1
|
Wang X, Yan Z, Yao M, Li X, Zhao Z, Cao C, Zhao Z, Yao F, Wei Y, Zhang H, Li J. Enzyme-Mimetic Zwitterionic Microgel Coatings for Antifouling and Enhanced Antithrombosis. ACS APPLIED BIO MATERIALS 2025; 8:2580-2591. [PMID: 40048393 DOI: 10.1021/acsabm.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Blood-contacting devices serve as a mainstay in clinical treatment, yet thrombosis remains a major cause of device failure and poses risks to patient health. In this study, we developed a diselenide cross-linker, N,N'-bis(methacryloyl)selenocystamine (BMASC), incorporated into poly(sulfobetaine methacrylate) (PSBMA) microgels (defined as BSM) to create an enzyme-mimetic zwitterionic microgel coating (BSMC). The superhydrophilicity of PSBMA provides outstanding antifouling performance, while the diselenide bonds mimic the catalytic action of glutathione peroxidase (GPx) in generating nitric oxide (NO). The microgels are covalently anchored to substrates pretreated with polydopamine (PDA) and polyethylenimine (PEI) through an epoxy-amine ring-opening reaction. During the drying process, the interpenetrating PSBMA chains of the microgels diffuse, forming a dense and smooth hydrogel coating. The BSMC exhibits exceptional resistance to nonspecific adhesion of proteins, cells, and bacteria, with the synergistic effects of antifouling properties and NO effectively inhibiting platelet adhesion. Furthermore, rabbit blood circulation experiments demonstrate the superior antithrombotic efficacy of the BSMC. This coating holds promise as an effective solution to address the thrombus formation challenges of blood-contacting devices.
Collapse
Affiliation(s)
- Xueyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengmeng Yao
- Biomedical Engineering Cockrell School of Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhijie Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Gao L, Varley A, Gao H, Li B, Li X. Zwitterionic Hydrogels: From Synthetic Design to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3007-3026. [PMID: 39885654 DOI: 10.1021/acs.langmuir.4c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Zwitterionic hydrogels have emerged as a highly promising class of biomaterials, attracting considerable attention due to their unique properties and diverse biomedical applications. Zwitterionic moieties, with their balanced positive and negative charges, endow hydrogels with exceptional hydration, resistance to nonspecific protein adsorption, and low immunogenicity due to their distinctive molecular structure. These properties facilitate various biomedical applications, such as medical device coatings, tissue engineering, drug delivery, and biosensing. This review explores the structure-property relationships in zwitterionic hydrogels, highlighting recent advances in their design principles, synthesis methods, structural characteristics, and biomedical applications. To meet the evolving and growing demand for the biomedical field, this review examines current challenges and explores future research directions for optimizing the multifunctional properties of zwitterionic hydrogels. As promising candidates for advanced biomaterials, zwitterionic hydrogels are poised to address critical challenges in biomedical applications, paving the way for improved therapeutic outcomes and broader applicability in healthcare.
Collapse
Affiliation(s)
- Linran Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Andrew Varley
- RNA and Formulation Core, Michael Smith Laboratories, University of British Columbia, British Columbia, V6T 1Z4, Canada
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
3
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
4
|
Zheng S, Liu Y, Yao J, Zhu R, Yu X, Cao Z. Mucus Mimic Hydrogel Coating for Lubricous, Antibiofouling, and Anti-Inflammatory Urinary Catheters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46177-46190. [PMID: 39169797 DOI: 10.1021/acsami.4c13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Silicone is a common elastomer used in indwelling urinary catheters, and catheters are widely used in various medical applications due to their exceptional biocompatibility, hypoallergenic properties, and flexibility. However, silicones exhibit hydrophobic characteristics, lack inherent biolubrication, and are susceptible to nonspecific biosubstance adsorption, resulting in complications including but not limited to tissue trauma, postoperative pain, and urinary tract infections (UTIs). The development of effective surface designs for biomedical catheters to mitigate invasive damage and UITs has been a longstanding challenge. Herein, we present a novel approach to prepare a mucus mimic hydrogel coating. A thin layer of hydrogel containing xylitol is fabricated via photopolymerization. The surface modification technique and the interface-initiated hydrogel polymerization method ensure robust interfacial coherence. The resultant coating exhibits a low friction coefficient (CoF ≈ 0.1) for urinary catheter applications. Benefiting from the hydration layer and the antifouling of the xylitol unit, the xylitol hydrogel-coated surfaces (pAAAMXA) demonstrate outstanding antibiofouling properties against proteins (98.9% reduction relative to pristine polydimethylsiloxane (PDMS)). Furthermore, the pAAAMXA shows general adhesion resistance against bacteria primarily responsible for UITs (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Methicillin-resistant strains of Staphylococcus aureus (MRSA), and Staphylococcus epidermidis (S. epidermidis)) without compromising biotoxicity (cell viability 98%). In vivo, catheters coated with the mucus mimic hydrogel displayed excellent biocompatibility, resistance to adhesion of bio substance, and anti-inflammatory characteristics. This work describes a promising alternative to conventional silicone catheters, offering potential for clinical interventional procedures with minimized complications.
Collapse
Affiliation(s)
- Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruiying Zhu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xing Yu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Yan Z, Yao M, Zhao Z, Yang Q, Liu R, Liu B, Wang X, Chen L, Zhang H, Wei Y, Yao F, Li J. Mechanical-Enhanced and Durable Zwitterionic Hydrogel Coating for Inhibiting Coagulation and Reducing Bacterial Infection. Adv Healthc Mater 2024; 13:e2400126. [PMID: 38768441 DOI: 10.1002/adhm.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Blood-contact medical devices are indispensable for clinical interventions, yet their susceptibility to thrombosis and bacterial infections poses substantial risks to treatment efficacy and patient well-being. This study introduces a polysulfobetaine/alginate-CuII (SAC) zwitterionic hydrogel coating on polyurethane (PU) surfaces. This approach retains the superhydrophilic and antifouling nature of pSBMA while conferring the antibacterial effects of copper ions. Meanwhile, the copper alginate network intertwines with the polysulfobetaine (pSBMA) network, enhancing its mechanical properties and overcoming inherent weaknesses, thereby improving coating durability. Compared to the substrate, the SAC hydrogel coating significantly reduces thrombus adhesion mass by approximately 81.5% during extracorporeal blood circulation and effectively prevents bacterial biofilm formation even in a high-concentration bacterial milieu over 30 days. Moreover, the results from an isolated blood circulation model in New Zealand white rabbits affirm the impressive anticoagulant efficacy of the SAC hydrogel coating. The findings suggest that this hydrogel coating and its application method hold promise as a solution for blood-contact material surface modification to address thrombosis and bacterial biofilm formation simultaneously.
Collapse
Affiliation(s)
- Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Biomedical Engineering Cockrell School of Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baijun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xueyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liming Chen
- Department of Anorectal Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
6
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
7
|
Yakufu M, Wang Z, Li C, Jia Q, Ma C, Zhang P, Abudushalamu M, Akber S, Yan L, Xikeranmu M, Song X, Abudourousuli A, Shu L. Carbene-mediated gelatin and hyaluronic acid hydrogel paints with ultra adhesive ability for arthroscopic cartilage repair. Int J Biol Macromol 2024; 273:133122. [PMID: 38876236 DOI: 10.1016/j.ijbiomac.2024.133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
In articular cartilage defect, particularly in arthroscopy, regenerative hydrogels are urgently needed. It should be able to firmly adhere to the cartilage tissue and maintain sufficient mechanical strength to withstand approximately 10 kPa of arthroscopic hydraulic flushing. In this study, we report a carbene-mediated ultra adhesive hybrid hydrogel paints for arthroscopic cartilage repair, which combined the photo initiation of double crosslinking system with the addition of diatomite, as a further reinforcing agent and biological inorganic substances. The double network consisting of ultraviolet initiated polymerization of hyaluronic acid methacrylate (HAMA) and carbene insertion chemistry of diazirine-grafted gelatin (GelDA) formed an ultra-strong adhesive hydrogel paint (H2G5DE). Diatomite helped the H2G5DE hydrogel paint firmly adhere to the cartilage defect, withstanding nearly 100 kPa of hydraulic pressure, almost 10 times that in clinical arthroscopy. Furthermore, the H2G5DE hydrogel supported cell growth, proliferation, and migration, thus successfully repairing cartilage defects. Overall, this study demonstrates a proof-of-concept of ultra-adhesive polysaccharide hydrogel paints, which can firmly adhere to the articular cartilage defects, can resist continuous hydraulic pressure, can promote effective cartilage regeneration, and is very suitable for minimally invasive arthroscopy.
Collapse
Affiliation(s)
- Maihemuti Yakufu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Chunbao Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100048, PR China.
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, PR China.
| | - Chuang Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, PR China
| | - Peng Zhang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, PR China
| | - Muyashaer Abudushalamu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Sajida Akber
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Li Yan
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Milibanguli Xikeranmu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Xinghua Song
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Adili Abudourousuli
- Animal Expermental Center,Xinjiang Medical University, Urumqi 830017, PR China
| | - Li Shu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China.
| |
Collapse
|
8
|
Liu R, Zhao Z, Yang Q, Chen S, Yan Z, Li X, Liang L, Guo B, Wang B, Zhang H, Yao F, Li J. A Single-Component Janus Zwitterionic Hydrogel Patch with a Bionic Microstructure for Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669466 DOI: 10.1021/acsami.4c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The development of anti-adhesion hydrogels for preventing postoperative adhesions is an ongoing challenge, particularly in achieving a balance between exceptional antifouling properties and effective in situ tissue retention. In this study, we propose a unique approach with the design of a single-component Janus zwitterionic hydrogel patch featuring a bionic microstructure. The Janus patches were prepared through free radical polymerization of sulfobetaine methacrylate with N, N'-methylenebis(2-propenamide) as the cross-linker. The incorporation of hexagonal facets separated by interconnecting grooves on one side imparts durable and reliable in situ retention capabilities to the Janus hydrogel patch when it is applied to traumatized tissues. The opposing flat surface exhibits outstanding resistance to bacteria, proteins, and cell adhesion, due to the superhydrophilicity and excellent antifouling characteristics of zwitterionic polymers. This dual functionality empowers the Janus hydrogel patch to mitigate adhesions between traumatized and surrounding tissues. The hexagonal and groove bionic microstructures facilitate rapid drainage, promoting swift contact with the tissue for increased adhesion strength, while independent hexagonal microfacets enhance the peeling energy. In an in vivo setting, Janus zwitterionic hydrogel patches with surface microstructures form mutually embedded structures with the cecum surface, minimizing the likelihood of slippage and detachment. Remarkably, in vivo experiments involving abdominal wall cecum injuries illustrate the Janus zwitterionic hydrogel patch's superior anti-adhesion effectiveness compared to commercial controls. Thus, the Janus hydrogel patch, distinguished by its bionic microstructure surface, presents substantial potential in the biomedical field for averting postoperative adhesions.
Collapse
Affiliation(s)
- Rui Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baoqun Wang
- Qingdao Chenland Marine Biological Engineering Company, Ltd., Qingdao 266100, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai, China
| |
Collapse
|
9
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Surface functionalization of polyurethanes: A critical review. Adv Colloid Interface Sci 2024; 325:103100. [PMID: 38330882 DOI: 10.1016/j.cis.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|