1
|
Pineda-Hernandez A, Castilla-Casadiego DA, Morton LD, Giordano-Nguyen SA, Halwachs KN, Rosales AM. Tunable hydrogel networks by varying secondary structures of hydrophilic peptoids provide viable 3D cell culture platforms for hMSCs. Biomater Sci 2025. [PMID: 40354141 PMCID: PMC12068446 DOI: 10.1039/d5bm00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have excellent ability to mimic the extracellular matrix (ECM) during 3D cell culture, yet it remains difficult to tune their mechanical properties without also changing network connectivity. Previously, we developed 2D culture platforms based on tunable hydrogels crosslinked by peptoids with various secondary structures: helical, non-helical, and unstructured, which allowed control over hydrogel mechanics independent of network connectivity. Here, we extend our strategy to 3D matrices by modifying the peptoids with piperazine and homopiperazine residues to enhance water solubility without altering their secondary structure. Hydrogels crosslinked with helical peptoids exhibited significantly higher stiffness compared to hydrogels crosslinked with non-helical or unstructured peptoids. Human mesenchymal stem cells (hMSCs) encapsulated within these hydrogels were assessed for viability, proliferation, and immunomodulatory potential. The stiffest hydrogels promoted the highest rates of proliferation and increased yes-associated protein (YAP) nuclear localization. Softer hydrogels, however, showed enhanced production of indoleamine 2,3-dioxygenase (IDO), both with and without interferon gamma (IFN-γ) stimulation, highlighting their potential in immunomodulatory applications. The biomimetic platform developed here enables the study of how matrix mechanics influence stem cell behavior without confounding factors from network connectivity, leading to insights for hMSC-mediated immunomodulation.
Collapse
Affiliation(s)
- Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Logan D Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Kathleen N Halwachs
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Du J, Wang H, Zhong L, Wei S, Min X, Deng H, Zhang X, Zhong M, Huang Y. Bioactivity and biomedical applications of pomegranate peel extract: a comprehensive review. Front Pharmacol 2025; 16:1569141. [PMID: 40206073 PMCID: PMC11979244 DOI: 10.3389/fphar.2025.1569141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Pomegranate peel is a by-product generated during the processing of pomegranate (Punica granatum L.) fruit, accounting for approximately 50% of the total mass of the fruit. Although pomegranate peel is usually regarded as waste, it is rich in various bioactive metabolites such as polyphenols, tannins, and flavonoids, demonstrating significant medicinal and nutritional value. In recent years, Pomegranate peel extract (PPE) has shown broad application prospects in the biomedical field due to its multiple effects, including antioxidant, anti-inflammatory, antibacterial, anti-apoptotic properties, and promotion of cell regeneration. This review consolidates the major bioactive metabolites of PPE and explores its applications in biomedical materials, including nanodrug carriers, hydrogels, and tissue engineering scaffolds. By synthesizing the existing literature, we delve into the potential value of PPE in biomedicine, the challenges currently encountered, and the future directions for research. The aim of this review is to provide a scientific basis for optimizing the utilization of PPE and to facilitate its broader application in the biomedical field.
Collapse
Affiliation(s)
- Jinsong Du
- School of Health Management, Zaozhuang University, Zaozhuang, China
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
| | - Heming Wang
- School of Nursing, Jilin University, Jilin, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shujie Wei
- Image Center, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Xiaoqiang Min
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
- Department of Geriatics, Shandong Healthcare Group Xinwen Central Hospital, Taian, China
| | - Hongyan Deng
- School of Health Management, Zaozhuang University, Zaozhuang, China
| | - Xiaoyan Zhang
- Magnetic Resonance Imaging Department, Shandong Healthcare Group Zaozhuang Central Hospital, Zaozhuang, China
| | - Ming Zhong
- Lanshu Cosmetics Co., Ltd., Huzhou, Zhejiang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Liu L, Chen S, Song Y, Cui L, Chen Y, Xia J, Fan Y, Yang L, Yang L. Hydrogels empowered mesenchymal stem cells and the derived exosomes for regenerative medicine in age-related musculoskeletal diseases. Pharmacol Res 2025; 213:107618. [PMID: 39892438 DOI: 10.1016/j.phrs.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
As the population ages, musculoskeletal diseases (MSK) have emerged as a significant burden for individuals, healthcare systems, and social care systems. Recently, regenerative medicine has exhibited vast potential in age-related MSK, with mesenchymal stromal cells (MSCs) and their derived exosomes (Exos) therapies showing distinct advantages. However, these therapies face several limitations, including issues related to ensuring stability and effective distribution within the body. Hydrogels, acting as an ideal carrier, can enhance the therapeutic effects and application range of MSCs and Exos derived from MSCs (MSC-Exos). Therefore, this review comprehensively summarizes the application progress of MSCs and MSC-Exos combined with hydrogels in age-related MSK disease research. It aims to provide a detailed perspective, showcasing the functional enhancement of MSCs and MSC-Exos when incorporated into hydrogels. Additionally, this review explores their potential and challenges in treating age-related MSK diseases, offering references for future research directions and potential innovative strategies.
Collapse
Affiliation(s)
- Lixin Liu
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jiangli Xia
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yibo Fan
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
4
|
Santos-Vizcaino E, Virumbrales-Muñoz M, Gonzalez-Pujana A, Luker GD, Ochoa I, Hernandez RM, Pedraz JL. Genipin-crosslinked double PLL membranes overcome the strength-diffusion trade-off in cell encapsulation without compromising biocompatibility. Int J Pharm 2025; 670:125196. [PMID: 39799997 DOI: 10.1016/j.ijpharm.2025.125196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far. Here we show that, compared to other usually used coating designs, genipin-crosslinked double poly-L-lysine (GDP) membranes are able to simultaneously improve mechanical and mass-transport properties of the microcapsules, without causing any significant increase in the foreign body response when implanted in vivo. In particular, we show that GDP membranes confer capsular integrity under high pressures, both internal and external. Furthermore, this membrane design allows for more efficient bidirectional diffusion of molecules in the 20-40 kDa range while preserving the molecular weight cut-off required for exerting an effective immunobarrier. These findings may also be useful for optimizing the membrane characteristics of multiple drug delivery systems.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - María Virumbrales-Muñoz
- Department of Obstetrics and Gynecology, Clinical Sciences Center, 600 Highland Drive, Madison 53792, USA; School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison 53705, USA; University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison 53705, USA
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Gary D Luker
- Department of Radiology (Center for Molecular Imaging), University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ignacio Ochoa
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain; Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain; School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
5
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
7
|
Castilla-Casadiego DA, Morton LD, Loh DH, Pineda-Hernandez A, Chavda AP, Garcia F, Rosales AM. Peptoid-Cross-Linked Hydrogel Stiffness Modulates Human Mesenchymal Stromal Cell Immunoregulatory Potential in the Presence of Interferon-Gamma. Macromol Biosci 2024; 24:e2400111. [PMID: 38567626 PMCID: PMC11250919 DOI: 10.1002/mabi.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation. Here, hydrogels are cross-linked with peptoids of different secondary structures to generate substrates of various bulk stiffnesses but fixed network connectivity. Secretions of interleukin 6, monocyte chemoattractive protein-1, macrophage colony-stimulating factor, and vascular endothelial growth factor are shown to depend on hydrogel stiffness in the presence of interferon gamma (IFN-γ) supplementation, with soft substrates further improving secretion. The immunological function of these secreted cytokines is then investigated via coculture of hMSCs seeded on hydrogels with primary peripheral blood mononuclear cells (PBMCs) in the presence and absence of IFN-γ. Cocultures with hMSCs seeded on softer hydrogels show decreased PBMC proliferation with IFN-γ. To probe possible signaling pathways, immunofluorescent studies probe the nuclear factor kappa B pathway and demonstrate that IFN-γ supplementation and softer hydrogel mechanics lead to higher activation of this pathway. Overall, these studies may allow for production of more efficacious therapeutic hMSCs in the presence of IFN-γ.
Collapse
Affiliation(s)
| | - Logan D. Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Darren H. Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ajay P. Chavda
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Francis Garcia
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrianne M. Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Gamna F, Cochis A, Mojsoska B, Kumar A, Rimondini L, Spriano S. Nano-topography and functionalization with the synthetic peptoid GN2-Npm 9 as a strategy for antibacterial and biocompatible titanium implants. Heliyon 2024; 10:e24246. [PMID: 38293435 PMCID: PMC10825347 DOI: 10.1016/j.heliyon.2024.e24246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
In recent years, antimicrobial peptides (AMPs) have attracted great interest in scientific research, especially for biomedical applications such as drug delivery and orthopedic applications. Since they are readily degradable in the physiological environment, scientific research has recently been trying to make AMPs more stable. Peptoids are synthetic N-substituted glycine oligomers that mimic the structure of peptides. They have a structure that does not allow proteolytic degradation, which makes them more stable while maintaining microbial activity. This structure also brings many advantages to the molecule, such as greater diversity and specificity, making it more suitable for biological applications. For the first time, a synthesized peptoid (GN2-Npm9) was used to functionalize a nanometric chemically pre-treated (CT) titanium surface for bone-contact implant applications. A preliminary characterization of the functionalized surfaces was performed using the contact angle measurements and zeta potential titration curves. These preliminary analyses confirmed the presence of the peptoid and its adsorption on CT. The functionalized surface had a hydrophilic behaviour (contact angle = 30°) but the hydrophobic tryptophan-like residues were also exposed. An electrostatic interaction between the lysine residue of GN2-Npm9 and the surface allowed a chemisorption mechanism. The biological characterization of the CT_GN2-Nmp9 surfaces demonstrated the ability to prevent surface colonization and biofilm formation by the pathogens Escherichia coli and Staphylococcus epidermidis thus showing a broad-range activity. The cytocompatibility was confirmed by human mesenchymal stem cells. Finally, a bacteria-cells co-culture model was applied to demonstrate the selective bioactivity of the CT_GN2-Nmp9 surface that was able to preserve colonizing cells adhered to the device surface from bacterial infection.
Collapse
Affiliation(s)
| | - Andrea Cochis
- Università del Piemonte Orientale UPO, Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Novara, Italy
| | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ajay Kumar
- Università del Piemonte Orientale UPO, Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Novara, Italy
| | - Lia Rimondini
- Università del Piemonte Orientale UPO, Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Novara, Italy
| | | |
Collapse
|
9
|
Cheng HY, Anggelia MR, Liu SC, Lin CF, Lin CH. Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells by Hydrogel Encapsulation. Cells 2024; 13:210. [PMID: 38334602 PMCID: PMC10854565 DOI: 10.3390/cells13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shiao-Chin Liu
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Fan Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Cringoli MC, Marchesan S. Cysteine Redox Chemistry in Peptide Self-Assembly to Modulate Hydrogelation. Molecules 2023; 28:4970. [PMID: 37446630 DOI: 10.3390/molecules28134970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cysteine redox chemistry is widely used in nature to direct protein assembly, and in recent years it has inspired chemists to design self-assembling peptides too. In this concise review, we describe the progress in the field focusing on the recent advancements that make use of Cys thiol-disulfide redox chemistry to modulate hydrogelation of various peptide classes.
Collapse
Affiliation(s)
- Maria Cristina Cringoli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|