1
|
Mao YA, Shi X, Sun P, Spanos M, Zhu L, Chen H, Wang X, Su C, Jin Y, Wang X, Chen X, Xiao J. Nanomedicines for cardiovascular diseases: Lessons learned and pathways forward. Biomaterials 2025; 320:123271. [PMID: 40117750 DOI: 10.1016/j.biomaterials.2025.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.
Collapse
Affiliation(s)
- Yi-An Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiaozhou Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pingyuan Sun
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiya Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yanjia Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou, 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Song CY, Huang HZ, Yan TT, Cui CX, Wu HY, Chen J, Peng JH, Chen NY, Tang J, Pan SL. Downregulation of miR-27a-3p induces endothelial injury and senescence and its significance in the development of coronary heart disease. Cell Signal 2025; 131:111759. [PMID: 40147550 DOI: 10.1016/j.cellsig.2025.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
miR-27a-3p is a multifunctional miRNA that plays a critical role in the process of angiogenesis. However, its specific effect on coronary heart disease (CHD), particularly on the regulation of downstream molecules and the resulting impact on endothelial cell injury, has not yet been fully elucidated. This study aimed to explore the relationship between miR-27a-3p and CHD and its underlying mechanical molecular pathways in CHD patients and modeled endothelial cells with techniques such as RT-qPCR, RNA sequencing and bioinformatics. Consequently, the expression of miR-27a-3p was significantly decreased in CHD patients. In endothelial cells, overexpression of miR-27a-3p was observed to decrease malonaldehyde, gamma H2A histone family member X and interleukin 6 while increased superoxide dismutase, thus reduced endothelial injury and senescence. RNA sequencing and bioinformatics revealed glutamate ionotropic receptor NMDA type subunit 2D (GRIN2D) as a target gene of miR-27a-3p, and dual luciferase assays confirmed the direct binding of miR-27a-3p to the 3'UTR of GRIN2D. Subsequent validation experiments demonstrated that miR-27a-3p inhibited the protein expression of GRIN2D and PKC and suppressed the activation of the MAPK/ERK signaling pathway by reduced downstream MEK and ERK phosphorylation, leading to enhanced endothelial apoptosis. In conclusion, miR-27a-3p played a crucial role in regulating endothelial cell dysfunction which may trigger coronary atherosclerosis and CHD by targeting GRIN2D in the PKC/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Chong-Yang Song
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Hai-Zhen Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Ting-Ting Yan
- Department of General Geriatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chen-Xi Cui
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Department of pathology, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning 530022, Guangxi, China
| | - Hua-Yu Wu
- Experimental Center for Medicine, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning 530022, Guangxi, China
| | - Jing Chen
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Biobank, Department of Scientific Research, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530022, Guangxi, China
| | - Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Ning-Yuan Chen
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jun Tang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
3
|
Ni P, Dai L, Li H, Sun J, Zhu Y, Lv X. Expression level and clinical significance of IL-29 in serum of patients with coronary heart disease. J Cardiothorac Surg 2025; 20:249. [PMID: 40448200 DOI: 10.1186/s13019-025-03490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 05/18/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is a chronic inflammatory disease carrying high morbidity and mortality. Interleukin (IL)-29 may be used as a biomarker for autoimmune diseases. This paper investigates the diagnostic value of serum IL-29 in CHD patients. METHODS A total of 90 CHD patients (39 mild and 51 severe patients) and 90 controls were included. Serum IL-29 levels were detected by ELISA, and the diagnostic value of IL-29 in CHD was analyzed by ROC curve. According to the median value of serum IL-29 level, CHD patients were categorized into IL-29 low-level group and high-level group. The correlation between IL-29 and pathological indexes of CHD patients was analyzed by chi-square test. SYNTAX score was used to classify CHD patients into mild CHD and moderate/severe CHD. Pearson coefficient analyzed the correlation between IL-29 and CHD severity. Multivariate logistic regression analyzed the risk factors for CHD exacerbation. RESULTS IL-29 serum levels were elevated in CHD patients. The AUC for CHD diagnosis by serum IL-29 was 0.789 (65.6% sensitivity and 76.7% specificity). IL-29 was correlated with BMI, PHASE score, and CRP. IL-29 serum level was positively correlated with CHD severity. The AUC for differentiating mild and moderate/severe CHD patients by IL-29 level was 0.739 (70.6% sensitivity and 66.7% specificity). IL-29 was an independent risk factor for CHD exacerbation, and each one-unit increase in IL-29 increased the risk of exacerbation in CHD patients by 1.065-fold. CONCLUSION IL-29 is highly expressed in CHD patients and has auxiliary diagnostic value for CHD.
Collapse
Affiliation(s)
- Ping Ni
- Department of Cardiology, The Third People's Hospital of Kunshan, Kunshan, 215300, China
| | - Liming Dai
- Department of Cardiology, The Third People's Hospital of Kunshan, Kunshan, 215300, China
| | - Hai Li
- Department of Cardiology, The Third People's Hospital of Kunshan, Kunshan, 215300, China
| | - Jun Sun
- Department of Cardiology, The Third People's Hospital of Kunshan, Kunshan, 215300, China
| | - Yicheng Zhu
- Department of Cardiology, The Third People's Hospital of Kunshan, Kunshan, 215300, China
| | - Xiaolei Lv
- Department of Cardiology, The First People's Hospital of Kunshan, No. 566 East Qianjin Road, Kunshan, 215300, Jiangsu, China.
| |
Collapse
|
4
|
Li YC, Zhang TR, Zhang F, Cui CQ, Yang YT, Hao JG, Wang JR, Wu J, Gao HW, Liu YB, Luo MZ, Lei LJ. Development and validation of a carotid plaque risk prediction model for coal miners. Front Cardiovasc Med 2025; 12:1490961. [PMID: 40416817 PMCID: PMC12098412 DOI: 10.3389/fcvm.2025.1490961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
Objective Carotid plaque represents an independent risk factor for cardiovascular disease and a significant threat to human health. The aim of the study is to develop an accurate and interpretable predictive model for early detection the occurrence of carotid plaque. Methods A cross-sectional study was conducted by selecting coal miners who participated in medical examinations from October 2021 to January 2022 at a hospital in North China. The features were initially screened using extreme gradient boosting (XGBoost), random forest, and LASSO regression, and the model was subsequently constructed using logistic regression. The three models were then compared, and the optimum model was identified. Finally, a nomogram was plotted to increase its interpretability. Results The XGBoost algorithm demonstrated superior performance in feature screening, identifying the top five features as follows: age, systolic blood pressure, low-density lipoprotein cholesterol, white blood cell count, and body mass index (BMI). The area under the curve (AUC), sensitivity, and specificity of the model constructed based on the XGBoost algorithm were 0.846, 0.867, and 0.702, respectively. Conclusions It is possible to predict the presence of carotid plaque using machine learning. The model has high application value and can better predict the risk of carotid artery plaque in coal miners. Furthermore, it provides a theoretical basis for the health management of coal miners.
Collapse
Affiliation(s)
- Yi-Chun Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tie-Ru Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chao-Qun Cui
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu-Tong Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Guang Hao
- Department of Occupational Diseases and Poisoning, The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Jian-Ru Wang
- Department of Medical and Education, The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Jiao Wu
- Department of Medical and Education, The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Hai-Wang Gao
- Peking University Medical Lu'an Hospital Health Management Center, Changzhi, Shanxi, China
| | - Ying-Bo Liu
- Peking University Medical Lu'an Hospital Health Management Center, Changzhi, Shanxi, China
| | - Ming-Zhong Luo
- Office of the President, The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Li-Jian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Wang W, Xu D, Ding J, Pan Y, Wang F, Su S, Peng X, Zhang S, Zhang W. Nanotechnology Innovations in Myocardial Infarction: Diagnosis, Treatment and the Way Forward. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10614-1. [PMID: 40205317 DOI: 10.1007/s12265-025-10614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Myocardial infarction (MI) is a global health concern that necessitates continued advancements in diagnostic and therapeutic modalities. Nanotechnology facilitates prompt diagnosis and personalized treatment. This manuscript explicitly reviews the application of innovative methodologies for identifying cardiac biomarkers to facilitate the early diagnosis of MI and its clinical management. Nanoscale agents such as nanoparticles and nanosensors have been employed for this purpose. Technological advancements in medical imaging are revolutionizing therapeutic approaches while reducing morbidity and mortality typically associated with cardiac tissue injury. Besides all, applications of nanotechnology in therapeutics have proven extremely effective. The development of nanoparticle-based customized drug delivery systems will contribute to more effective treatments, fewer side effects, and improved therapeutic outcomes. Biomaterials and nanoscale surgical technologies may benefit patients with MI by promoting tissue regeneration and repair. This manuscript also investigates the ethical and legal limitations that could prevent seamless incorporation of nanotechnology into clinical practice.
Collapse
Affiliation(s)
- Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yinping Pan
- Department of Pediatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Shu Su
- Department of Medical Laboratory, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Shitong Zhang
- Department of Neurology I, Qian Wei Hospital of Jilin Province, Changchun, 130012, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China.
| |
Collapse
|
6
|
Zhang X, Yang L, Feng K, Zhang H, Chen Y, Li W, Wang X, Zhang M, Wu Y, Wei S, Zheng Y, Meng G, Meng W, Chen X, Tang J. Shuxuening injection improves myocardial injury after myocardial infarction by regulating macrophage polarization via the TLR4/NF-κB and PI3K/Akt signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156418. [PMID: 39879705 DOI: 10.1016/j.phymed.2025.156418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Macrophage activation and polarization play pivotal roles in the inflammatory response and myocardial injury associated with myocardial infarction (MI). Modulating macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is a promising therapeutic approach for MI. Shuxuening injection (SXNI) is extensively utilized in clinical settings for MI treatment and has demonstrated therapeutic efficacy. However, the effects of SXNI on macrophage polarization post-MI and its underlying mechanisms remain insufficiently understood. AIM OF THE STUDY This study is aimed to evaluate the effects of SXNI on macrophage polarization following MI and to elucidate its potential mechanisms of action. METHODS A rat model of MI was established by ligation of the left anterior descending coronary artery. The cardioprotective effects of SXNI were assessed through echocardiography, TTC staining, Masson's trichrome staining, HE staining, TUNEL staining, and western blotting (WB). Macrophage polarization was evaluated using ELISA, immunofluorescence staining, and WB. An in vitro model of oxygen-glucose deprivation (OGD) was utilized to simulate MI in macrophages, and qRT-PCR was employed to examine M1/M2 polarization markers. UPLC-Q-TOF/MS was used to identify active components in SXNI. Network pharmacology analysis and molecular docking were utilized to predict the key targets and pathways, which were subsequently validated through WB and immunohistochemistry. RESULTS SXNI improved cardiac function, reduced infarct size, and attenuated myocardial tissue damage and apoptosis in MI rats. Staining analyses indicated a reduction in M1 macrophages (CD86+/CD68+) and an increase in M2 macrophages (CD206+/CD68+) in SXNI-treated animals. In vivo and in vitro experiments demonstrated that SXNI decreased M1 markers and pro-inflammatory cytokines levels while increasing M2 markers and the production of anti-inflammatory and pro-angiogenic cytokines. UPLC-Q-TOF/MS analysis identified 18 active components in SXNI. Network pharmacology analysis and molecular docking implicated the TLR4/NF-κB and PI3K/Akt pathways as central mechanisms, which were further confirmed by WB and immunohistochemistry. SXNI inhibited the expression of TLR4 and phosphorylated NF-κB while enhancing phosphorylated PI3 K and Akt levels. CONCLUSIONS SXNI modulates the TLR4/NF-κB and PI3K/Akt signaling pathways to promote the polarization of macrophages from the M1 to the M2 phenotype, thereby alleviating myocardial inflammation and injury. These findings provide a scientific basis for the clinical application of SXNI in MI management, and establish a scientific foundation for exploring novel therapeutic strategies for cardiovascular diseases based on macrophage polarization.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Liuqing Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
| | - Kairui Feng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Hui Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Yulong Chen
- College of pharmaceutical engineering of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weixia Li
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Xiaoyan Wang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Mingliang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Yali Wu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Shiting Wei
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Yajuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Gaoquan Meng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Weiting Meng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Xiaofei Chen
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
| | - Jinfa Tang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China.
| |
Collapse
|
7
|
Miaomiao S, Jiaqi Z, Xiaomeng L, Shanshan L, Jie W, Kaicheng L, Mei J, Ming S. Myocardial intramural course may reduce left ventricular ejection fraction of patients suffering from coronary heart disease. Front Cardiovasc Med 2025; 12:1451173. [PMID: 40083823 PMCID: PMC11903404 DOI: 10.3389/fcvm.2025.1451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Background Myocardial intramural course (MIC), a benign anatomical lesion, is an abnormal anatomical structure formed due to abnormal blood vessel routing. An increasing number of studies indicate that MIC is associated with coronary heart disease (CHD). However, it remains unclear whether MIC contributes to cardiac function impairment in patients with CHD. Thus, this study is to observe the association between MIC and cardiac function in patients with CHD. Methods All participants were recruited from the Department of Cardiology, Peking University People's Hospital from August 2022 to September 2023. A total of 126 patients were diagnosed with MIC by coronary angiography and/or coronary CT angiography. Among them, a total of 39 patients diagnosed with MIC and CHD were enrolled in the MIC-CHD group. Sixty cases of monthly stratified CHD patients were randomly selected, into the CHD group as controls. Results The left ventricular ejection fraction (LVEF) of patients in the MIC-CHD group was lower than that in the CHD group (0.62 vs. 0.67, p = 0.0153). LVEF in patients of MIC-CHD was negatively correlated with the systolic stenosis degree of mural coronary artery (MCA) (r = -0.6474, p = 0.0123) and MIC length (r = -0.5712, p = 0.0414). Conclusions The combination of MIC in patients with CHD may contribute to the reduction of LVEF, whereas MIC length and the systolic stenosis degree of MCA were negatively correlated with LVEF.
Collapse
Affiliation(s)
- Shi Miaomiao
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Zheng Jiaqi
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Li Xiaomeng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Li Shanshan
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wang Jie
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Liu Kaicheng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jia Mei
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Su Ming
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
8
|
Gorjipour F, Bohloolighashghaei S, Sotoudeheian M, Pazoki Toroudi H. Fetal adnexa-derived allogeneic mesenchymal stem cells for cardiac regeneration: the future trend of cell-based therapy for age-related adverse conditions. Hum Cell 2025; 38:61. [PMID: 39998714 DOI: 10.1007/s13577-025-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Heart failure is known as the leading cause of mortality and morbidity in adults, not only in USA but worldwide. Since the world's population is aging, the burden of cardiovascular disorders is increasing. Mesenchymal stem/stromal cells (MSCs) from a patient's bone marrow or other tissues have been widely used as the primary source of stem cells for cellular cardiomyoplasty. The incongruencies that exist between various cell-therapy approaches for cardiac diseases could be attributed to variations in cell processing methods, quality of the process, and cell donors. Off-the-shelf preparations of MSCs, enabled by batch processing of the cells and controlled cell processing factories in regulated facilities, may offer opportunities to overcome these problems. In this study, for the first time, we focused on the fetal membranes and childbirth byproducts as a promising source of cells for regenerative medicine. While many studies have described the advantages of cells derived from these organs, their advantage as a source of younger cells has not been sufficiently covered by the literature. Thus, herein, we highlight challenges that may arise from the impairment of the regenerative capacity of MSCs due to donor age and how allograft cells from fetal adnexa can be a promising substitute for the aged patients' stem cells for myocardial regeneration. Moreover, obstacles to the use of off-the-shelf cell-therapy preparations in regenerative medicine are briefly summarized here.
Collapse
Affiliation(s)
- Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamidreza Pazoki Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Yang H, Li J, Song C, Li H, Luo Q, Chen M. Emerging Gene Therapy Based on Nanocarriers: A Promising Therapeutic Alternative for Cardiovascular Diseases and a Novel Strategy in Valvular Heart Disease. Int J Mol Sci 2025; 26:1743. [PMID: 40004206 PMCID: PMC11855571 DOI: 10.3390/ijms26041743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular disease remains a leading cause of global mortality, with many unresolved issues in current clinical treatment strategies despite years of extensive research. Due to the great progress in nanotechnology and gene therapy in recent years, the emerging gene therapy based on nanocarriers has provided a promising therapeutic alternative for cardiovascular diseases. This review outlines the status of nanocarriers as vectors in gene therapy for cardiovascular diseases, including coronary heart disease, pulmonary hypertension, hypertension, and valvular heart disease. It discusses challenges and future prospects, aiming to support emerging clinical treatments. This review is the first to summarize gene therapy using nanocarriers for valvular heart disease, highlighting their potential in targeting challenging tissues.
Collapse
Affiliation(s)
- Haoran Yang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengxiang Song
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Hongde Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Qiang Luo
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Cheng N, Luo Q, Yang Y, Shao N, Nie T, Deng X, Chen J, Zhang S, Huang Y, Hu K, Luo L, Xiao Z. Injectable pH Responsive Conductive Hydrogel for Intelligent Delivery of Metformin and Exosomes to Enhance Cardiac Repair after Myocardial Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410590. [PMID: 39965141 DOI: 10.1002/advs.202410590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/23/2024] [Indexed: 02/20/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a leading cause of complications and high mortality associated with acute myocardial infarction. Injectable hydrogel emerges as a promising biomaterial for myocardial repair due to their ability to mimic the mechanical and electrophysiological properties of heart tissue. In this study, an injectable conductive hydrogel is developed that responds to the weakly acidic microenvironment of ischemic injury, enabling the intelligent release of metformin and exosomes to enhance cardiac repair following MIRI. This multifunctional hydrogel demonstrates self-healing properties, shear-thinning injectability, electrical conductivity, and an elastic modulus comparable to natural myocardium, alongside excellent biocompatibility. At the cellular level, the hydrogel system exhibits significant antioxidant, anti-apoptotic, improvement of electrophysiological characteristics, mitochondrial protection and angiogenic effects, with transcriptome sequencing revealing the effective activation of the PI3K/AKT, VEGF, and AMPK signaling pathways. In vivo studies further confirm that the hydrogel treatment reduces infarct size, cardiac fibrosis and incidence of arrhythmia, while improving ventricular ejection fraction and facilitating the restoration of cardiac function after MIRI. In conclusion, an injectable pH-responsive conductive hydrogel is presented that enables the intelligent delivery of metformin and exosomes, offering a promising and novel therapeutic approach for enhancing cardiac repair and treating MIRI.
Collapse
Affiliation(s)
- Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Tianqi Nie
- Central laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liangping Luo
- Department of Radiology and Nuclear Medicine, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
11
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [DOI: https:/doi.org/10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 05/15/2025]
Abstract
Background:
Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality,
necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a
promising frontier in addressing the complexities of CVDs.
Objective:
This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications
in therapeutics and diagnostics.
Observations:
In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such
as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes,
nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with
minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration
of multifunctional components, such as therapeutic agents and target ligands, into a single system for
comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and
monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac
biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further,
nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization
of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution
imaging and aid in the visualization of cardiovascular structures and abnormalities.
Conclusion:
The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular
healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection
for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand,
Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah,
Saudi Arabia
| |
Collapse
|
12
|
Wan W, Zhou J, Ha X, Han C. Application of nanoultrasonography in early diagnosis of coronary heart disease. Nanomedicine (Lond) 2025; 20:79-89. [PMID: 39639651 DOI: 10.1080/17435889.2024.2435255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Coronary heart disease (CHD) remains one of the leading causes of mortality and disability globally. In recent years, nanoultrasonography technology has demonstrated significant potential in both the diagnosis and treatment of CHD. This review summarizes the latest research advancements in nanoultrasonography within the field of coronary heart disease, focusing on its applications in early diagnosis, targeted drug delivery, imaging techniques, and treatment strategies. We explore the working principles of nanoultrasonography, its technological advantages, and the challenges faced in clinical applications. The aim is to provide guidance for future research and clinical practice in this promising area.
Collapse
Affiliation(s)
- Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Jianmin Zhou
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoming Ha
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Han
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
13
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [PMID: 39506444 DOI: 10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs. OBJECTIVE This study aims to explore the interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics. OBSERVATIONS In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, Nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities. CONCLUSION The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand, Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Guan J, Wang Y, Dong C, Chen Y, Li B, Zhou Y, Huang F, Sun P, Tian X, Ran F, Lv J. The Impact of the Triglyceride-Glucose Index on the Development of Depression in Patients with Coronary Atherosclerotic Heart Disease. Neuropsychiatr Dis Treat 2024; 20:2105-2113. [PMID: 39554544 PMCID: PMC11566584 DOI: 10.2147/ndt.s484745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Background Depression is common among patients with coronary atherosclerotic heart disease and is a prevalent mental health issue, particularly among those with cardiovascular diseases. Depression is commonly associated with elevated blood glucose and lipid levels. The triglyceride-glucose index is a novel indicator reflecting insulin resistance, which has been proven in numerous studies to be associated with cardiovascular diseases. Purpose Study on the impact of the triglyceride-glucose index (TyG index) on the development of depression in patients with coronary atherosclerotic heart disease (CHD). Patients and methods Using the Patient Health Questionnaire-9 (PHQ-9), 197 CHD patients were classified into a non-depressed group (n = 44, PHQ-9 < 5) and a depressed group (n = 153, PHQ-9 ≥ 5). Fasting blood glucose (GLU), HDL, total cholesterol (TC), LDL, triglycerides (TG), and TyG index were compared between groups. Depression risk factors were identified via logistic regression, and the predictive value of TyG index was evaluated using ROC analysis. Results In depressed patients, TyG index, TG, TC, LDL, and GLU were significantly higher, while HDL was lower than in the non-depressed group (p < 0.05). Logistic regression identified TyG index, LDL, GLU, TG, TC, HDL, female sex, smoking, alcohol consumption, and older age as independent risk factors for depression in CHD patients (p < 0.05). ROC analysis showed the TyG index had an AUC of 0.76 (95% CI 0.687-0.829, p < 0.001) for predicting depression, with a cutoff of 1.613, sensitivity of 45.1%, and specificity of 97.7%. Endpoint events were more frequent in the depression group (χ² = 8.015, p = 0.005). Conclusion The TyG index is an independent risk factor for depression in patients with CHD, indicating a significant predictive value. Depressed patients have a higher rate of readmission, and managing depression effectively contributes to better prognosis.
Collapse
Affiliation(s)
- Jing Guan
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Yue Wang
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Changjun Dong
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Yuwen Chen
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Bingqing Li
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Yilu Zhou
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Fanke Huang
- ChinaThree Gorges University, Yichang, People’s Republic of China
| | - Peiyuan Sun
- ChinaThree Gorges University, Yichang, People’s Republic of China
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, People’s Republic of China
| | - Xue Tian
- ChinaThree Gorges University, Yichang, People’s Republic of China
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, People’s Republic of China
| | - Feng Ran
- ChinaThree Gorges University, Yichang, People’s Republic of China
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, People’s Republic of China
| | - Jianfeng Lv
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, People’s Republic of China
| |
Collapse
|
15
|
Hou Y, Li Y, Zhang Y, Zhang J, Wu D. Current status and future directions of nanovaccine for cancer: a bibliometric analysis during 2004-2023. Front Immunol 2024; 15:1423212. [PMID: 39136021 PMCID: PMC11317272 DOI: 10.3389/fimmu.2024.1423212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Nanovaccine treatment is an exciting area of research in immunology and personalized medicine, holding great promise for enhancing immune responses and targeting specific diseases. Their small size allows efficient uptake by immune cells, leading to robust immune activation. They can incorporate immune-stimulating molecules to boost vaccine efficacy. Therefore, nanovaccine can be personalized to target tumor-specific antigens, activating the immune system against cancer cells. Currently, there have been ample evidence showing the effectiveness and potential of nanovaccine as a treatment for cancer. However, there was rare bibliometric analysis of nanovaccine for cancer. Here we performed a bibliometric and visual analysis of published studies related to nanovaccine treatment for cancer, providing the trend of future development of nanovaccine. Methods We collected the literatures based on the Web of Science Core Collection SCI-Expanded database. The bibliometric analysis was performed via utilizing visualization analysis tools VOSviewer, Co-Occurrence (COOC), Citespace, Bibliometrix (R-Tool of R-Studio), and HitCite. Results A total of 517 literatures were included in this study. China is the country with the most publications and the highest total local citation score (TLCS). The Chinese Academy of Sciences holds the largest research count in this field and the most prolific author is Deling Kong from Nankai University. The most prominent journal for publishing in this area is Biomaterials. The researches mainly focus on the therapeutic process of tumor nanovaccines, the particle composition and the application of nanovaccines, suggesting the potential hotspots and trends of nanovaccine. Conclusion In this study, we summarized the characteristics and variation trends of publications involved in nanovaccine, and categorized the most influential countries, institutions, authors, journals, hotspots and trends regarding the nanovaccine for cancer. With the continuous development of nanomaterials and tumor immunotherapy, nanovaccine for cancer provides a research field of significant clinical value and potential application.
Collapse
Affiliation(s)
- Yuhui Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Youao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Juan Zhang
- Shenzhen Key Laboratory of Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
17
|
Wang H, Liu C, Guo X, Yang J, Zhou Y. Effects of modified Danggui Sini Decoction as adjuvant therapy for angina pectoris in coronary heart disease: a systematic review and meta-analysis based on randomised controlled trials. Front Pharmacol 2024; 15:1375795. [PMID: 38895625 PMCID: PMC11183329 DOI: 10.3389/fphar.2024.1375795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction This systematic review evaluates the efficacy of the Chinese herbal formula modified Danggui Sini Decoction as an adjunctive treatment for angina pectoris in patients with coronary heart disease. Methods We conducted a comprehensive search for randomized controlled trials that investigated the effects of modified Danggui Sini Decoction in combination with conventional Western medication on angina pectoris in coronary artery disease, published up to July 2023 across eight databases, including China Knowledge International Literature screening and data extraction were performed by two researchers following predefined inclusion and exclusion criteria. The quality of included studies was assessed using the Cochrane Handbook version 5.1, and meta-analysis was executed via RevMan 5.4 software. Results Thirteen studies encompassing 1,232 participants were incorporated. The meta-analysis revealed that combining modified Danggui Sini Decoction with conventional Western medication significantly enhanced overall clinical efficacy, reduced the duration of angina attacks, decreased the Chinese medicine syndrome score, improved inflammatory markers and cardiac function, lowered serum NT-proBNP levels, and elevated the Seattle Angina Questionnaire scores compared to the control group. Conclusion Modified Danggui Sini Decoction, when used alongside conventional Western medications, shows promise in treating coronary artery disease patients with angina pectoris and may serve as a beneficial adjunctive therapy in clinical settings. Nonetheless, due to the limited quantity and quality of the included studies, further high-caliber research is essential to substantiate these findings. Systematic Review Registration https://inplasy.com/? s=202390078, identifier INPLASY 202390078.
Collapse
Affiliation(s)
- He Wang
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Clinical College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Guo
- Clinical College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianfei Yang
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Zhang Y, Tan YT, Wang MJ, Li L, Huang JF, Wang SC. Bibliometric analysis of PTEN in neurodevelopment and neurodegeneration. Front Aging Neurosci 2024; 16:1390324. [PMID: 38586827 PMCID: PMC10995293 DOI: 10.3389/fnagi.2024.1390324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) was initially recognized as a significant regulator of cancer suppression and could impede cancer cell survival, proliferation, and energy metabolism. PTEN is highly expressed in neurons and performs crucial functions in neurogenesis, synaptogenesis, and neuronal survival. Disruption of PTEN activity may also result in abnormal neuronal function and is associated with various neurological disorders, including stroke, seizures, and autism. Although several studies have shown that PTEN is involved in the development and degenerative processes of the nervous system, there is still a lack of in-depth studies that summarize and analyse patterns of cooperation between authors, institutions, countries, and journals, as well as research hotspots and trends in this important field. To identify and further visualize the cooperation and comprehend the development and trends of PTEN in the nervous system, especially in neural development and neurological diseases, we used a bibliometric analysis to identify relevant publications on this topic. We first found that the number of publications displayed a growing trend with time, but this was not stable. Universities, institutions, and authors from the United States are leading in this area of research. In addition, many cutting-edge research results have been discovered, such as key regulatory molecules and cellular mechanisms of PTEN in the nervous system, which may provide novel intervention targets and precise therapeutic strategies for related pathological injuries and diseases. Finally, the literature published within the last 5 years is discussed to identify future research trends regarding PTEN in the nervous system. Taken together, our findings, analysed using bibliometrics, may reflect research hotspots and trends, providing a reference for studying PTEN in the nervous system, especially in neural development and neurological diseases. These findings can assist new researchers in developing their research interests and gaining basic information. Moreover, our findings also may provide precise clinical guidelines and strategies for treating nervous system injuries and diseases caused by PTEN dysfunction.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ya-ting Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|