system for insects to adapt to terrestrial environments and also discusses the long-standing question in entomology as to why, despite their great success in terrestrial environments, they poorly adapt to marine environments.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
6
|
Davis TJ, Ospina-Rozo L, Stuart-Fox D, Roberts A. Modelling structural colour from helicoidal multi-layer thin films with natural disorder. OPTICS EXPRESS 2023; 31:36531-36546. [PMID: 38017803 DOI: 10.1364/oe.503881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
A coupled mode theory based on Takagi-Taupin equations describing electromagnetic scattering from distorted periodic arrays is applied to the problem of light scattering from beetles. We extend the method to include perturbations in the permittivity tensor to helicoidal arrays seen in many species of scarab beetle and optically anisotropic layered materials more generally. This extension permits analysis of typical dislocations arising from the biological assembly process and the presence of other structures in the elytra. We show that by extracting structural information from transmission electron microscopy data, including characteristic disorder parameters, good agreement with spectral specular and non-specular reflectance measurements is obtained.
Collapse
|
7
|
Püffel F, Meyer L, Imirzian N, Roces F, Johnston R, Labonte D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc Biol Sci 2023; 290:20230355. [PMID: 37312549 PMCID: PMC10265030 DOI: 10.1098/rspb.2023.0355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Many social insects display age polyethism: young workers stay inside the nest, and only older workers forage. This behavioural transition is accompanied by genetic and physiological changes, but the mechanistic origin of it remains unclear. To investigate if the mechanical demands on the musculoskeletal system effectively prevent young workers from foraging, we studied the biomechanical development of the bite apparatus in Atta vollenweideri leaf-cutter ants. Fully matured foragers generated peak in vivo bite forces of around 100 mN, more than one order of magnitude in excess of those measured for freshly eclosed callows of the same size. This change in bite force was accompanied by a sixfold increase in the volume of the mandible closer muscle, and by a substantial increase of the flexural rigidity of the head capsule, driven by a significant increase in both average thickness and indentation modulus of the head capsule cuticle. Consequently, callows lack the muscle force capacity required for leaf-cutting, and their head capsule is so compliant that large muscle forces would be likely to cause damaging deformations. On the basis of these results, we speculate that continued biomechanical development post eclosion may be a key factor underlying age polyethism, wherever foraging is associated with substantial mechanical demands.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Lara Meyer
- Faculty of Nature and Engineering, City University of Applied Sciences Bremen, Bremen, Germany
| | - Natalie Imirzian
- Department of Bioengineering, Imperial College London, London, UK
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|