1
|
Wood J, Palms D, Luu QT, Vasilev K, Bright R. Investigating Simulated Cellular Interactions on Nanostructured Surfaces with Antibacterial Properties: Insights from Force Curve Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:462. [PMID: 40137635 PMCID: PMC11944641 DOI: 10.3390/nano15060462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
This study investigates the simulation of interactions between cells and antibacterial nanostructured surfaces. Understanding the physical interaction forces between cells and nanostructured surfaces is crucial for developing antibacterial materials, yet existing physical models are limited. Force simulation studies can simplify analysis by focusing on mechanical interactions while disregarding factors such as bacterial deformation and complex biochemical signals. To simulate these interactions, Atomic Force Microscopy (AFM) was employed to generate force curves, allowing precise monitoring of the interaction between a 5 µm spherical cantilever tip and titanium alloy (Ti6Al4V) surfaces. AFM uniquely enables customized approaches and retraction cycles, providing detailed insights into attractive-repulsive forces across different surface morphologies. Two nanostructured surfaces, created via hydrothermal etching using KOH and NaOH, were compared to a Ti6Al4V control surface. Results demonstrated significant changes in nanomechanical properties due to surface chemistry and morphology. The Ti6Al4V control surface exhibited a 44 ± 5 N/m stiffness, which decreased to 20 ± 3 N/m on KOH-etched nanostructured (NS) surfaces and 29 ± 4 N/m on NaOH-etched NS surfaces. Additionally, surface energy decreased by magnitude on nanostructured surfaces compared to the control. The nature of interaction forces also varied: short-range forces were predominant on KOH-etched surfaces, while NaOH-etched surfaces exhibited stronger long-range forces. These findings provide valuable insights into how nanostructure patterning influences cell-like interactions, offering potential applications in antibacterial surface design. By tailoring nanomechanical properties through specific etching techniques, biomaterial performance can be optimized for clinical applications, enhancing antibacterial efficacy and reducing microbial adhesion.
Collapse
Affiliation(s)
- Jonathan Wood
- Academic Unit of STEM, University of South Australia, Adelaide, SA 5095, Australia;
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.P.); (Q.T.L.); (K.V.)
| | - Quan Trong Luu
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.P.); (Q.T.L.); (K.V.)
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.P.); (Q.T.L.); (K.V.)
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.P.); (Q.T.L.); (K.V.)
| |
Collapse
|
2
|
Fischer NG, de Souza Araújo IJ, Daghrery A, Yu B, Dal-Fabbro R, Dos Reis-Prado AH, Silikas N, Rosa V, Aparicio C, Watts DC, Bottino MC. Guidance on biomaterials for periodontal tissue regeneration: Fabrication methods, materials and biological considerations. Dent Mater 2025; 41:283-305. [PMID: 39794220 DOI: 10.1016/j.dental.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Regeneration of the multiple tissues and interfaces in the periodontal complex necessitates multidisciplinary evaluation to establish structure/function relationships. This article, an initiative of the Academy of Dental Materials, provides guidance for performing chemical, structural, and mechanical characterization of materials for periodontal tissue regeneration, and outlines important recommendations on methods of testing bioactivity, biocompatibility, and antimicrobial properties of biomaterials/scaffolds for periodontal tissue engineering. First, we briefly summarize periodontal tissue engineering fabrication methods. We then highlight critical variables to consider when evaluating a material for periodontal tissue regeneration, and the fundamental tests used to investigate them. The recommended tests and designs incorporate relevant international standards and provide a framework for characterizing newly developed materials focusing on the applicability of those tests for periodontal tissue regeneration. The most common methods of biofabrication (electrospinning, injectable hydrogels, fused deposition modelling, melt electrowriting, and bioprinting) and their specific applications in periodontal tissue engineering are reviewed. The critical techniques for morphological, chemical, and mechanical characterization of different classes of materials used in periodontal regeneration are then described. The major advantages and drawbacks of each assay, sample sizes, and guidelines on specimen preparation are also highlighted. From a biological standpoint, fundamental methods for testing bioactivity, the biocompatibility of materials, and the experimental models for testing the antimicrobial potential are included in this guidance. In conclusion, researchers performing studies on periodontal tissue regeneration will have this guidance as a tool to assess essential properties and characteristics of their materials/scaffold-based strategies.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, KSA; Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Conrado Aparicio
- BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politènica de Catalunya, Barcelona 08010, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; SCOI - Study and Control of Oral Infections, Faculty of Odontology, UIC Barcelona-Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; IBEC - Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Ma J, Zhai Y, Ren X, Wu H, Yang M, Chai L, Chen J. Transformative insights in breast cancer: review of atomic force microscopy applications. Discov Oncol 2025; 16:256. [PMID: 40021496 PMCID: PMC11871204 DOI: 10.1007/s12672-025-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
Breast cancer remains one of the foremost global health concerns, highlighting the urgent need for innovative diagnostic and therapeutic strategies. Traditional imaging techniques, such as mammography and ultrasound, play essential roles in clinical practice; however, they often fall short in detecting early-stage tumors and providing comprehensive insights into the mechanical properties of cancer cells. In this context, Atomic Force Microscopy (AFM) has emerged as a transformative tool in breast cancer research, owing to its high-resolution imaging capabilities and nanomechanical characterization. This review explores recent advancements in AFM technology as applied to breast cancer research, emphasizing key findings that include the differentiation of various stages of tumor progression through high-resolution imaging, precise characterization of mechanical properties, and the capability for single-cell analysis. These capabilities not only enhance our understanding of tumor heterogeneity but also reveal potential biomarkers for early detection and therapeutic targets. Furthermore, the review critically examines several challenges and limitations associated with the application of AFM in breast cancer research. Issues such as complexities in sample preparation, accessibility, and the cost of AFM technology are discussed. Despite these challenges, the potential of AFM to transform our understanding of breast cancer biology is significant. Looking ahead, continued advancements in AFM technology promise to deepen our insights into breast cancer biology and guide innovative therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Jiamin Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China.
| | - Yuanyuan Zhai
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Xiaoyi Ren
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Huifang Wu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Mengjie Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Lijun Chai
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China.
| | - Jianzhong Chen
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Wang X, Yu H, Liu D, Hu B, Zhang R, Hu L, Hu G, Li C. The application of nanomaterials in tumor therapy based on the regulation of mechanical properties. NANOSCALE 2024; 16:13386-13398. [PMID: 38967103 DOI: 10.1039/d4nr01812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Mechanical properties, as crucial physical properties, have a significant impact on the occurrence, development, and metastasis of tumors. Regulating the mechanical properties of tumors to enhance their sensitivity to radiotherapy and chemotherapy has become an important strategy in the field of cancer treatment. Over the past few decades, nanomaterials have made remarkable progress in cancer therapy, either based on their intrinsic properties or as drug delivery carriers. However, the investigation of nanomaterials of mechanical regulation in tumor therapy is currently in its initial stages. The mechanical properties of nanomaterials themselves, drug carrier targeting, and regulation of the mechanical environment of tumor tissue have far-reaching effects on the efficient uptake of drugs and clinical tumor treatment. Therefore, this review aims to comprehensively summarize the applications and research progress of nanomaterials in tumor therapy based on the regulation of mechanical properties, in order to provide strong support for further research and the development of treatment strategies in this field.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| | - Hongxi Yu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| | - Dan Liu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| | - Boxian Hu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| | - Ruihang Zhang
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| | - Lihua Hu
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Guiping Hu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| | - Cheng Li
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Tavangar A, Premnath P, Tan B, Venkatakrishnan K. Antifouling nanoplatform for controlled attachment of E. coli. Biomed Mater 2024; 19:045019. [PMID: 38772388 DOI: 10.1088/1748-605x/ad4e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Biofouling is the most common cause of bacterial contamination in implanted materials/devices resulting in severe inflammation, implant mobilization, and eventual failure. Since bacterial attachment represents the initial step toward biofouling, developing synthetic surfaces that prevent bacterial adhesion is of keen interest in biomaterials research. In this study, we develop antifouling nanoplatforms that effectively impede bacterial adhesion and the consequent biofilm formation. We synthesize the antifouling nanoplatform by introducing silicon (Si)/silica nanoassemblies to the surface through ultrafast ionization of Si substrates. We assess the effectiveness of these nanoplatforms in inhibitingEscherichia coli(E. coli) adhesion. The findings reveal a significant reduction in bacterial attachment on the nanoplatform compared to untreated silicon, with bacteria forming smaller colonies. By manipulating physicochemical characteristics such as nanoassembly size/concentration and nanovoid size, we further control bacterial attachment. These findings suggest the potential of our synthesized nanoplatform in developing biomedical implants/devices with improved antifouling properties.
Collapse
Affiliation(s)
- Amirhossein Tavangar
- Department of Mathematics, Research Skills and Analysis, Humber College Institute of Technology, 205 Humber College Boulevard, Toronto, ON M9W 5L7, Canada
| | - Priyatha Premnath
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Wisconsin, 3200 North Cramer Street, Milwaukee, WI 53211, United States of America
| | - Bo Tan
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 36 Queen Street East, Toronto, ON M5B 1W8, Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 36 Queen Street East, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
6
|
Alsmael MA, Al-Khafaji AM. Evaluation of High-Performance Polyether Ether Ketone Polymer Treated with Piranha Solution and Epigallocatechin-3-Gallate Coating. BIOMED RESEARCH INTERNATIONAL 2024; 2024:1741539. [PMID: 38628498 PMCID: PMC11019569 DOI: 10.1155/2024/1741539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Background Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.
Collapse
Affiliation(s)
- Mohammed A. Alsmael
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
7
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
8
|
Wood J, Bright R, Palms D, Barker D, Vasilev K. Damage Behavior with Atomic Force Microscopy on Anti-Bacterial Nanostructure Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:253. [PMID: 38334525 PMCID: PMC10857006 DOI: 10.3390/nano14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
The atomic force microscope is a versatile tool for assessing the topography, friction, and roughness of a broad spectrum of surfaces, encompassing anti-bacterial nanostructure arrays. Measuring and comparing all these values with one instrument allows clear comparisons of many nanomechanical reactions and anomalies. Increasing nano-Newton-level forces through the cantilever tip allows for the testing and measuring of failure points, damage behavior, and functionality under unfavorable conditions. Subjecting a grade 5 titanium alloy to hydrothermally etched nanostructures while applying elevated cantilever tip forces resulted in the observation of irreversible damage through atomic force microscopy. Despite the damage, a rough and non-uniform morphology remained that may still allow it to perform in its intended application as an anti-bacterial implant surface. Utilizing an atomic force microscope enables the evaluation of these surfaces before their biomedical application.
Collapse
Affiliation(s)
- Jonathan Wood
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Dan Barker
- Corin Australia, Sydney, NSW 2153, Australia;
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|