1
|
Lan J, Zou J, Xin H, Sun J, Han T, Sun M, Niu M. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J Control Release 2025; 381:113589. [PMID: 40032007 DOI: 10.1016/j.jconrel.2025.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
The problem of antimicrobial resistance (AMR) has caused global concern due to its great threat to human health. Evidences are emerging for a critical role of biofilms, one of the natural protective mechanisms developed by bacteria during growth, in resisting commonly used clinical antibiotics. Advances in nanomedicines with tunable physicochemical properties and unique anti-biofilm mechanisms provide opportunities for solving AMR risks more effectively. In this review, we summarize the five "A" stages (adhesion, amplification, alienation, aging and allocation) of biofilm formation and mechanisms through which they protect the internal bacteria. Aimed at the characteristics of biofilms, we emphasize the design "THAT" principles (targeting, hacking, adhering and transport) of nanomedicines in their interactions with biofilms and internal bacteria. Furthermore, recent progresses in multimodal antibacterial nanomedicines, including biofilms disruption and bactericidal activity, and the types of currently available antibiofilm nanomedicines contained organic and inorganic nanomedicines are outlined and highlighted their potential applications in the development of preclinical research. Last but not least, we offer a perspective for the effectiveness of nanomedicines designed to address AMR and challenges associated with their clinical translation.
Collapse
Affiliation(s)
- Jiaming Lan
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - He Xin
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
2
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Cui X, Gao Z, Han X, Yu Q, Cauduro VH, Flores EMM, Ashokkumar M, Qiu X, Cui J. Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections. ULTRASONICS SONOCHEMISTRY 2025; 115:107302. [PMID: 40056870 PMCID: PMC11930738 DOI: 10.1016/j.ultsonch.2025.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Bacteria can encapsulate themselves in a self-generated matrix of hydrated extracellular polymeric substances such as polysaccharides, proteins, and nucleic acids, thereby forming bacterial biofilm infections. These biofilms are drug resistant and will diminish the efficacy of antimicrobial agents, rendering treatment of such infections challenging. Herein, an innovative strategy is proposed to synergistically degrade bacterial biofilms and eradicate the entrapped bacteria through integrating α-amylase (α-Amy), shikonin (SK) and epigallocatechin gallate (EGCG) within an emulsion. The natural protein α-Amy is deployed to enzymatically hydrolyze the polysaccharide of biofilms. Due to the amphipilic properties of α-Amy and the cross-linking capability of EGCG, the formed α-Amy/SK@EGCG emulsion possess high stability. SK was encapsulated within the emulsion through ultrasound-assisted assembly, targeting to treat bacterial infection after biofilm degradation. In vitro and in vivo experiments demonstrate that the polyphenol-protein stabilized emulsion loaded with antibacterial SK achieves profound penetration into the biofilms due to the extracellular polysaccharide hydrolysis mediated by α-Amy. As a result, the α-Amy/SK@EGCG emulsion can significantly alleviate inflammation symptoms and accelerate the healing process of biofilm-infected wounds. This study provides a promising therapeutic strategy for the development of novel materials aimed for the enhanced treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinxin Han
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vitoria H Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | | | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
4
|
Chen X, Li W, Fan Q, Liu X, Zhai X, Shi X, Li W, Hong W. Amphiphilic Janus Nanoparticles for Effective Treatment of Bacterial Pneumonia by Attenuating Inflammation and Targeted Bactericidal Capability. Int J Nanomedicine 2024; 19:12039-12051. [PMID: 39583317 PMCID: PMC11583765 DOI: 10.2147/ijn.s486450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Pseudomonas aeruginosa (P. aeruginosa)-induced pneumonia is marked by considerable infiltration of inflammatory cells and biofilm formation, which causes acute and transient lung inflammation and infection. Nevertheless, the discovery of alternative preventative and therapeutic methods is essential due to the high mortality rates in clinical settings and the resistance of P. aeruginosa infection to multiple medications. Purpose In this research, we constructed amphiphilic Janus nanoparticles (JNPs, denoted as SSK1@PDA/CaP@CIP), loaded with hydrophobic SSK1, a β-galactosidase (β-gal)-activated prodrug for reducing macrophages, and hydrophilic ciprofloxacin (CIP), a classic antibiotic for treating infection. SSK1@PDA/CaP@CIP was designed to effectively attenuate inflammation, eradicate biofilms, and combat planktonic P. aeruginosa. Results As expected, SSK1@PDA/CaP@CIP was able to target the infection site and demonstrated outstanding efficacy in treating P. aeruginosa strain PAO1-induced pneumonia by regulating macrophage infiltration to reduce inflammation and removing planktonic bacteria and biofilms to control infection. Additionally, the primary organs did not exhibit any discernible pathological changes following treatment with SSK1@PDA/CaP@CIP, which indicates superior biocompatibility throughout the treatment course. Discussion In conclusion, our investigation introduced a promising approach to the treatment of pneumonia associated with PAO1.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Weiwei Li
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Qing Fan
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Xiao Liu
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Xuanxiang Zhai
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Xiaoyi Shi
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Wenting Li
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Wei Hong
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Liu H, Lv J, Wang X, Dong S, Li X, Gao L. Construction of a supramolecular antibacterial material based on water-soluble pillar[5]arene and a zwitterionic guest molecule. Chem Commun (Camb) 2024; 60:9202-9205. [PMID: 39110448 DOI: 10.1039/d4cc01737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A new antibacterial system (HG) based on the host-guest chemistry between pillar[5]arene and a zwitterionic guest was fabricated. The HG complex displayed excellent antibacterial and biofilm formation inhibition and dispersal activities against E. coli, S. aureus and MRSA.
Collapse
Affiliation(s)
- Haoming Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Jinmeng Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Xue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinyun Li
- College of Rehabilitation, Hangzhou Medical College, Hangzhou, China.
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| |
Collapse
|
6
|
Wang DY, Su L, Poelstra K, Grainger DW, van der Mei HC, Shi L, Busscher HJ. Beyond surface modification strategies to control infections associated with implanted biomaterials and devices - Addressing the opportunities offered by nanotechnology. Biomaterials 2024; 308:122576. [PMID: 38640785 DOI: 10.1016/j.biomaterials.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Biomaterial-associated infection (BAI) is considered a unique infection due to the presence of a biomaterial yielding frustrated immune-cells, ineffective in clearing local micro-organisms. The involvement of surface-adherent/surface-adapted micro-organisms in BAI, logically points to biomaterial surface-modifications for BAI-control. Biomaterial surface-modification is most suitable for prevention before adhering bacteria have grown into a mature biofilm, while BAI-treatment is virtually impossible through surface-modification. Hundreds of different surface-modifications have been proposed for BAI-control but few have passed clinical trials due to the statistical near-impossibility of benefit-demonstration. Yet, no biomaterial surface-modification forwarded, is clinically embraced. Collectively, this leads us to conclude that surface-modification is a dead-end road. Accepting that BAI is, like most human infections, due to surface-adherent biofilms (though not always to a foreign material), and regarding BAI as a common infection, opens a more-generally-applicable and therewith easier-to-validate road. Pre-clinical models have shown that stimuli-responsive nano-antimicrobials and antibiotic-loaded nanocarriers exhibit prolonged blood-circulation times and can respond to a biofilm's micro-environment to penetrate and accumulate within biofilms, prompt ROS-generation and synergistic killing with antibiotics of antibiotic-resistant pathogens without inducing further antimicrobial-resistance. Moreover, they can boost frustrated immune-cells around a biomaterial reducing the importance of this unique BAI-feature. Time to start exploring the nano-road for BAI-control.
Collapse
Affiliation(s)
- Da-Yuan Wang
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands; Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, PR China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Kees Poelstra
- Allegiant Institute - Nevada Spine Clinic. the Robotic Spine Institute of Las Vegas, Las Vegas, USA
| | - David W Grainger
- Departments of Biomedical Engineering, and of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, PR China.
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands.
| |
Collapse
|
7
|
Verheul M, Mulder AA, van Dun SCJ, Merabishvili M, Nelissen RGHH, de Boer MGJ, Pijls BG, Nibbering PH. Bacteriophage ISP eliminates Staphylococcus aureus in planktonic phase, but not in the various stages of the biofilm cycle. Sci Rep 2024; 14:14374. [PMID: 38909125 PMCID: PMC11193821 DOI: 10.1038/s41598-024-65143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Metal-implant associated bacterial infections are a major clinical problem due to antibiotic treatment failure. As an alternative, we determined the effects of bacteriophage ISP on clinical isolates of Staphylococcus aureus in various stages of its life cycle in relation to biofilm formation and maturation. ISP effectively eliminated all planktonic phase bacteria, whereas its efficacy was reduced against bacteria attached to the metal implant and bacteria embedded within biofilms. The biofilm architecture hampered the bactericidal effects of ISP, as mechanical disruption of biofilms improved the efficacy of ISP against the bacteria. Phages penetrated the biofilm and interacted with the bacteria throughout the biofilm. However, most of the biofilm-embedded bacteria were phage-tolerant. In agreement, bacteria dispersed from mature biofilms of all clinical isolates, except for LUH15394, tolerated the lytic activity of ISP. Lastly, persisters within mature biofilms tolerated ISP and proliferated in its presence. Based on these findings, we conclude that ISP eliminates planktonic phase Staphylococcus aureus while its efficacy is limited against bacteria attached to the metal implant, embedded within (persister-enriched) biofilms, and dispersed from biofilms.
Collapse
Affiliation(s)
- Mariëlle Verheul
- Department of Infectious Diseases, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.
- Department of Orthopedics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Electron Microscopy Facility, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Sven C J van Dun
- Department of Infectious Diseases, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
- Department of Orthopedics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Bart G Pijls
- Department of Orthopedics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| |
Collapse
|
8
|
Li Z, Xie HY, Nie W. Nano-Engineering Strategies for Tumor-Specific Therapy. ChemMedChem 2024; 19:e202300647. [PMID: 38356248 DOI: 10.1002/cmdc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Nanodelivery systems (NDSs) provide promising prospects for decreasing drug doses, reducing side effects, and improving therapeutic effects. However, the bioapplications of NDSs are still compromised by their fast clearance, indiscriminate biodistribution, and limited tumor accumulation. Hence, engineering modification of NDSs aiming at promoting tumor-specific therapy and avoiding systemic toxicity is usually needed. An NDS integrating various functionalities, including flexible camouflage, specific biorecognition, and sensitive stimuli-responsiveness, into one sequence would be "smart" and highly effective. Herein, we systematically summarize the related principles, methods, and progress. At the end of the review, we predict the obstacles to precise nanoengineering and prospects for the future application of NDSs.
Collapse
Affiliation(s)
- Zijin Li
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
9
|
Wang Y, Zhao Y, Ma S, Fu M, Wu M, Li J, Wu K, Zhuang X, Lu Z, Guo J. Injective Programmable Proanthocyanidin-Coordinated Zinc-Based Composite Hydrogel for Infected Bone Repair. Adv Healthc Mater 2024; 13:e2302690. [PMID: 37885334 DOI: 10.1002/adhm.202302690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.
Collapse
Affiliation(s)
- Yue Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Shiyuan Ma
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Jintao Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
- Guangzhou New Materials Science Center, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511361, P. R. China
| |
Collapse
|
10
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
11
|
Chen X, Fan Q, Li K, Li W, Wang L, Li W, Hong W. Amphiphilic Janus nanoparticles for nitric oxide synergistic photodynamic eradication of MRSA biofilms. Biomater Sci 2024; 12:964-977. [PMID: 38168803 DOI: 10.1039/d3bm01510f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biofilms pose significant threats to public health by causing persistent clinical infections. The development of innovative antibacterial approaches for eliminating biofilms is an urgent necessity. In this study, we developed amphiphilic Janus nanoparticles (JNPs), loaded with hydrophobic chlorin e6 (Ce6) and hydrophilic S-nitrosoglutathione (GSNO), denoted as Ce6-PDA/CaP-GSNO, with the aim to effectively eradicate biofilms and combat methicillin-resistant Staphylococcus aureus (MRSA) infections through nitric oxide (NO) synergistic photodynamic therapy (PDT). Ce6-PDA/CaP-GSNO demonstrated remarkable biofilm penetration ability, efficiently reaching the acidic inner layers, which triggered the rapid release of GSNO, resulting in the generation of an abundant supply of NO. NO not only exhibited potent bactericidal activity but also effectively lowered the GSH level of the biofilm, leading to enhanced efficacy of Ce6. Additionally, the interaction between NO and reactive oxygen species (ROS) resulted in the generation of reactive nitrogen species (RNS), further enhancing PDT efficacy both in vitro and in vivo. In summary, Ce6-PDA/CaP-GSNO demonstrated remarkable biofilm penetration capacity and effective reduction of the GSH level in the biofilms, leading to enhanced PDT efficacy at low photosensitizer doses and laser intensities, thereby minimizing adverse effects on normal tissues. These findings highlight the promising potential of our approach for combating biofilm-related infections.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Qing Fan
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Keke Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Weiwei Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Longle Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
12
|
Jiang G, Wu R, Liu S, Yu T, Ren Y, Busscher HJ, van der Mei HC, Liu J. Ciprofloxacin-Loaded, pH-Responsive PAMAM-Megamers Functionalized with S-Nitrosylated Hyaluronic Acid Support Infected Wound Healing in Mice without Inducing Antibiotic Resistance. Adv Healthc Mater 2024; 13:e2301747. [PMID: 37908125 PMCID: PMC11469077 DOI: 10.1002/adhm.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/06/2023] [Indexed: 11/02/2023]
Abstract
Antimicrobial-resistant bacterial infections threaten to become the number one cause of death by the year 2050. Since the speed at which antimicrobial-resistance develops is exceeding the pace at which new antimicrobials come to the market, this threat cannot be countered by making more, new and stronger antimicrobials. Promising new antimicrobials should not only kill antimicrobial-resistant bacteria, but also prevent development of new bacterial resistance mechanisms in strains still susceptible. Here, PAMAM-dendrimers are clustered using glutaraldehyde to form megamers that are core-loaded with ciprofloxacin and functionalized with HA-SNO. Megamers are enzymatically disintegrated in an acidic pH, as in infectious biofilms, yielding release of ciprofloxacin and NO-generation by HA-SNO. NO-generation does not contribute to the killing of planktonic Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but in a biofilm-mode of growth short-lived NO-assisted killing of both ciprofloxacin-susceptible and ciprofloxacin-resistant bacterial strains by the ciprofloxacin released. Repeated sub-culturing of ciprofloxacin-susceptible bacteria in presence of ciprofloxacin-loaded and HA-SNO functionalized PAMAM-megamers does not result in ciprofloxacin-resistant variants as does repeated culturing in presence of ciprofloxacin. Healing of wounds infected by a ciprofloxacin-resistant S. aureus variant treated with ciprofloxacin-loaded, HA-SNO functionalized megamers proceed faster through NO-assisted ciprofloxacin killing of infecting bacteria and stimulation of angiogenesis.
Collapse
Affiliation(s)
- Guimei Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Tianrong Yu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of GroningenDepartment of OrthodonticsHanzeplein 1Groningen9700 RBThe Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
| |
Collapse
|
13
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|