1
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Fu Y, Sun J, Yang C, Li W, Wang Y. Diversified nanocarrier design to optimize glucose oxidase-mediated anti-tumor therapy: Strategy and progress. Int J Biol Macromol 2025; 306:141581. [PMID: 40023419 DOI: 10.1016/j.ijbiomac.2025.141581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Given the inherent complexity and heterogeneity of tumors, current therapeutic approaches often fall short in meeting prognostic requirements. Starvation therapy (ST) utilizing glucose oxidase (GOx) has emerged as a promising strategy, specifically targeting tumor glucose consumption to disrupt nutrient supply. However, the therapeutic potential of GOx is significantly hampered by its inherent limitations as a protein, particularly its poor stability and short in vivo half-life. In recent years, the development of nanocarriors has provided an effective platform for intravenous and local tumor delivery of GOx. This review systematically examines three key strategies in GOx delivery: stimulus-response, biofilm modification, and local delivery. The progress in various carrier systems for GOx-mediated tumor therapy is comprehensively summarized, providing valuable insights for nanocarrier design. Furthermore, the existing challenges and future directions to advance the development of GOx-based tumor therapies are critically analyzed.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Department of medicine, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Chunyu Yang
- Department of Pathology, Harbin 242 Hospital, Harbin, Heilongjiang Province, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Roy AA, Pandey A, Dhas N, Hegde MM, Parekh HS, Andugulapati SB, Nandakumar K, Satish Rao BS, Mutalik S. The Confluence of Nanotechnology and Heat Shock Protein 70 in Pioneering Glioblastoma Multiforme Therapy: Forging Pathways Towards Precision Targeting and Transformation. Adv Pharmacol Pharm Sci 2025; 2025:1847197. [PMID: 40313865 PMCID: PMC12045689 DOI: 10.1155/adpp/1847197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/01/2025] [Indexed: 05/03/2025] Open
Abstract
Heat-shock protein 70 (HSP70) and nanotechnology have emerged as promising avenues in glioblastoma multiforme (GBM) therapy, addressing the critical challenges posed by its aggressive nature and therapeutic resistance. HSP70's dual role in cellular stress response and tumour survival emphasises its potential as both a biomarker and therapeutic target. This review explores the innovative integration of HSP70 with nanotechnology, emphasising advancements in imaging, drug delivery and combination therapies. Nanoparticles, including SPIONs, liposomes, gold nanoparticles and metal-organic frameworks, demonstrate enhanced targeting and therapeutic efficacy through HSP70 modulation. Functionalized nanocarriers exploit HSP70's tumour-specific overexpression to improve drug delivery, minimise off-target effects and overcome the blood-brain barrier. Emerging strategies such as chemophototherapy, immunotherapy and photothermal therapy leverage HSP70's interactions within the tumour microenvironment, enabling synergistic treatment modalities. The review also highlights translational challenges, including heterogeneity of GBM, regulatory hurdles and variability in the enhanced permeability and retention (EPR) effect. Integrating computational modelling, personalised approaches and adaptive trial designs is crucial for clinical translation. By bridging nanotechnology and molecular biology, HSP70-targeted strategies hold transformative potential to redefine GBM diagnosis and treatment, offering hope for improved survival and quality of life. Trial Registration: ClinicalTrials.gov identifier: NCT00054041 and NCT04628806.
Collapse
Affiliation(s)
- Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad 500081, Telangana, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manasa Manjunath Hegde
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harendra S. Parekh
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, Telangana, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
4
|
Khoshnood A, Farhadian N, Abnous K, Matin MM, Ziaee N, Iranpour S. Polyethyleneimine/gold nanorods conjugated with carbon quantum dots and hyaluronic acid for chemo-photothermal therapy of breast cancer. J Mater Chem B 2025; 13:4893-4909. [PMID: 40176547 DOI: 10.1039/d4tb02234c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The aim of this study was to develop a stable polyethyleneimine/gold nanorod composite conjugated with a carbon quantum dot (CQD) and hyaluronic acid (HA) complex (CQD-HA-PEI@GNRs) for applications in chemotherapy and photothermal therapy. GNRs were synthesized using a seed-mediated growth method, and the amount of seed solution was optimized to obtain GNRs with an optimal aspect ratio and a strong peak in the near-infrared (NIR) region. The surface of the GNRs was then modified with polyethylene imine (PEI). In parallel, CQDs were synthesized through a hydrothermal method and subsequently conjugated with HA to act as an active targeting ligand. The resulting CQD-HA complex was loaded onto the surface of the PEI@GNR composite. Finally, the anticancer drug doxorubicin (DOX) was effectively loaded onto this innovative complex. The cytotoxicity of the final complex was evaluated on different cell lines in the presence and absence of laser irradiation. Furthermore, the efficacy of the formulation was investigated in BALB/c mice bearing breast cancer tumors. Characterization results confirmed the successful formation of GNRs with a length of 40 nm, exhibiting a strong peak at 813 nm in the NIR region. The zeta potential value of the GNRs was -25.62 mV, which increased to +40.59 mV after the surface modification with PEI. CQDs were synthesized and successfully conjugated with HA. DOX encapsulation efficiency was 92.8%, with appropriate drug release profiles in the presence of laser irradiation. The final complex showed appropriate cytotoxicity toward 4T1 and MCF7 breast cancer cell lines. In vivo analysis of the CQD-HA-PEI@GNR-DOX complex combined with laser treatment demonstrated significant tumor growth inhibition in comparison to the control group. Finally, this novel complex was proposed as an alternative for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Khoshnood
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ziaee
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sonia Iranpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
6
|
Wu Y, Xie X, Luo G, Xie J, Ye X, Gu W, Mo A, Qian Z, Zhou C, Liao J. Photothermal sensitive nanocomposite hydrogel for infectious bone defects. Bone Res 2025; 13:22. [PMID: 39952965 PMCID: PMC11828901 DOI: 10.1038/s41413-024-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 02/17/2025] Open
Abstract
Infectious bone defects represent a substantial challenge in clinical practice, necessitating the deployment of advanced therapeutic strategies. This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism. The system is predicated on a hydrogel matrix that is thermally responsive, characteristic of bone defect sites, facilitating controlled and site-specific drug release. The cornerstone of this system is the incorporation of mild photothermal nanoparticles, which are activated within the temperature range of 40-43 °C, thereby enhancing the precision and efficacy of drug delivery. Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents, mitigating systemic side effects and bolstering efficacy at the defect site. The synchronized pulsed release, cooperated with mild photothermal therapy, effectively addresses infection control, and promotes bone regeneration. This approach signifies a considerable advancement in the management of infectious bone defects, offering an effective and patient-centric alternative to traditional methods. Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios, underscoring its transformative potential in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yanting Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Guowen Luo
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiuwen Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanrong Gu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
8
|
Guo H, Wang H, Gao M, Deng H, Zhang Y, Gong J, Zhang W. Harnessing the CD44-targeted delivery of self-assembled hyaluronan nanogel to reverse the antagonism between Cisplatin and Gefitinib in NSCLC cancer therapy. Carbohydr Polym 2024; 344:122521. [PMID: 39218565 DOI: 10.1016/j.carbpol.2024.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The combination of the standard platinum-based chemotherapy with EGFR-tyrosine kinase inhibitor Gefitinib (Gef) principally boosts the anticancer efficacy of advanced non-small cell lung cancer (NSCLC) through non-overlapping mechanisms of action, however the clinical trials of cisplatin (Cis) and Gef combination failed to show a therapeutic improvement likely due to compromised cellular influx of Cis with the Gef interference. To overcome the antagonism between Cis and Gef in anti-NSCLC therapy, here we demonstrated a self-targeted hyaluronan (HA) nanogel to facilitate the anticancer co-delivery by utilizing the HA's intrinsic targeting towards CD44, a receptor frequently overexpressed on lung cancer cells. The co-assembly between HA, Cis and Gef generated a HA/Cis/Gef nanogel of 177.8 nm, featuring a prolonged drug release. Unlike the Gef inhibited the Cis uptake, the HA/Cis/Gef nanogel efficiently facilitated the drug internalization through CD44-targeted delivery as verified by HA competition and CD44 knocking down in H1975 NSCLC model both in vitro and in vivo. Moreover, the HA/Cis/Gef nanogel significantly improved the anticancer efficacy and meanwhile diminished the side effects in reference to the combination of free Cis and Gef. This CD44-targeted HA/Cis/Gef nanogel provided a potent strategy to advance the platinum-based combination therapy towards optimized NSCLC therapy.
Collapse
Affiliation(s)
- Hua Guo
- State Key Laboratory of Molecular Oncology and Department of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jianan Gong
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
9
|
Sun R, Wang Y, Sun Q, Su Y, Zhang J, Liu D, Huo R, Tian Y, Baldan M, Zhang S, Cui C. MMP-2 Responsive Gold Nanorods Loaded with HSP-70 siRNA for Enhanced Photothermal Tumor Therapy. Mol Pharm 2024; 21:5455-5468. [PMID: 39424288 PMCID: PMC11539064 DOI: 10.1021/acs.molpharmaceut.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
Gold nanorods (Au NRs) are a valuable photothermal nanomaterial for tumor therapy. However, when treated with Au NRs for photothermal therapy, the expression of heat shock proteins in tumors will increase, which will induce heat resistance in tumor cells and reduce the photothermal therapeutic effect of Au NRs. By RNA interference, the expression of heat shock proteins would be effectively inhibited to improve the efficasy of tumor photothermal therapy. However, deep and noninvasive tissue penetration remains a great obstacle to applying siRNA successfully. Thus, the nanoplatform AGC/HSP-70 siRNA was designed for enhanced photothermal tumor therapy by RNA interference. In the AGC/HSP-70 siRNA complex, the Au-S bond modified the matrix metalloproteinase-2 (MMP-2)-sensitive peptide GPLGLAG on the surface of gold nanorods. Moreover, the natural basic polysaccharide (chitosan) was reacted with the peptide by an amide bond for delivering heat shock protein 70 silencing siRNA (HSP-70 siRNA). Modifying the MMP-2-sensitive linker could cause more Au NRs to accumulate in tumors to exert a photothermal effect and promote the penetration of HSP-70 siRNA and chitosan complexes into deep tumor tissues. In vitro experiments indicated that the enzymolysis of the MMP-2-sensitive linker for AGC/HSP-70 siRNA could promote the cellular uptake and perinuclear distribution of HSP-70 siRNA in tumor cells, which may be due to the smaller size and positive electricity of the complexes. All of these results ensured the efficient gene silencing effect of HSP-70 siRNA to enhance the photothermal therapeutic effect of Au NRs in tumor tissues, as demonstrated by the gene silencing and cellular apoptotic experiments. In vivo experiments further proved that the AGC/HSP-70 siRNA nanoplatform efficiently improved the photothermal effect of Au NRs. In summary, this work proved that AGC/HSP-70 siRNA is a promising drug delivery strategy for enhancing the photothermal therapy of tumors by regulating the photothermal sensitivity of deep tumor cells as well as retaining more Au NRs in tumor tissues, and also provides a novel strategy for tumor photothermal therapy.
Collapse
Affiliation(s)
- Ran Sun
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yaoqi Wang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Sun
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yan Su
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Medical
Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National
Center for Children’s Health, Beijing 100045, China
| | - Jie Zhang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Danni Liu
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ran Huo
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Tian
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Myagmarsuren Baldan
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shuang Zhang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Chunying Cui
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Ren G, Wang X, Yang Z, Li X, Ma Y, Zhou L, Yan L, Ma S, Li L, Guo L, Zhang B, Diao H, Wang H, Wang B, Lu L, Zhang C, Liu W. TME-responsive nanoplatform for multimodal imaging-guided synergistic precision therapy of esophageal cancer via inhibiting HIF-1α signal pathway. J Control Release 2024; 376:518-529. [PMID: 39424105 DOI: 10.1016/j.jconrel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related deaths, and its treatment poses significant challenges. In recent years, photodynamic, photothermal, and chemodynamic therapies have emerged as alternative strategies for tumor intervention. However, limitations such as poor tumor targeting, insufficient microenvironment responsiveness, and unclear mechanisms hinder their application. In this study, we found that hypoxia-inducible factor 1 alpha (HIF-1α) was highly expressed in clinical EC samples, which contributed to tumor malignancy and metastasis. We developed a carbon dots (CDs)-based tumor microenvironment (TME)-responsive nanoplatform, CDs-MnO2-Au-Cet (CMAC), designed for multimodal imaging-guided precision therapy in EC. Both in vitro and in vivo experiments demonstrated that CMAC effectively targeted and imaged EC cells and tissues. CMAC significantly inhibited tumor growth by inducing apoptosis and reducing lung metastasis. Mechanistically, CMAC administration led to a substantial downregulation of HIF-1α and its downstream targets, GLUT1 and MMP9. In summary, we presented a novel nanoplatform for imaging-guided synergistic therapy in EC, which demonstrated excellent anti-tumor growth and metastasis capabilities, along with favorable biocompatibility. This study laid the groundwork for developing innovative theranostic strategies for EC.
Collapse
Affiliation(s)
- Guodong Ren
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Xuewei Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Zhaobo Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yingyu Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Liang Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, PR China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Lihong Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, PR China
| | - Lixia Guo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boye Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China.
| | - Haojiang Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Bin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China.
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, PR China.
| |
Collapse
|
11
|
Hu P, Jia Z, Zhao S, Lin K, Yang G, Guo W, Yu S, Cheng J, Du G, Shi J. Injectable Therapeutic Hydrogel with H 2O 2 Self-Supplying and GSH Consumption for Synergistic Chemodynamic/Low-Temperature Photothermal Inhibition of Postoperative Tumor Recurrence and Wound Infection. Adv Healthc Mater 2024; 13:e2401551. [PMID: 38923861 DOI: 10.1002/adhm.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Postoperative tumor recurrence and wound infection remain significant clinical challenges in surgery, often requiring adjuvant therapies. The combination treatment of photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be effective in cancer treatment and wound infection. However, the hyperthermia during PTT increases the risk of normal tissue damage, severely impeding its application. Moreover, the efficacy of CDT is limited by insufficient hydrogen peroxide (H2O2) and excessive glutathione (GSH) levels at tumor or infection sites. Herein, an injectable and multifunctional CuO2@Au hydrogel system (CuO2@Au Gel) is developed for synergistic CDT and low-temperature PTT (LTPTT) to prevent tumor recurrence and bacterial wound infections. CuO2@Au Gel is constructed by embedding therapeutic CuO2@Au into low-melting point agarose hydrogel. In vitro and in vivo experiments confirm that the CuO2@Au in CuO2@Au Gel is capable of self-supplying H2O2 and depleting GSH, exhibiting effective CDT effect in acidic tumor or bacterial infected microenvironment. Additionally, it exhibits favorable photothermal conversion ability, inducing localized temperature elevation and synergistically enhancing CDT efficiency. The prepared CuO2@Au Gel demonstrates efficient tumor ablation capability in post-surgery recurrence mouse models and exhibits promising anti-infective efficiency in bacterial infection wound models, indicating significant potential in adjuvant therapy for post-surgical treatment and recovery.
Collapse
Affiliation(s)
- Peng Hu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhili Jia
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuang Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Kunpeng Lin
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guoye Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Wujie Guo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuling Yu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jianjun Cheng
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
12
|
Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD +/NADH balance. Cell Rep 2024; 43:114648. [PMID: 39167491 DOI: 10.1016/j.celrep.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Chang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Jiang Q, Li J, Du Z, Li M, Chen L, Zhang X, Tang X, Shen Y, Ma D, Li W, Li L, Alifu N, Hu Q, Liu J. High-Performance NIR-II Fluorescent Type I/II Photosensitizer Enabling Augmented Mild Photothermal Therapy of Tumors by Disrupting Heat Shock Proteins. Adv Healthc Mater 2024; 13:e2400962. [PMID: 38870484 DOI: 10.1002/adhm.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Indexed: 06/15/2024]
Abstract
NIR-II fluorescent photosensitizers as phototheranostic agents hold considerable promise in the application of mild photothermal therapy (MPTT) for tumors, as the reactive oxygen species generated during photodynamic therapy can effectively disrupt heat shock proteins. Nevertheless, the exclusive utilization of these photosensitizers to significantly augment the MPTT efficacy has rarely been substantiated, primarily due to their insufficient photodynamic performance. Herein, the utilization of high-performance NIR-II fluorescent type I/II photosensitizer (AS21:4) is presented as a simple but effective nanoplatform derived from molecule AS2 to enhance the MPTT efficacy of tumors without any additional therapeutic components. By taking advantage of heavy atom effect, AS21:4 as a type I/II photosensitizer demonstrates superior efficacy in producing 1O2 (1O2 quantum yield = 12.4%) and O2 •- among currently available NIR-II fluorescent photosensitizers with absorption exceeding 800 nm. In vitro and in vivo findings demonstrate that the 1O2 and O2 •- generated from AS21:4 induce a substantial reduction in the expression of HSP90, thereby improving the MPTT efficacy. The remarkable phototheranostic performance, substantial tumor accumulation, and prolonged tumor retention of AS21:4, establish it as a simple but superior phototheranostic agent for NIR-II fluorescence imaging-guided MPTT of tumors.
Collapse
Affiliation(s)
- Quanheng Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhong Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Liying Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xunwen Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xialian Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Yaowei Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Dalong Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Wen Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
14
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
15
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Zheng Y, Du Y, Williams GR, Zhu Y, Wang T, Zhang Y, Xu J, Wu J, Li F, Zhu LM. A piezoelectric catalytic cascade nanoreactor which reshapes the tumor microenvironment and promotes effective multi-dimensional therapy. NANO ENERGY 2024; 126:109598. [DOI: 10.1016/j.nanoen.2024.109598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Li F, Yan J, Wei C, Zhao Y, Tang X, Xu L, He B, Sun Y, Chang J, Liang Y. "Cicada Out of the Shell" Deep Penetration and Blockage of the HSP90 Pathway by ROS-Responsive Supramolecular Gels to Augment Trimodal Synergistic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401214. [PMID: 38647420 PMCID: PMC11220648 DOI: 10.1002/advs.202401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Deep penetration and downregulation of heat shock protein (HSP) expression in multimodal synergistic therapy are promising approaches for curing cancer in clinical trials. However, free small-molecule drugs and most drug vehicles have a low delivery efficiency deep into the tumor owing to poor drug penetration and hypoxic conditions at the tumor site. In this study, the objective is to use reactive oxygen species (ROS)-responsive supramolecular gels co-loaded with the photosensitizer Zn(II) phthalocyanine tetrasulfonic acid (ZnPCS4) and functionalized tetrahedral DNA (TGSAs) (G@P/TGSAs) to enhance deep tissue and cell penetration and block the HSP90 pathway for chemo- photodynamic therapy (PDT) - photothermal therapy (PTT) trimodal synergistic therapy. The (G@P/TGSAs) are injected in situ into the tumor to release ZnPCS4 and TGSAs under high ROS concentrations originating from both the tumor and PDT. TGSAs penetrate deeply into tumor tissues and augment photothermal therapy by inhibiting the HSP90 pathway. Proteomics show that HSP-related proteins and molecular chaperones are inhibited/activated, inhibiting the HSP90 pathway. Simultaneously, the TGSA-regulated apoptotic pathway is activated. In vivo study demonstrates efficient tumor penetration and excellent trimodal synergistic therapy (45% tumor growth inhibition).
Collapse
Affiliation(s)
- Fashun Li
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| | - Jianqin Yan
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| | - Chen Wei
- Department of PharmacyQingdao Women and Children's HospitalQingdao266034China
| | - Yi Zhao
- Department of Recuperation MedicineQingdao Special Service Sanatorium of PLA NavyQingdao266071China
| | - Xiaowen Tang
- Department of Medicinal ChemistrySchool of PharmacyQingdao UniversityQingdao266073China
| | - Long Xu
- School of Materials Science and Chemical EngineeringNingbo UniversityNingbo315211China
| | - Bin He
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| | - Jing Chang
- College of Marine Life ScienceOcean University of ChinaQingdao266003China
| | - Yan Liang
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| |
Collapse
|
18
|
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
19
|
Fan R, Cai L, Liu H, Chen H, Chen C, Guo G, Xu J. Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy. J Pharm Anal 2024; 14:321-334. [PMID: 38618243 PMCID: PMC11010454 DOI: 10.1016/j.jpha.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 04/16/2024] Open
Abstract
Despite decades of laboratory and clinical trials, breast cancer remains the main cause of cancer-related disease burden in women. Considering the metabolism destruction effect of metformin (Met) and cancer cell starvation induced by glucose oxidase (GOx), after their efficient delivery to tumor sites, GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ. Herein, a pH-responsive epigallocatechin gallate (EGCG)-conjugated low-molecular-weight chitosan (LC-EGCG, LE) nanoparticle (Met-GOx/Fe@LE NPs) was constructed. The coordination between iron ions (Fe3+) and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction. Met-GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability. Moreover, this pH-responsive nanoplatform presents controllable drug release behavior. An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug. The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation. This triple-combination therapy approach is promising for efficient and targeted cancer treatment.
Collapse
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linrui Cai
- NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Drug Clinical-Trial Institution, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxu Chen
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Caili Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Gang Guo
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
20
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
21
|
Shen M, Cao Q, Zhang M, Jing H, Zhao Z. Research progress of inorganic metal nanomaterials in biological imaging and photothermal therapy. SCIENTIA SINICA CHIMICA 2024; 54:160-181. [DOI: 10.1360/ssc-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Song M, Aipire A, Dilxat E, Li J, Xia G, Jiang Z, Fan Z, Li J. Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics 2024; 16:88. [PMID: 38258099 PMCID: PMC10820823 DOI: 10.3390/pharmaceutics16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Clinical drug administration aims to deliver drugs efficiently and safely to target tissues, organs, and cells, with the objective of enabling their therapeutic effects. Currently, the main approach to enhance a drug's effectiveness is ensuring its efficient delivery to the intended site. Due to the fact that there are still various drawbacks of traditional drug delivery methods, such as high toxicity and side effects, insufficient drug specificity, poor targeting, and poor pharmacokinetic performance, nanocarriers have emerged as a promising alternative. Nanocarriers possess significant advantages in drug delivery due to their size tunability and surface modifiability. Moreover, nano-drug delivery systems have demonstrated strong potential in terms of prolonging drug circulation time, improving bioavailability, increasing drug retention at the tumor site, decreasing drug resistance, as well as reducing the undesirable side effects of anticancer drugs. Numerous studies have focused on utilizing polysaccharides as nanodelivery carriers, developing delivery systems based on polysaccharides, or exploiting polysaccharides as tumor-targeting ligands to enhance the precision of nanoparticle delivery. These types of investigations have become commonplace in the academic literature. This review aims to elucidate the preparation methods and principles of polysaccharide gold nanocarriers. It also provides an overview of the factors that affect the loading of polysaccharide gold nanocarriers with different kinds of drugs. Additionally, it outlines the strategies employed by polysaccharide gold nanocarriers to improve the delivery efficiency of various drugs. The objective is to provide a reference for further development of research on polysaccharide gold nanodelivery systems.
Collapse
Affiliation(s)
- Ming Song
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Adila Aipire
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Elzira Dilxat
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jianmin Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Guoyu Xia
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China;
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| |
Collapse
|
23
|
Dong X, Zhu Z, Sun Q, Zhang H, Yang C. Chitosan functionalized gold nanostars as a theranostic platform for intracellular microRNA detection and photothermal therapy. J Mater Chem B 2023; 11:11082-11093. [PMID: 37955609 DOI: 10.1039/d3tb02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The development of a theranostic platform that integrates both diagnostic and therapeutic capabilities is in great need for precise and personalized medicine. Here, we present a novel nanoplatform (AuNS@CS-hpDNA) formulated by chitosan functionalized gold nanostar composites and further complexed with fluorescent hairpin DNA (hpDNA) probes for tumor-related miRNA imaging and photothermal therapy (PTT). The optimized AuNS@CS-hpDNA nanoplatform mediated efficient hpDNA probe loading and intracellular delivery. Subsequently, the cytosol transfer of the hpDNA probe enabled specific hybridization using the targeted miRNA, which triggered the recovery of fluorescence for the precise detection of biomarker miR21 in living cells and realized the distinguishing cancer cell line MCF-7 and normal cells. Meanwhile, the AuNS@CS-hpDNA nanoplatform exhibited excellent photothermal conversion properties, which induced efficient cancer cell killing under laser irradiation. Thus, the developed AuNS@CS-hpDNA nanoplatform could simultaneously realize the precise detection of cancer cells and accurately initiate efficient PTT, which represents a promising strategy for precise cancer therapy.
Collapse
Affiliation(s)
- Xiaoxue Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
24
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
25
|
Chuan D, Fan R, Chen B, Ren Y, Mu M, Chen H, Zou B, Dong H, Tong A, Guo G. Lipid-Polymer Hybrid Nanoparticles with Both PD-L1 Knockdown and Mild Photothermal Effect for Tumor Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42209-42226. [PMID: 37605506 DOI: 10.1021/acsami.3c07648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In developing countries, the incidence of colorectal cancer (CRC) is on the rise. The combination of programmed cell death ligand-1 (PD-L1) siRNA (siPD-L1) and mild photothermal therapy (PTT) is a promising strategy for CRC treatment. In this study, dopamine-modified polyethylenimine (PEI) was prepared to fabricate an IR780 and siPD-L1 codelivery lipid-polymer hybrid nanoparticle (lip@PSD-siP) for the photothermal immunotherapy of CRC. The modification of dopamine can significantly reduce the cytotoxicity of PEI. lip@PSD-siP can be effectively taken up by CT26 cells and successfully escaped from lysosomes after entering the cells for 4 h. After CT26 cells were transfected with lip@PSD-siP, the PD-L1 positive cell rate decreased by 82.4%, and its PD-L1 knockdown effect was significantly stronger than the positive control Lipo3000-siP. In vivo studies showed that lip@PSD-siP-mediated mild PTT and efficient PD-L1 knockdown exhibited primary and distal tumor inhibition, metastasis delay, and rechallenged tumor inhibition. The treatment with lip@PSD-siP significantly promoted the maturation of dendritic cells in lymph nodes. The amount of T cell infiltration in the tumor tissues increased significantly, and the frequency of CD8+ T cells and CD4+ T cells was significantly higher than that of other groups. The percentage of immunosuppressive regulatory cells (Tregs) in the tumor tissue on the treatment side decreased by 88% compared to the PBS group, and the proportion of CD8+CD69+ T cells in the distal tumor tissue was 2.8 times that of the PBS group. The memory T cells of mice in the long-term antitumor model were analyzed. The results showed that after treatment with lip@PSD-siP, the frequency of effector memory T cells (Tem cells) significantly increased, suggesting the formation of immune memory.
Collapse
Affiliation(s)
- Di Chuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangmei Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Ji M, Liu H, Gou J, Yin T, He H, Zhang Y, Tang X. Recent advances in nanoscale metal-organic frameworks for cancer chemodynamic therapy. NANOSCALE 2023; 15:8948-8971. [PMID: 37129051 DOI: 10.1039/d3nr00867c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemodynamic therapy (CDT), a novel therapeutic approach based on Fenton (Fenton-like) reaction, has been widely employed for tumor therapy. This approach utilizes Fe, Cu, or other metal ions (Mn, Zn, Co, or Mo) to react with the excess hydrogen peroxide (H2O2) in tumor microenvironments (TME), and form highly cytotoxic hydroxyl radical (˙OH) to kill cancer cells. Recently, nanoscale metal-organic frameworks (nMOFs) have attracted considerable attention as promising CDT agents with the rapid development of cancer CDT. This review focuses on summarizing the latest advances (2020-2022) on the design of nMOFs as nanomedicine for CDT or combination therapy of CDT and other therapies. The future development and challenges of CDT are also proposed based on recent progress. Our group hopes that this review will enlighten the research and development of nMOFs for CDT.
Collapse
Affiliation(s)
- Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| |
Collapse
|