1
|
Tao C, Wang J, Cong J, Yang H, Cao J, Liu C, Cheng T. Broad complex negatively regulates Fibrohexamerin/P25 by binding to the cis-element BMFA in the silkworm, Bombyx mori. Int J Biol Macromol 2025; 307:142114. [PMID: 40089240 DOI: 10.1016/j.ijbiomac.2025.142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Silk proteins, as natural macromolecular substances, hold significant potential for applications in biomaterials and biomedical fields. The expression of silk protein genes exhibits spatiotemporal specificity. Broad Complex (BrC), a key primary response factor to 20-hydroxyecdysone, plays a crucial role in metamorphosis. Our previous study showed that overexpression of BmBrC-Z2 significantly reduced fibroin gene Fibrohexamerin/P25 expression in the posterior silk gland. However, the underlying regulatory mechanism remains unclear. BMFA, a widely expressed factor that inhibits silk protein gene expression by recognizing BMFA elements, remains unidentified. Notably, the binding sequence of BmBrC-Z2 on the P25 promoter aligns with the BMFA element. Dual-Luciferase Reporter Assays, EMSA, and ChIP-PCR confirmed that BmBrC-Z2 directly binds to the BMFA element, thereby inhibiting P25 promoter activity. Furthermore, we demonstrated that BmBrC-Z2 and its isoform BmBrC-Z4 jointly bind to the BMFA element on the P25 promoter during the molting stage, whereas BmBrC-Z4 contributes a secondary role. Knocking out BmBrC-Z2 using the CRISPR/Cas9 system led to significant upregulation of silk protein genes during the molting stage in mutant larvae. These findings deepen our understanding of the complex regulatory mechanisms governing silk production and highlight the interplay between hormonal signaling and transcriptional regulation.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jinxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiangshan Cong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
3
|
Zheng Z, Wang M, Ren A, Cheng Z, Li X, Guo C. 3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse. ACS Biomater Sci Eng 2025; 11:2367-2377. [PMID: 40036493 DOI: 10.1021/acsbiomaterials.5c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.
Collapse
Affiliation(s)
- Zili Zheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Min Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - An Ren
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Zhangyuan Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Xiangjuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Ma K, Wu ZF, Chen KZ, Qiao SL. Application of silk fibroin-based composite films in biomedicine and biotechnology. J Mater Chem B 2025; 13:3494-3515. [PMID: 39950994 DOI: 10.1039/d4tb02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Silk fibroin has garnered significant attention as a natural biomaterial due to its exceptional biocompatibility, tunable water solubility, optical transparency and high thermal stability. In recent years, silk fibroin films have gained prominence for their ease of fabrication and unique properties. However, their intrinsic brittleness limits broader applicability in certain fields. To overcome this challenge, researchers have developed various strategies, including physical blending, chemical modification, and genetic engineering, to improve key attributes such as mechanical strength, antimicrobial activity, and electrical conductivity. These advancements have significantly broadened the utility of silk fibroin films in diverse biomedical applications. This review provides an in-depth analysis of recent progress in silk fibroin-based composite films, emphasizing their applications in bone regeneration, wound healing, and health monitoring. Modified silk fibroin composites are highlighted for their superior material properties and enhanced functional potential in these domains. Additionally, this review discusses future research directions, offering valuable insights into pathways for further innovation and practical implementation. With continued advancements, silk fibroin composite films are poised to make transformative contributions to the fields of biomedicine and biotechnology.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Zhi-Feng Wu
- Suzhou Haider New Material Technology Co., Ltd., No. 59, Jinmen Road, ChangshuNew and Hi-tech Industrial Development Zone, Suzhou, Jiangsu Province, China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
- Suzhou Haider New Material Technology Co., Ltd., No. 59, Jinmen Road, ChangshuNew and Hi-tech Industrial Development Zone, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Kumar Parida V, Kavita, Arora R, Sharma T. Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:247-271. [PMID: 39230985 DOI: 10.1080/09205063.2024.2397215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Silk proteins, viz., sericin, fibroin and their modified forms etc., have been thoroughly researched as natural biopolymers for the development of varied nanomaterials exhibiting diverse biomedical applications. The silk proteins are extracted from the cocoons by degumming and treatment with soaps, followed by dissolution and dialysis against water. These proteins exhibit distinct mechanical and physicochemical characteristics including biocompatibility, controlled biodegradability, self-assembling traits, chemical modifiability, and adaptability, thus making it an ideal drug delivery vehicle. In this regard, silk protein-derived drug delivery systems have been reported as efficient carrier to encapsulate and stabilize the wide variety of pharmacological molecules, enzymes, proteins, vaccines, and even DNA, allowing them to remain active for a longer period of time. Further, different delivery carriers researched employing these proteins for multitude of applications include hydrogels, sponges, fibres, scaffolds and particulate delivery systems. Additionally, the chemical modification of silk proteins has further opened avenues for development of other modified silk proteins with improved physicochemical traits and hence exhibiting enormous potential in development of varied bioenhanced carrier systems. The current article thus provides the holistic information of characteristics, types of silk protein-based delivery carriers, and their fabrication techniques, while emphasizing the applications of different silk proteins in biomedicine and drug delivery.
Collapse
Affiliation(s)
| | - Kavita
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Teenu Sharma
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| |
Collapse
|
6
|
Mirbakht SS, Golparvar A, Umar M, Kuzubasoglu BA, Irani FS, Yapici MK. Highly Self-Adhesive and Biodegradable Silk Bioelectronics for All-In-One Imperceptible Long-Term Electrophysiological Biosignals Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405988. [PMID: 39792793 PMCID: PMC11848544 DOI: 10.1002/advs.202405988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process. By addressing these challenges, inkjet-patterned protein-based skin-like silk bioelectronics (Silk-BioE) are presented, that integrate all the desirable material features that have been individually present in existing devices but never combined into a single embodiment. The all-in-one solution possesses excellent self-adhesiveness (300 N m-1) without synthetic adhesives, high breathability (1263 g h-1 m-2) as well as swift biodegradability in soil within a mere 2 days. In addition, with an elastic modulus of ≈5 kPa and a stretchability surpassing 600%, the soft electronics seamlessly replicate the mechanics of epidermis and form a conformal skin/electrode interface even on hairy regions of the body under severe perspiration. Therefore, coupled with a flexible readout circuitry, Silk-BioE can non-invasively monitor biosignals (i.e., ECG, EEG, EOG) in real-time for up to 12 h with benchmarking results against Ag/AgCl electrodes.
Collapse
Affiliation(s)
- Seyed Sajjad Mirbakht
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
| | - Ata Golparvar
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- ICLabÉcole Polytechnique Fédérale de Lausanne (EPFL)Neuchâtel2002Switzerland
| | - Muhammad Umar
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Burcu Arman Kuzubasoglu
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Farid Sayar Irani
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Department of Electrical EngineeringUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
7
|
Roset Julià L, Maerkl SJ, Stellacci F. Nature-inspired recycling of a protein mixture into a green fluorescent protein-based hydrogel. RSC SUSTAINABILITY 2024; 2:2903-2909. [PMID: 39371078 PMCID: PMC11447593 DOI: 10.1039/d4su00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 10/08/2024]
Abstract
Protein-based materials are biocompatible and have a variety of remarkable properties; consequently, they are finding more and more applications. Nature recycles proteins in multiple ways, ranging from bio-degradation (a slow approach) to fast recycling of protein metabolism. The latter is a wonderful example because a random mixture of proteins gets digested into amino acids (AAs), the fundamental building blocks of proteins. These AAs are then used by cells to produce whichever protein is needed at the time of synthesis. Seen through the lens of recycling, this process transforms a random mixture into something not necessarily present at the start but needed at the moment of recycling. We have recently shown that the process of protein recycling can be performed in vitro and called it NaCRe (Nature Inspired Circular Recycling). In a previous NaCRe proof-of-concept experiment, we started with various protein mixtures but were able to produce only small quantities of recycled protein, in the microgram scale. Here, we show that NaCRe can be used to convert milligrams of a protein mixture containing one of the most common protein materials (silk) into a milligram of an hydrogel made of green fluorescent protein (GFP). We show that in order for NaCRe to be efficient the starting protein mixture must contain a good balance of all AAs and discuss the challenges encountered when scaling up NaCRe.
Collapse
Affiliation(s)
- Laura Roset Julià
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- NCCR Bio-Inspired Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Sebastian J Maerkl
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- NCCR Bio-Inspired Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
8
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Joshi SR, Pratap A, Kim S. Ultrathin silk nanofiber-carbon nanotube skin tattoos for wirelessly triggered and temperature feedbacked transdermal drug delivery. Biomed Eng Lett 2024; 14:707-716. [PMID: 38946825 PMCID: PMC11208351 DOI: 10.1007/s13534-024-00363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 07/02/2024] Open
Abstract
Transdermal drug delivery has emerged as an alternative to conventional drug delivery systems as it enables painless and convenient drug administration. However, next-generation healthcare systems need to facilitate "on-demand" delivery operations and should be highly efficient to penetrate the physiological barriers in the skin. Here, we report an ultrathin dye-loaded epidermal tattoo (UDET) that allows wirelessly stimulated drug delivery with high efficiency. The UDET consists of an electrospun dye-loaded silk nanofiber mat and a covered carbon nanotube (CNT) layer. UDETs are conformally tattooed on pigskins and show stable operation under mechanical deformation. Biological fluorescence dyes such as vitamin B12, riboflavin, rhodamine B, and sodium fluorescein are applied as model drugs. Illuminating the UDET by a low-power light-emitting diode (< 34.5 mW/cm2) triggers transdermal drug delivery due to heat generation. The CNTs convert the absorbed light into heat, and then the dyes loaded on silk can be diffused through the epidermis. The CNT layer is electrically conductive and can detect the temperature by reading the resistance change (0.1917 Ω/°C). This indicates that the UDET can be used simultaneously to read temperature and deliver the loaded dye molecules, making it a promising on-demand drug delivery strategy for future medicine technology. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-024-00363-6.
Collapse
Affiliation(s)
- Shalik Ram Joshi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Ajay Pratap
- Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
10
|
Kaewpirom S, Piboonnithikasem S, Sroisroemsap P, Uttoom S, Boonsang S. Tailoring silk fibroin hydrophilicity and physicochemical properties using sugar alcohols for medical device coatings. Sci Rep 2024; 14:13781. [PMID: 38877138 PMCID: PMC11178791 DOI: 10.1038/s41598-024-64450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
This study explores the modification of silk fibroin films for hydrophilic coating applications using various sugar alcohols. Films, prepared via solvent casting, incorporated glycerol, sorbitol, and maltitol, revealing distinctive transparency and UV absorption characteristics based on sugar alcohol chemical structures. X-ray diffraction confirmed a silk I to silk II transition influenced by sugar alcohols. Glycerol proved most effective in enhancing the β-sheet structure. The study also elucidated a conformational shift towards a β-sheet structure induced by sugar alcohols. Silk fibroin-sugar alcohol blind docking and sugar alcohol-sugar alcohol blind docking investigations were conducted utilizing the HDOCK Server. The computer simulation unveiled the significance of size and hydrogen bonding characteristics inherent in sugar alcohols, emphasizing their pivotal role in influencing interactions within silk fibroin matrices. Hydrophilicity of ozonized silicone surfaces improved through successful coating with silk fibroin films, particularly glycerol-containing ones, resulting in reduced contact angles. Strong adhesion between silk fibroin films and ozonized silicone surfaces was evident, indicating robust hydrogen bonding interactions. This comprehensive research provides crucial insights into sugar alcohols' potential to modify silk fibroin film crystalline structures, offering valuable guidance for optimizing their design and functionality, especially in silicone coating applications.
Collapse
Affiliation(s)
- Supranee Kaewpirom
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| | - Sarayoot Piboonnithikasem
- Department of Medical Science, National Institute of Health, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | | | - Sittichai Uttoom
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Siridech Boonsang
- Department of Electrical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
11
|
Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D. Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 2024; 53:624-655. [PMID: 38109059 DOI: 10.1039/d3cs00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a "seesaw" between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, People's Republic of China
| | - Jiang Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yunke Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Shucun Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
12
|
Brooks AK, Pradhan S, Yadavalli VK. Degradable Elastomeric Silk Biomaterial for Flexible Bioelectronics. ACS APPLIED BIO MATERIALS 2023; 6:4392-4402. [PMID: 37788457 DOI: 10.1021/acsabm.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The integration of degradable and biomimetic approaches in material and device development can facilitate the next generation of sustainable (bio) electronics. The use of functional degradable materials presents exciting opportunities for applications in healthcare, soft robotics, energy, and electronics. These include conformability to curved surfaces, matching of stiffness of tissue, and the ability to withstand mechanical deformations. Nature-derived materials such as silk fibroin (SF) provide excellent biocompatibility, resorbability, and tunable properties toward such goals. However, fibroin alone lacks the required mechanical properties and durability for processing in biointegrated electronics and dry conditions. To overcome these limitations, we report on an elastomeric photocurable composite of silk fibroin and poly(dimethylsiloxane) (PDMS). Photofibroin (containing methacryl functionalities) is doped with photoPDMS (methacryloxypropyl-terminated poly(dimethylsiloxane)) to form an elastomeric photofibroin (ePF) composite. The elastomeric silk is photocurable, allowing for microfabrication using UV photolithography. It is suitable for circuits, strain-sensing devices, and biointegrated systems. The ePF exhibits flexibility in both wet and dry conditions, enhanced mechanical strength and long-term durability, and optical transparency. It is stable at high temperatures, compatible with electronic materials, and cytocompatible while being enzymatically degradable. This work therefore highlights a path toward combining natural and synthetic materials to achieve versatile properties and demonstrates the potential of silk fibroin composites in (bio) electronics, encapsulation, and packaging.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
13
|
Brooks AK, Ramsey RG, Zhang N, Yadavalli VK. Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices. ACS Biomater Sci Eng 2023; 9:5793-5803. [PMID: 37698556 DOI: 10.1021/acsbiomaterials.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Soft materials with tunable properties are valuable for applications such as tissue engineering, electronic skins, and human-machine interfaces. Materials that are nature-derived offer additional advantages such as biocompatibility, biodegradability, low-cost sourcing, and sustainability. However, these materials often have contrasting properties that limit their use. For example, silk fibroin (SF) has high mechanical strength but lacks processability and cell-adhesive domains. Gelatin, derived from collagen, has excellent biological properties, but is fragile and lacks stability. To overcome these limitations, composites of gelatin and SF have been explored. However, mechanically robust self-supported matrices and electrochemically active or micropatterned substrates were not demonstrated. In this study, we present a composite of photopolymerizable SF and photogelatin, termed photofibrogel (PFG). By incorporating photoreactive properties in both SF and gelatin, control over material properties can be achieved. The PFG composite can be easily and rapidly formed into free-standing, high-resolution architectures with tunable properties. By optimizing the ratio of SF to gelatin, properties such as swelling, mechanical behavior, enzymatic degradation, and patternability are tailored. The PFG composite allows for macroscale and microscale patterning without significant swelling, enabling the fabrication of structures using photolithography and laser cutting techniques. PFG can be patterned with electrically conductive materials, making it suitable for cell guidance and stimulation. The versatility, mechanical robustness, bioactivity, and electrochemical properties of PFG are shown for skeletal muscle tissue engineering using C2C12 cells as a model. Overall, such composite biomaterials with tunable properties have broad potential in flexible bioelectronics, wound healing, regenerative medicine, and food systems.
Collapse
|
14
|
Fabrication of Silk Hydrogel Scaffolds with Aligned Porous Structures and Tunable Mechanical Properties. Gels 2023; 9:gels9030181. [PMID: 36975630 PMCID: PMC10048404 DOI: 10.3390/gels9030181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The effectiveness of cell culture and tissue regeneration largely depends on the structural and physiochemical characteristics of tissue-engineering scaffolds. Hydrogels are frequently employed in tissue engineering because of their high-water content and strong biocompatibility, making them the ideal scaffold materials for simulating tissue structures and properties. However, hydrogels created using traditional methods have low mechanical strength and a non-porous structure, which severely restrict their application. Herein, we successfully developed silk fibroin glycidyl methacrylate (SF-GMA) hydrogels with oriented porous structures and substantial toughness through directional freezing (DF) and in situ photo-crosslinking (DF-SF-GMA). The oriented porous structures in the DF-SF-GMA hydrogels were induced by directional ice templates and maintained after photo-crosslinking. The mechanical properties, particularly the toughness, of these scaffolds were enhanced compared to the traditional bulk hydrogels. Interestingly, the DF-SF-GMA hydrogels exhibit fast stress relaxation and variable viscoelasticity. The remarkable biocompatibility of the DF-SF-GMA hydrogels was further demonstrated in cell culture. Accordingly, this work reports a method to prepare tough SF hydrogels with aligned porous structures, which can be extensively applied to cell culture and tissue engineering.
Collapse
|