1
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Yang W, Chen J, Zhao Z, Wu M, Gong L, Sun Y, Huang C, Yan B, Zeng H. Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications. J Mater Chem B 2024; 12:332-349. [PMID: 37987037 DOI: 10.1039/d3tb02105j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.
Collapse
Affiliation(s)
- Wenshuai Yang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Meng Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yimei Sun
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery. Int J Mol Sci 2023; 25:312. [PMID: 38203483 PMCID: PMC10779336 DOI: 10.3390/ijms25010312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Polymeric nanoparticles (NPs) are widely used as drug delivery systems in nanomedicine. Despite their widespread application, a comprehensive understanding of their intracellular trafficking remains elusive. In the present study, we focused on exploring the impact of a 20 nm difference in size on NP performance, including drug delivery capabilities and intracellular trafficking. For that, poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PLGA-PEG) NPs with sizes of 50 and 70 nm were precisely tailored. To assess their prowess in encapsulating and releasing therapeutic agents, we have employed doxorubicin (Dox), a well-established anticancer drug widely utilized in clinical settings, as a model drug. Then, the beneficial effect of the developed nanoformulations was evaluated in breast cancer cells. Finally, we performed a semiquantitative analysis of both NPs' uptake and intracellular localization by immunostaining lysosomes, early endosomes, and recycling endosomes. The results show that the smaller NPs (50 nm) were able to reduce the metabolic activity of cancer cells more efficiently than NPs of 70 nm, in a time and concentration-dependent manner. These findings are corroborated by intracellular trafficking studies that reveal an earlier and higher uptake of NPs, with 50 nm compared to the 70 nm ones, by the breast cancer cells. Consequently, this study demonstrates that NP size, even in small increments, has an important impact on their therapeutic effect.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| |
Collapse
|
4
|
Shan M, Wang H, Li S, Zhang X, Yang G, Shan Y. Distinguishing the Cellular Transport of Folic Acid Conjugated Nano-Drugs among Different Cell Lines by Using Force Tracing Technique. Mol Pharm 2023. [PMID: 37083400 DOI: 10.1021/acs.molpharmaceut.2c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Folic acid (FA) is a ligand that has been renowned for its strong binding to FA receptor (FR), and the robustness of the specific interaction has led to the generation of multitudinous tumor-targeted nano-drug delivery systems. However, selecting the appropriate FA targeted nano-drugs according to types of cancerous cells to achieve a high effect is critical. Understanding of how the drug is transported through the cell membrane and is delivered intracellularly is very important in screening ideal targeted nano-drugs for cancerous changes in different organs. Herein, by using a force tracing technique based on atomic force microscopy (AFM), the dynamic process of FA-polyamidoamine-Doxorubicin (FA-PAMAM-DOX) entry into different tumor cells (HeLa and A549) and normal cells (Vero) was monitored in real time. The cell membrane transport efficacy of FA-PAMAM-DOX in tumor cells with an FR high overexpression level (HeLa) and FR low overexpression level (A549) is analyzed, which is significantly higher than that in normal cells (Vero), especially for HeLa cells. Subsequently, the intracellular delivery efficiency of FA-PAMAM-DOX in different cell lines was measured by using fluorescence imaging and AFM-based nanoindentation techniques. This report will help to discover the cellular transport mechanism of nano-drugs and screen out optimal therapeutic nano-drugs for different types of tumors.
Collapse
Affiliation(s)
- Meirong Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xiaowan Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guocheng Yang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
5
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|