1
|
Ke re mu ALM, Abulikemu M, Liang Z, Abulikemu A, Tuxun A. Anti-Infection Efficacy, Osteogenesis Potential, and Biocompatibility of 3D Printed PLGA/Nano-Hydroxyapatite Porous Scaffolds Grafted with Vancomycin/DOPA/rhBMP-2 in Infected Rabbit Bone Defects. Int J Nanomedicine 2025; 20:6399-6421. [PMID: 40416730 PMCID: PMC12103859 DOI: 10.2147/ijn.s514978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
Background Given the limitations of traditional therapies, the treatment of infected bone defects (IBD) remains a great challenge. It is urgent to find a novel method that can simultaneously eradicate infection and promote new bone formation. With the increasing application of personalized scaffolds in orthopedics, novel biomaterials with both antibacterial and osteoinductive properties have provided a viable option for IBD treatment. Through the three-dimensional (3D) printing technology, we fabricated a poly(lactic-co-glycolic acid)(PLGA)/nano-hydroxyapatite (n-HA) composite scaffold grafted with the antibiotic vancomycin and loaded with the osteoinductive agent recombinant human bone morphogenic protein-2 (rhBMP-2) via polydopamine (DOPA) chemistry, whose therapeutic effects on IBD were determined. Methods After examining the hydrophilicity, surface chemical composition, mechanical properties, and drug release of the PLGA/n-HA, PLGA/n-HA/VAN, and PLGA/n-HA/VAN+DOPA/rhBMP-2 composite scaffolds, pre-osteoblast MC3T3-E1 cells were seeded onto the scaffold surface to assess the biocompatibility and osteoconductive properties of the scaffolds in vitro. For in vivo experiments, the composite scaffolds contaminated with Staphylococcus aureus were implanted into the defect sites of rabbit radius. After 12 weeks, micro-CT analysis, H&E and Masson staining, immunohistochemistry, and viable bacteria counting were conducted to compare the effects of three composite scaffolds on new bone formation and bone infection. Results The surface modification with DOPA/rhBMP-2 increased the hydrophilicity of PLGA/n-HA scaffolds. Vancomycin and BMP-2 were continuously and regularly eluted from the PLGA/n-HA/VAN+DOPA/rhBMP-2 scaffolds. The PLGA/n-HA/VAN+DOPA/rhBMP-2 scaffolds promoted MC3T3-E1 cell survival and proliferation and enhanced ALP activity and calcium deposition compared with the PLGA/n-HA and PLGA/n-HA/VAN scaffolds. Additionally, the PLGA/n-HA/VAN+DOPA/rhBMP-2 scaffolds significantly facilitated new bone formation and inhibited bone infection in IBD rabbit models. The rabbits implanted with the PLGA/n-HA/VAN+DOPA/rhBMP-2 scaffolds exhibited normal heart, lung, and kidney histologies and normal serum biochemical indices, suggesting the safety of the scaffolds. Conclusion The 3D-printed PLGA/n-HA/VAN+DOPA/rhBMP-2 scaffolds exhibited both antibacterial and osteoinductive activities in IBD.
Collapse
Affiliation(s)
- A li mu Ke re mu
- Department of Orthopedic, First People’s Hospital of Kashgar, Kashgar, Xinjiang, 844000, People’s Republic of China
| | - Maimaitiaili Abulikemu
- Department of Trauma Orthopaedics, First People’s Hospital of Kashgar, Kashgar, Xinjiang, 844000, People’s Republic of China
| | - Zhilin Liang
- Department of Trauma Orthopaedics, First People’s Hospital of Kashgar, Kashgar, Xinjiang, 844000, People’s Republic of China
| | - Abudurusuli Abulikemu
- Department of Trauma Orthopaedics, First People’s Hospital of Kashgar, Kashgar, Xinjiang, 844000, People’s Republic of China
| | - Aikebaier Tuxun
- Department of Trauma Orthopaedics, First People’s Hospital of Kashgar, Kashgar, Xinjiang, 844000, People’s Republic of China
| |
Collapse
|
2
|
Carrascal-Hernández DC, Martínez-Cano JP, Rodríguez Macías JD, Grande-Tovar CD. Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials. Int J Mol Sci 2025; 26:4242. [PMID: 40362478 PMCID: PMC12072198 DOI: 10.3390/ijms26094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Bone defects caused by various traumas and diseases such as osteoporosis, which affects bone density, and osteosarcoma, which affects the integrity of bone structure, are now well known. Given this situation, several innovative research projects have been reported to improve orthopedic methods and technologies that positively contribute to the regeneration of affected bone tissue, representing a significant advance in regenerative medicine. This review article comprehensively analyzes the transition from existing methods and technologies for implants and bone tissue regeneration to innovative biomaterials. These biomaterials have been of great interest in the last decade due to their physicochemical characteristics, which allow them to overcome the most common limitations of traditional grafting methods, such as the availability of biomaterials and the risk of rejection after their application in regenerative medicine. This could be achieved through an exhaustive study of the applications and properties of various materials with potential applications in regenerative medicine, such as using magnetic nanoparticles and hydrogels sensitive to external stimuli, including pH and temperature. In this regard, this review article describes the most relevant compounds used in bone tissue regeneration, promoting the integration of these biomaterials with the affected area's bone structure, thereby allowing for regeneration and preventing amputation. Additionally, the types of interactions between biomaterials and mesenchymal stem cells and their effects on bone tissue are discussed, which is critical for developing biomaterials with optimal regenerative properties. Furthermore, the mechanisms of action of the various biomaterials that enhance osteoconduction and osteoinduction, ensuring the success of orthopedic therapies, are analyzed. This enables the treatment of bone defects tailored to each patient's condition, thereby avoiding limb amputation. Consequently, a promising future for regenerative medicine is emerging, with various therapies that could revolutionize the management of bone defects, offering more efficient and safer solutions.
Collapse
Affiliation(s)
| | - Juan Pablo Martínez-Cano
- Ortopedia y Traumatología, Epidemiología Clínica, Fundación Valle del Lili, Universidad ICESI, Cali 760031, Colombia;
| | | | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| |
Collapse
|
3
|
Gani MA, Marhaeny HD, Lee G, Rahmawati SF, Anjalikha PDA, Sugito T, Lebullenger R, Adnyana IK, Lee K, Brézulier D. Ceramic-based 3D printed bone graft in bone tissue reconstruction: a systematic review and proportional meta-analysis of clinical studies. Expert Rev Med Devices 2025:1-19. [PMID: 40227056 DOI: 10.1080/17434440.2025.2492232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION This systematic review and proportional meta-analysis aims to evaluate the postoperative complication rate (CR%) of ceramic-based 3D-printed bone grafts based on the reported scientific articles conducted with human individuals. METHODS MEDLINE and SCOPUS were used as information sources. The synthesis of the study was carried out from studies with human individuals and the use of 3D-printed bone graft-ceramic as inclusion criteria. Cohen's kappa (κ) was calculated for interrater reliability. Qualitative analysis was performed based on the characteristics and outcomes of the individual study, and quantitative analysis was performed using proportional meta-analysis for CR%. RESULTS A total of 1352 records were identified through databases and resulted in 11 included studies (κ = 0.81-1.00) consisting of prospective clinical trials (64.63%), case series (16.67%), and case reports (18.18%). The overall postoperative complication rate was 14.3% (95% Cl: 0.19-53.6). The postoperative complication rate for studies conducted on the cranial defect, the maxillofacial-zygomatic defect, and the tibial-femoral defect was 2.7%, 11.1%, and 15.6%, respectively. This review also highlights common 3D printing techniques, materials, and grafs' characteristics, as well as their clinical applications. CONCLUSIONS Ceramic-based 3D-printed bone grafts show potential as alternatives for bone tissue reconstruction.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Gyubok Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Siti Farah Rahmawati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Putu Diah Apri Anjalikha
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Timothy Sugito
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Ronan Lebullenger
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
| | - I Ketut Adnyana
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Kangwon Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Suwon, Republic of Korea
| | - Damien Brézulier
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
- CHU Rennes, Pole Odontologie, Univ Rennes, Rennes, France
| |
Collapse
|
4
|
Qi H, Zhang B, Lian F. 3D-printed bioceramic scaffolds for bone defect repair: bone aging and immune regulation. Front Bioeng Biotechnol 2025; 13:1557203. [PMID: 40242352 PMCID: PMC12000889 DOI: 10.3389/fbioe.2025.1557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
The management of bone defects, particularly in aging populations, remains a major clinical challenge. The immune microenvironment plays an important role in the repair of bone defects and a favorable immune environment can effectively promote the repair of bone defects. However, aging is closely associated with chronic low-grade systemic inflammation, which adversely affects bone healing. Persistent low-grade systemic inflammation critically regulates bone repair through all stages. This review explores the potential of 3D-printed bioceramic scaffolds in bone defect repair, focusing on their capacity to modulate the immune microenvironment and counteract the effects of bone aging. The scaffolds not only provide structural support for bone regeneration but also serve as effective carriers for anti-osteoporosis drugs, offering a novel therapeutic strategy for treating osteoporotic bone defects. By regulating inflammation and improving the immune response, 3D-printed bioceramic scaffolds may significantly enhance bone repair, particularly in the context of age-related bone degeneration. This approach underscores the potential of advanced biomaterials in addressing the dual challenges of bone aging and immune dysregulation, offering promising avenues for the development of effective treatments for bone defects in the elderly. We hope the concepts discussed in this review could offer novel therapeutic strategies for bone defect repair, and suggest promising avenues for the future development and optimization of bioceramic scaffolds.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Lian
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| |
Collapse
|
5
|
Li C, Li D, Xu Y, Chen P, Zhang J, Zhou Y, Li Z, Zhou Z, Chen M, Li M. A calcium sulfate hemihydrate self-setting interface reinforced polycaprolactone porous composite scaffold. RSC Adv 2025; 15:8430-8442. [PMID: 40103987 PMCID: PMC11917470 DOI: 10.1039/d5ra00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025] Open
Abstract
The mechanical insufficiency and slow degradation of polycaprolactone (PCL) implants have attracted widespread attention among researchers. Herein, a PCL scaffold with self-setting properties containing calcium sulfate hemihydrate (CSH) was prepared using a triply periodic minimal surfaces (TPMS) design and selective laser sintering (SLS) technology. The results showed that the strength of the scaffold containing 10 wt% CSH was increased by 45.5% compared to the PCL one. More importantly, its strength can be further increased to 1.7 times that of the PCL scaffold after self-setting in water. Mechanism analysis suggests that mechanical strengthening can be attributed to the pinning effect through the newly grown columnar crystals embedded with PCL molecular chains. In addition, the degradation rate of the composite scaffold was approximately 6.8 times higher than that of the PCL one. The study believes that the increase in degradation rate is due to a dual effect, specifically the increase in permeability and the catalytic degradation of PCL in the acidic environment. Encouragingly, the composite scaffold showed a good ability to induce hydroxyapatite formation. Therefore, the self-setting mechanically enhanced composite scaffold is expected to have potential application prospects in bone defect repair.
Collapse
Affiliation(s)
- Changfeng Li
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Dongying Li
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China
| | - Yong Xu
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China
| | - Peng Chen
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Jianfei Zhang
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Yanrong Zhou
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Zonghan Li
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Zixiong Zhou
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Meigui Chen
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China
| | - Mengqi Li
- Shaoyang Industry Polytechnic College Shaoyang 422000 China
| |
Collapse
|
6
|
Supjaroen P, Niamsi W, Thummarati P, Laiwattanapaisal W. An In Vitro Cell Model of Intestinal Barrier Function Using a Low-Cost 3D-Printed Transwell Device and Paper-Based Cell Membrane. Int J Mol Sci 2025; 26:2524. [PMID: 40141167 PMCID: PMC11941856 DOI: 10.3390/ijms26062524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Current in vitro methods for intestinal barrier assessment predominantly utilize two-dimensional (2D) membrane inserts in standard culture plates, which are widely recognized for their inability to replicate the microenvironment critical to intestinal barrier functionality. Our study focuses on creating an alternative method for intestinal barrier function by integrating a 3D-printed transwell device with a paper-based membrane. Caco-2 cells were grown on a Matrigel-modified paper membrane, in which the tight junction formation was evaluated using TEER measurements. Neutrophil-like dHL-60 cells were employed for neutrophil extracellular trap (NET) formation experiments. Furthermore, intestinal barrier dysfunction was demonstrated using NET-isolated and Staurosporine interventions. Intestinal barrier characteristics were investigated through immunofluorescence staining of specific proteins and scanning electron microscopy (SEM). Our paper-based intestinal barrier exhibited an increased resistance in a time-dependent manner, consistent with immunofluorescence images of Zonulin Occludens-1 (ZO-1) expression. Interestingly, immunofluorescence analysis revealed changes in the morphology of the intestinal barrier and the formation of surface villi. These disruptions were found to alter the localization of tight junctions, impacting epithelial polarization and surface functionality. Moreover, we successfully demonstrated the permeability of a paper-based intestinal barrier using FITC-dextran assay. Hence, the 3D-printed transwell device integrated with a paper membrane insert presents a straightforward, cost-effective, and sustainable platform for an in vitro cell model to evaluate intestinal barrier function.
Collapse
Affiliation(s)
- Pitaksit Supjaroen
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.)
| | - Wisanu Niamsi
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.)
| | - Parichut Thummarati
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
8
|
Wang C, Liu A, Zhao Z, Ying T, Deng S, Jian Z, Zhang X, Yi C, Li D. Application and progress of 3D printed biomaterials in osteoporosis. Front Bioeng Biotechnol 2025; 13:1541746. [PMID: 39968010 PMCID: PMC11832546 DOI: 10.3389/fbioe.2025.1541746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Osteoporosis results from a disruption in skeletal homeostasis caused by an imbalance between bone resorption and bone formation. Conventional treatments, such as pharmaceutical drugs and hormone replacement therapy, often yield suboptimal results and are frequently associated with side effects. Recently, biomaterial-based approaches have gained attention as promising alternatives for managing osteoporosis. This review summarizes the current advancements in 3D-printed biomaterials designed for osteoporosis treatment. The benefits of biomaterial-based approaches compared to traditional systemic drug therapies are discussed. These 3D-printed materials can be broadly categorized based on their functionalities, including promoting osteogenesis, reducing inflammation, exhibiting antioxidant properties, and inhibiting osteoclast activity. 3D printing has the advantages of speed, precision, personalization, etc. It is able to satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. The limitations of existing biomaterials are critically analyzed and future directions for biomaterial-based therapies are considered.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhen Jian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
9
|
Muhammad N, Khattak P, Liaqat S. The potential of ceramic nanomaterials in preventive dentistry. Nanomedicine (Lond) 2025; 20:243-245. [PMID: 39498595 PMCID: PMC11792846 DOI: 10.1080/17435889.2024.2418286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/15/2024] [Indexed: 02/02/2025] Open
Affiliation(s)
- Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Palwasha Khattak
- Department of Dental Materials, Institute of Basic Medical sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Saad Liaqat
- Department of Dental Materials, Institute of Basic Medical sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Bovari-Biri J, Miskei JA, Kover Z, Steinerbrunner-Nagy A, Kardos K, Maroti P, Pongracz JE. Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ). Cells 2025; 14:145. [PMID: 39851573 PMCID: PMC11763601 DOI: 10.3390/cells14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Judith A Miskei
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Zsanett Kover
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Alexandra Steinerbrunner-Nagy
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Kinga Kardos
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Peter Maroti
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| |
Collapse
|
11
|
Quan S, Yang J, Huang S, Shao J, Liu Y, Yang H. Silk fibroin as a potential candidate for bone tissue engineering applications. Biomater Sci 2025; 13:364-378. [PMID: 39620282 DOI: 10.1039/d4bm00950a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Silk fibroin (SF), a pivotal biomaterial, holds immense promise for diverse applications within the realm of bone tissue engineering. SF is an ideal scaffold material with exceptional biocompatibility, mechanical robustness, biodegradability, and bioactivity. A plethora of investigations have corroborated SF's efficacy in supporting bone tissue repair and regeneration. This comprehensive review delves into the structural attributes, physicochemical characteristics, and extraction methodologies of SF. Moreover, it elucidates the strides taken in harnessing SF across a spectrum of forms, including films, hydrogels, scaffolds, electrospun fibers, and composites for bone tissue engineering applications. Moreover, the application bottleneck of SF as a bone repair material is highlighted, and its development prospects and potential biomedical applications are also presented in this review. We expect that this review can inspire the broad interest of a wide range of readers working in the fields of materials science, tissue engineering, biomaterials, bioengineering, and biomedicine.
Collapse
Affiliation(s)
- Shaohao Quan
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China.
| | - Jie Yang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Sirui Huang
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jundong Shao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China.
| | - Yang Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213000, China.
| | - Hui Yang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
12
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
13
|
Supjaroen P, Niamsi W, Thirabowonkitphithan P, Thummarati P, Laiwattanapaisal W. A customizable and low-cost 3D-printed transwell device coupled with 3D cell culture for permeability assay. HARDWAREX 2024; 20:e00603. [PMID: 39584016 PMCID: PMC11585668 DOI: 10.1016/j.ohx.2024.e00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
The permeability-based assay is commonly used to assess intestinal barrier function, and it relies on using a transwell insert as an essential compartment. The device consists of a semipermeable membrane that is attached at the bottom of the insert and splits the system into the apical and basolateral compartments. However, commercial inserts are standardized with different pore sizes based on the application and offer only a flat plane of two-dimensional cell culture. Herein, we present a simple, low-cost 3D-printed transwell device and a robust method to functionalize the inserts for paper-based 3D cell culture. This 3D-printed device was fabricated from a polylactic acid (PLA) filament, and a paper membrane used to support HT-29 cells for intestinal permeability assessment. A device showed good biocompatibility when culturing HT-29 cells for 48 and 72 h with 97 % and 98 % cell viability, respectively. Together with fluorescence images, cells were attached directly to the microfiber networks of a Matrigel-functionalized paper, indicating that the functionalized paper is biocompatible and bioactive. Furthermore, in a more appropriate culture microenvironment, SEM analyses revealed cellular features differentiating into mucus-secreting cells, evidenced by the formation of microvilli on the cell surface, which was further confirmed by immunofluorescence staining of villin-1. To demonstrate the usability of the 3D-printed transwell device, intestinal permeability was assessed using both chemical and biological stimulation treatments. The permeability results employing FITC-dextran validated the association between a different level of relative fluorescence intensity unit (RFU) and the orange color of live cells by CellTrackerTM. As a result, this 3D-printed transwell device provides a straightforward and cost-effective method for manufacturing a device for customization in many laboratory settings, making it a feasible alternative to marketed transwell devices that do not allow for customization.
Collapse
Affiliation(s)
- Pitaksit Supjaroen
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisanu Niamsi
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannawich Thirabowonkitphithan
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Parichut Thummarati
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Guptha PM, Kanoujia J, Kishore A, Raina N, Wahi A, Gupta PK, Gupta M. A comprehensive review of the application of 3D-bioprinting in chronic wound management. Expert Opin Drug Deliv 2024; 21:1573-1594. [PMID: 38809187 DOI: 10.1080/17425247.2024.2355184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings. AREAS COVERED This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents. EXPERT OPINION The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.
Collapse
Affiliation(s)
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Wahi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
15
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
16
|
Sagar N, Chakravarti B, Maurya SS, Nigam A, Malakar P, Kashyap R. Unleashing innovation: 3D-printed biomaterials in bone tissue engineering for repairing femur and tibial defects in animal models - a systematic review and meta-analysis. Front Bioeng Biotechnol 2024; 12:1385365. [PMID: 39386047 PMCID: PMC11462855 DOI: 10.3389/fbioe.2024.1385365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction 3D-printed scaffolds have emerged as an alternative for addressing the current limitations encountered in bone reconstruction. This study aimed to systematically review the feasibility of using 3D bio-printed scaffolds as a material for bone grafting in animal models, focusing on femoral and tibial defects. The primary objective of this study was to evaluate the efficacy, safety, and overall impact of these scaffolds on bone regeneration. Methods Electronic databases were searched using specific search terms from January 2013 to October 2023, and 37 relevant studies were finally included and reviewed. We documented the type of scaffold generated using the 3D printed techniques, detailing its characterization and rheological properties including porosity, compressive strength, shrinkage, elastic modulus, and other relevant factors. Before incorporating them into the meta-analysis, an additional inclusion criterion was applied where the regenerated bone area (BA), bone volume (BV), bone volume per total volume (BV/TV), trabecular thickness (Tb. Th.), trabecular number (Tb. N.), and trabecular separation (Tb. S.) were collected and analyzed statistically. Results 3D bio-printed ceramic-based composite scaffolds exhibited the highest capacity for bone tissue regeneration (BTR) regarding BV/TV of femoral and tibial defects of animal models. The ideal structure of the printed scaffolds displayed optimal results with a total porosity >50% with a pore size ranging between 300- and 400 µM. Moreover, integrating additional features and engineered macro-channels within these scaffolds notably enhanced BTR capacity, especially observed at extended time points. Discussion In conclusion, 3D-printed composite scaffolds have shown promise as an alternative for addressing bone defects.
Collapse
Affiliation(s)
- Nitin Sagar
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Bandana Chakravarti
- Center for Advanced Research (Stem Cell/Cell Culture Lab), King George’s Medical University, Lucknow, India
| | - Shailendra S. Maurya
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anshul Nigam
- Department of Biotechnology, Kanpur Institute of Technology, Kanpur, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kashyap
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
17
|
Andrzejewski J, Das S, Lipik V, Mohanty AK, Misra M, You X, Tan LP, Chang BP. The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications-Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4556. [PMID: 39336298 PMCID: PMC11433319 DOI: 10.3390/ma17184556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.
Collapse
Affiliation(s)
- Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland;
| | - Subhasis Das
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| | - Vitali Lipik
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| | - Amar K. Mohanty
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.K.M.); (M.M.)
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Manjusri Misra
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.K.M.); (M.M.)
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| | - Boon Peng Chang
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| |
Collapse
|
18
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
19
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
20
|
Alonso-Fernández I, Haugen HJ, Nogueira LP, López-Álvarez M, González P, López-Peña M, González-Cantalapiedra A, Muñoz-Guzón F. Enhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures. Polymers (Basel) 2024; 16:1243. [PMID: 38732711 PMCID: PMC11085737 DOI: 10.3390/polym16091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the effect of scaffold architecture on bone regeneration, focusing on 3D-printed polylactic acid-bioceramic calcium phosphate (PLA-bioCaP) composite scaffolds in rabbit femoral condyle critical defects. We explored two distinct scaffold designs to assess their influence on bone healing and scaffold performance. Structures with alternate (0°/90°) and helical (0°/45°/90°/135°/180°) laydown patterns were manufactured with a 3D printer using a fused deposition modeling technique. The scaffolds were meticulously characterized for pore size, strut thickness, porosity, pore accessibility, and mechanical properties. The in vivo efficacy of these scaffolds was evaluated using a femoral condyle critical defect model in eight skeletally mature New Zealand White rabbits. Then, the results were analyzed micro-tomographically, histologically, and histomorphometrically. Our findings indicate that both scaffold architectures are biocompatible and support bone formation. The helical scaffolds, characterized by larger pore sizes and higher porosity, demonstrated significantly greater bone regeneration than the alternate structures. However, their lower mechanical strength presented limitations for use in load-bearing sites.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (H.J.H.); (L.P.N.)
| | - Liebert Parreiras Nogueira
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (H.J.H.); (L.P.N.)
| | - Miriam López-Álvarez
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain; (M.L.-Á.); (P.G.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Pío González
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain; (M.L.-Á.); (P.G.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| | - Fernando Muñoz-Guzón
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| |
Collapse
|
21
|
Qiu Z, Lin X, Zou L, Fu W, Lv H. Effect of graphene oxide/ poly-L-lactic acid composite scaffold on the biological properties of human dental pulp stem cells. BMC Oral Health 2024; 24:413. [PMID: 38575940 PMCID: PMC10993485 DOI: 10.1186/s12903-024-04197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Tissue engineering has attracted recent attention as a promising bone repair and reconstruction approach. Dental pulp stem cells (DPSCs) are pluripotent and can differentiate into bone cells with the correct environment and substrate. Therefore, suitable scaffold materials are essential for fabricating functional three-dimensional (3D) tissue and tissue regeneration. Composite scaffolds consisting of biodegradable polymers are very promising constructs. This study aims to verify the biological function of human DPSCs seeded onto composite scaffolds based on graphene oxide (GO) and poly-L-lactic acid (PLLA). METHODS The surface morphology was observed under scanning electron microscopy (SEM). Chemical composition was evaluated with Fourier transform infrared (FTIR) spectroscopy. The biocompatibility of GO/PLLA scaffolds was assessed using phalloidin staining of cytoskeletal actin filaments, live/dead staining, and a CCK-8 assay. The effect of GO/PLLA scaffolds on cell osteogenic differentiation was detected through ALP staining, ALP activity assays, and alizarin red S staining, complemented by quantitative real-time PCR (qRT-PCR) analysis. RESULTS Our data showed that GO and PLLA are successfully integrated and the GO/PLLA scaffolds exhibit favorable bioactivity and biocompatibility towards DPSCs. Additionally, it was observed that the 0.15% GO/PLLA scaffold group promoted DPSC proliferation and osteogenic differentiation by forming more calcium nodules, showing a higher intensity of ALP staining and ALP activity, and enhancing the expression levels of differentiation marker genes RUNX2 and COL1. CONCLUSIONS These results demonstrate that the GO/PLLA scaffold is a feasible composite material suitable for cell culture and holds promising applications for oral bone tissue engineering.
Collapse
Affiliation(s)
- Zailing Qiu
- Oral Center, Fujian Provincial Governmental Hospital, Fuzhou, China.
| | - Xuemei Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Luning Zou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Weihao Fu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hongbing Lv
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
22
|
Shi Q, Chen J, Chen J, Liu Y, Wang H. Application of additively manufactured bone scaffold: a systematic review. Biofabrication 2024; 16:022007. [PMID: 38507799 DOI: 10.1088/1758-5090/ad35e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.
Collapse
Affiliation(s)
- Qianyu Shi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Jibing Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Junsheng Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yanfeng Liu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Hongze Wang
- School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
23
|
Yang Y, He H, Miao F, Yu M, Wu X, Liu Y, Fu J, Chen J, Ma L, Chen X, Peng X, You Z, Zhou C. 3D-printed PCL framework assembling ECM-inspired multi-layer mineralized GO-Col-HAp microscaffold for in situ mandibular bone regeneration. J Transl Med 2024; 22:224. [PMID: 38429799 PMCID: PMC10908055 DOI: 10.1186/s12967-024-05020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND In recent years, natural bone extracellular matrix (ECM)-inspired materials have found widespread application as scaffolds for bone tissue engineering. However, the challenge of creating scaffolds that mimic natural bone ECM's mechanical strength and hierarchical nano-micro-macro structures remains. The purposes of this study were to introduce an innovative bone ECM-inspired scaffold that integrates a 3D-printed framework with hydroxyapatite (HAp) mineralized graphene oxide-collagen (GO-Col) microscaffolds and find its application in the repair of mandibular bone defects. METHODS Initially, a 3D-printed polycaprolactone (PCL) scaffold was designed with cubic disks and square pores to mimic the macrostructure of bone ECM. Subsequently, we developed multi-layer mineralized GO-Col-HAp microscaffolds (MLM GCH) to simulate natural bone ECM's nano- and microstructural features. Systematic in vitro and in vivo experiments were introduced to evaluate the ECM-inspired structure of the scaffold and to explore its effect on cell proliferation and its ability to repair rat bone defects. RESULTS The resultant MLM GCH/PCL composite scaffolds exhibited robust mechanical strength and ample assembly space. Moreover, the ECM-inspired MLM GCH microscaffolds displayed favorable attributes such as water absorption and retention and demonstrated promising cell adsorption, proliferation, and osteogenic differentiation in vitro. The MLM GCH/PCL composite scaffolds exhibited successful bone regeneration within mandibular bone defects in vivo. CONCLUSIONS This study presents a well-conceived strategy for fabricating ECM-inspired scaffolds by integrating 3D-printed PCL frameworks with multilayer mineralized porous microscaffolds, enhancing cell proliferation, osteogenic differentiation, and bone regeneration. This construction approach holds the potential for extension to various other biomaterial types.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Huan He
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100038, China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mingwei Yu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Xixi Wu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jie Fu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Junwei Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China.
| |
Collapse
|
24
|
Darghiasi SF, Farazin A, Ghazali HS. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review. J Mech Behav Biomed Mater 2024; 151:106391. [PMID: 38211501 DOI: 10.1016/j.jmbbm.2024.106391] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Tissue engineering is a fascinating field that combines biology, engineering, and medicine to create artificial tissues and organs. It involves using living cells, biomaterials, and bioengineering techniques to develop functional tissues that can be used to replace or repair damaged or diseased organs in the human body. The process typically starts by obtaining cells from the patient or a donor. These cells are then cultured and grown in a laboratory under controlled conditions. Scaffold materials, such as biodegradable polymers or natural extracellular matrices, are used to provide support and structure for the growing cells. 3D bone scaffolds are a fascinating application within the field of tissue engineering. These scaffolds are designed to mimic the structure and properties of natural bone tissue and serve as a temporary framework for new bone growth. The main purpose of a 3D bone scaffold is to provide mechanical support to the surrounding cells and guide their growth in a specific direction. It acts as a template, encouraging the formation of new bone tissue by providing a framework for cells to attach, proliferate, and differentiate. These scaffolds are typically fabricated using biocompatible materials like ceramics, polymers, or a combination of both. The choice of material depends on factors such as strength, biodegradability, and the ability to facilitate cell adhesion and growth. Advanced techniques like 3D printing have revolutionized the fabrication process of these scaffolds. Using precise layer-by-layer deposition, it allows for the creation of complex, patient-specific geometries, mimicking the intricacies of natural bone structure. This article offers a brief overview of the latest developments in the research and development of 3D printing techniques for creating scaffolds used in bone tissue engineering.
Collapse
Affiliation(s)
- Seyedeh Farnaz Darghiasi
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran; Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Hanieh Sadat Ghazali
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
25
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
26
|
Bakhtiari H, Nouri A, Khakbiz M, Tolouei-Rad M. Fatigue behaviour of load-bearing polymeric bone scaffolds: A review. Acta Biomater 2023; 172:16-37. [PMID: 37797705 DOI: 10.1016/j.actbio.2023.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Bone scaffolds play a crucial role in bone tissue engineering by providing mechanical support for the growth of new tissue while enduring static and fatigue loads. Although polymers possess favourable characteristics such as adjustable degradation rate, tissue-compatible stiffness, ease of fabrication, and low toxicity, their relatively low mechanical strength has limited their use in load-bearing applications. While numerous studies have focused on assessing the static strength of polymeric scaffolds, little research has been conducted on their fatigue properties. The current review presents a comprehensive study on the fatigue behaviour of polymeric bone scaffolds. The fatigue failure in polymeric scaffolds is discussed and the impact of material properties, topological features, loading conditions, and environmental factors are also examined. The present review also provides insight into the fatigue damage evolution within polymeric scaffolds, drawing comparisons to the behaviour observed in natural bone. Additionally, the effect of polymer microstructure, incorporating reinforcing materials, the introduction of topological features, and hydrodynamic/corrosive impact of body fluids in the fatigue life of scaffolds are discussed. Understanding these parameters is crucial for enhancing the fatigue resistance of polymeric scaffolds and holds promise for expanding their application in clinical settings as structural biomaterials. STATEMENT OF SIGNIFICANCE: Polymers have promising advantages for bone tissue engineering, including adjustable degradation rates, compatibility with native bone stiffness, ease of fabrication, and low toxicity. However, their limited mechanical strength has hindered their use in load-bearing scaffolds for clinical applications. While prior studies have addressed static behaviour of polymeric scaffolds, a comprehensive review of their fatigue performance is lacking. This review explores this gap, addressing fatigue characteristics, failure mechanisms, and the influence of parameters like material properties, topological features, loading conditions, and environmental factors. It also examines microstructure, reinforcement materials, pore architectures, body fluids, and tissue ingrowth effects on fatigue behaviour. A significant emphasis is placed on understanding fatigue damage progression in polymeric scaffolds, comparing it to natural bone behaviour.
Collapse
Affiliation(s)
- Hamed Bakhtiari
- Center for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Alireza Nouri
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Mehrdad Khakbiz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Ave., PO Box 14395-1561, Tehran, Iran
| | - Majid Tolouei-Rad
- Center for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
27
|
da Silva TS, Horvath-Pereira BDO, da Silva-Júnior LN, Tenório Fireman JVB, Mattar M, Félix M, Buchaim RL, Carreira ACO, Miglino MA, Soares MM. Three-Dimensional Printing of Graphene Oxide/Poly-L-Lactic Acid Scaffolds Using Fischer-Koch Modeling. Polymers (Basel) 2023; 15:4213. [PMID: 37959893 PMCID: PMC10648465 DOI: 10.3390/polym15214213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Accurately printing customizable scaffolds is a challenging task because of the complexity of bone tissue composition, organization, and mechanical behavior. Graphene oxide (GO) and poly-L-lactic acid (PLLA) have drawn attention in the field of bone regeneration. However, as far as we know, the Fischer-Koch model of the GO/PLLA association for three-dimensional (3D) printing was not previously reported. This study characterizes the properties of GO/PLLA-printed scaffolds in order to achieve reproducibility of the trabecula, from virtual planning to the printed piece, as well as its response to a cell viability assay. Fourier-transform infrared and Raman spectroscopy were performed to evaluate the physicochemical properties of the nanocomposites. Cellular adhesion, proliferation, and growth on the nanocomposites were evaluated using scanning electron microscopy. Cell viability tests revealed no significant differences among different trabeculae and cell types, indicating that these nanocomposites were not cytotoxic. The Fischer Koch modeling yielded satisfactory results and can thus be used in studies directed at diverse medical applications, including bone tissue engineering and implants.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Bianca de Oliveira Horvath-Pereira
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Leandro Norberto da Silva-Júnior
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - João Víctor Barbosa Tenório Fireman
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Michel Mattar
- Instituto de Reabilitação Oro Facial Osteogenesis S/S LTDA, Vila Olimpia 04532-060, SP, Brazil;
| | - Marcílio Félix
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil;
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ana Claudia Oliveira Carreira
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Maria Angelica Miglino
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil;
| | - Marcelo Melo Soares
- Instituto de Reabilitação Oro Facial Osteogenesis S/S LTDA, Vila Olimpia 04532-060, SP, Brazil;
| |
Collapse
|