1
|
Dai Q, Xu LX, Zhang A, Fowlkes JB. Study of Histotripsy With Subsequent Heating on In Vitro VX2 Cancer Cells. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:883-902. [PMID: 39840594 DOI: 10.1002/jum.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/13/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Focused ultrasound has emerged as a precise and minimally invasive modality for effective cancer treatment. In this study, we propose a novel method that integrates the mechanical effects of focused ultrasound, known as histotripsy, with heating to enhance both the immediate and sustained cytotoxic effects on cancer cells. METHODS Our investigation focused on VX2 cancer cells in suspension, examining five experimental groups: blank control, negative control, heating alone, histotripsy alone, and histotripsy with subsequent heating. B-mode ultrasound imaging was utilized to visualize cavitation bubble cloud formation and its motion during histotripsy. The suspension was contained in individually sealed compartments obtained from bubble wrap (referred to as bubble wrap compartments) embedded within the agarose phantom. Residual living cells were examined immediately after treatment and cultured for 96 hours to analyze the growth patterns. Additionally, CFDA SE staining was employed to assess cell proliferation. Furthermore, both intracellular and extracellular heat shock protein 70 (HSP70) levels were measured to investigate the potential initiation of an immune response. RESULTS The combination of histotripsy and subsequent heating significantly reduced the normalized concentration of living cells immediately after treatment. It also decreased the proliferation rate of residual cells compared with the other experimental groups. Histotripsy with subsequent heating also increased the generation and release of HSP70, which might potentially enhance an innate anti-tumor immune response in vivo. CONCLUSION Histotripsy and subsequent heating improved the immediate lethal impact on VX2 cancer cells and curtailed the proliferation of residual cancer cells in suspension. This study presents a promising strategy for cancer therapy in the future.
Collapse
Affiliation(s)
- Qizheng Dai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, Chen S, Zhao T, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Gan M. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Commun Signal 2025; 23:84. [PMID: 39948590 PMCID: PMC11827146 DOI: 10.1186/s12964-025-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Stress granules (SGs) are conserved messenger ribonucleoprotein (mRNP) granules that form through rapid coalescence in the cytoplasm of eukaryotic cells under stressful environments. These dynamic membrane-free organelles can respond to a variety of both intracellular and extracellular stressors. Studies have shown that stress conditions such as heat stress, arsenite exposure, and hypoxic stress can induce SGs formation. The formation of SGs helps mitigates the effects of environmental stimuli on cells, protects them from damage, and promotes cell survival. This paper focuses on the biogenesis of SGs and summarizes the role in regulating environmental stress-induced male reproductive disorders, with the aim of exploring SGs as a potential means of mitigating male reproduction disorders. Numerous studies have demonstrated that the detrimental effects of environmental stress on germ cells can be effectively suppressed by regulating the formation and timely disassembly of SGs. Therefore, regulating the phosphorylation of eIF2α and the assembly and disassembly of SGs could offer a promising therapeutic strategy to alleviate the impacts of environmental stress on male reproduction health.
Collapse
Affiliation(s)
- Jiaxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Iba T, Kondo Y, Maier CL, Helms J, Ferrer R, Levy JH. Impact of hyper- and hypothermia on cellular and whole-body physiology. J Intensive Care 2025; 13:4. [PMID: 39806520 PMCID: PMC11727703 DOI: 10.1186/s40560-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes. Key factors in heatstroke pathophysiology involve mitochondrial thermal damage and excessive oxidative stress, which drive apoptosis and necrosis. While the kinetics of cellular damage from heat have been extensively studied, the mechanisms driving heat-induced organ damage and death are not yet fully understood. Converse to hyperthermia, hypothermia is generally protective, as seen in therapeutic hypothermia. However, accidental hypothermia presents another environmental threat due to arrhythmias, cardiac arrest, and coagulopathy. From a cellular physiology perspective, hypothermia generally supports mitochondrial homeostasis and enhances cell preservation, aiding whole-body recovery following resuscitation. This review summarizes recent findings on temperature-related cellular damage and preservation and suggests future research directions for understanding the tempo-physiologic axis.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Yutaka Kondo
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg University Hospital, Medical Intensive Care Unit-NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Tiwari S, Joshi P, Hazarika KP, Seal P, Borah J, Fopase R, Pandey LM, Meena SS, Kumar S. Comprehensive in-vitro and magnetic hyperthermia investigation of biocompatible non-stoichiometric Zn0.5Ca0.5Fe2O4 and Mg0.5Ca0.5Fe2O4 nanoferrites on lung cancer cell lines. JOURNAL OF ALLOYS AND COMPOUNDS 2024; 972:172588. [DOI: 10.1016/j.jallcom.2023.172588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
5
|
Sarogni P, Zamborlin A, Mapanao AK, Logghe T, Brancato L, van Zwol E, Menicagli M, Giannini N, Gonnelli A, Linsalata S, Colenbier R, Van den Bossche J, Paiar F, Bogers J, Voliani V. Hyperthermia Reduces Irradiation-Induced Tumor Repopulation in an In Vivo Pancreatic Carcinoma Model. Adv Biol (Weinh) 2023; 7:e2200229. [PMID: 36861331 DOI: 10.1002/adbi.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Indexed: 03/03/2023]
Abstract
Pancreatic cancer has a poor prognosis due to its aggressive nature and ability to metastasize at an early stage. Currently, its management is still a challenge because this neoplasm is resistant to conventional treatment approaches, among which is chemo-radiotherapy (CRT), due to the abundant stromal compartment involved in the mechanism of hypoxia. Hyperthermia, among other effects, counteracts hypoxia by promoting blood perfusion and thereby can enhance the therapeutic effect of radiotherapy (RT). Therefore, the establishment of integrated treatments would be a promising strategy for the management of pancreatic carcinoma. Here, the effects of joint radiotherapy/hyperthermia (RT/HT) on optimized chick embryo chorioallantoic membrane (CAM) pancreatic tumor models are investigated. This model enables a thorough assessment of the tumor-arresting effect of the combined approach as well as the quantitative evaluation of hypoxia and cell cycle-associated mechanisms by both gene expression analysis and histology. The analysis of the lower CAM allows to investigate the variation of the metastatic behaviors of the cancer cells associated with the treatments. Overall, this study provides a potentially effective combined strategy for the non-invasive management of pancreatic carcinoma.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Forschungsstrasse, Switzerland
| | - Tine Logghe
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | | | - Eke van Zwol
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, Pisa, 56017, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, 56126, Italy
| | - Robin Colenbier
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | | | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Johannes Bogers
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, Genoa, 16148, Italy
| |
Collapse
|
6
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Barak D, Engelberg S, Assaraf YG, Livney YD. Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer-Decorated Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14081650. [PMID: 36015276 PMCID: PMC9414336 DOI: 10.3390/pharmaceutics14081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of cancer mortality remains lung cancer (LC), of which non-small cell lung cancer (NSCLC) is the predominant type. Chemotherapy achieves only low response rates while inflicting serious untoward toxicity. Herein, we studied the binding and internalization of S15-aptamer (S15-APT)-decorated polyethylene glycol-polycaprolactone (PEG-PCL) nanoparticles (NPs) by various human NSCLC cell lines. All the NSCLC cell lines were targeted by S15-APT-decorated NPs. Confocal microscopy revealed variable levels of NP binding and uptake amongst these NSCLC cell lines, decreasing in the following order: Adenocarcinoma (AC) A549 cells > H2228 (AC) > H1299 (large cell carcinoma) > H522 (AC) > H1975 (AC). Flow cytometry analysis showed a consistent variation between these NSCLC cell lines in the internalization of S15-APT-decorated quantum dots. We obtained a temperature-dependent NP uptake, characteristic of active internalization. Furthermore, cytotoxicity assays with APT-NPs entrapping paclitaxel, revealed that A549 cells had the lowest IC50 value of 0.03 µM PTX (determined previously), whereas H2228, H1299, H522 and H1975 exhibited higher IC50 values of 0.38 µM, 0.92 µM, 2.31 µM and 2.59 µM, respectively (determined herein). Cytotoxicity was correlated with the binding and internalization of APT-NPs in the various NSCLC cells, suggesting variable expression of the putative S15 target receptor. These findings support the development of APT-targeted NPs in precision nanomedicine for individual NSCLC patient treatment.
Collapse
Affiliation(s)
- Daniel Barak
- Lab of Biopolymers for Food & Health, Department of Biotechnology & Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Engelberg
- Lab of Biopolymers for Food & Health, Department of Biotechnology & Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Lab, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.G.A.); (Y.D.L.)
| | - Yoav D. Livney
- Lab of Biopolymers for Food & Health, Department of Biotechnology & Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.G.A.); (Y.D.L.)
| |
Collapse
|
8
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
9
|
5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment. Carbohydr Polym 2021; 273:118523. [PMID: 34560940 DOI: 10.1016/j.carbpol.2021.118523] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 01/10/2023]
Abstract
Magnetic polymer nanocomposites are inherently multifunctional and harbor assorted physiochemical actions for applications thereof as novel drug nanocarriers. Herein, Fe3O4-nanoparticles were supported on rice straw cellulose for 5-fluorouracil carrier abbreviated as MC/5-FU for potential colorectal cancer treatments. Several analyses indicated the multifunctional properties of MC/5-FU bionanocomposites. Transmission and scanning electron microscopy study demonstrated that Fe3O4 nanofillers covered the cellulose matrix. The drug release from MC/5-FU was evaluated under various pH and temperature conditions, showing the maximum release at pH 7.4 and 44.2 °C. In in vitro anticancer assay, MC/5-FU exhibited enhanced selectivity and anticancer actions against 2D monolayer and 3D tumour spheroid models colorectal cancer cells. The anticancer effects of MC/5-FU with magnetic targeting and heat induction were also examined. This easily synthesized MC/5-FU indicated the potential in application as a low-cost drug formulation for colorectal cancer treatments.
Collapse
|
10
|
Braude S, Varghese J. The oncoprotective fever hypothesis: Have antibiotics, antimalarials and antipyrectics contributed to the global rise in cancer over the past century? Med Hypotheses 2021; 158:110720. [PMID: 34753009 DOI: 10.1016/j.mehy.2021.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
The adaptive and therapeutic nature of fever has been recognized for centuries and both local and systemic thermotherapy are now used to enhance the effectiveness of both chemotherapy and radiation therapy for cancer. We propose that the success of antiseptic, antibiotic, antipyretic and antimalarial strategies and medications over the past century and a half may have had the unintended effect of releasing precancerous growths and neoplastic foci from the inhibitory effects of intermittent fever. This may be a previously unrecognized factor in the overall rise in cancer rates in the late 19th and early 20th centuries.
Collapse
Affiliation(s)
- S Braude
- SB Washington University, JV Cleveland Clinic, USA.
| | - J Varghese
- SB Washington University, JV Cleveland Clinic, USA
| |
Collapse
|
11
|
Responses and coping methods of different testicular cell types to heat stress: overview and perspectives. Biosci Rep 2021; 41:228844. [PMID: 34060622 PMCID: PMC8209165 DOI: 10.1042/bsr20210443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023] Open
Abstract
To facilitate temperature adjustments, the testicles are located outside the body cavity. In most mammals, the temperature of the testes is lower than the body temperature to ensure the normal progression of spermatogenesis. Rising temperatures affect spermatogenesis and eventually lead to a decline in male fertility or even infertility. However, the testes are composed of different cell types, including spermatogonial stem cells (SSCs), spermatocytes, spermatozoa, Leydig cells, and Sertoli cells, which have different cellular responses to heat stress. Recent studies have shown that using different drugs can relieve heat stress-induced reproductive damage by regulating different signaling pathways. Here, we review the mechanisms by which heat stress damages different cells in testes and possible treatments.
Collapse
|
12
|
Hyperthermia induced disruption of mechanical balance leads to G1 arrest and senescence in cells. Biochem J 2021; 478:179-196. [PMID: 33346336 DOI: 10.1042/bcj20200705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Human body temperature limits below 40°C during heat stroke or fever. The implications of prolonged exposure to the physiologically relevant temperature (40°C) on cellular mechanobiology is poorly understood. Here, we have examined the effects of heat stress (40°C for 72 h incubation) in human lung adenocarcinoma (A549), mouse melanoma (B16F10), and non-cancerous mouse origin adipose tissue cells (L929). Hyperthermia increased the level of ROS, γ-H2AX and HSP70 and decreased mitochondrial membrane potential in the cells. Heat stress impaired cell division, caused G1 arrest, induced cellular senescence, and apoptosis in all the tested cell lines. The cells incubated at 40°C for 72 h displayed a significant decrease in the f-actin level and cellular traction as compared with cells incubated at 37°C. Also, the cells showed a larger focal adhesion area and stronger adhesion at 40°C than at 37°C. The mitotic cells at 40°C were unable to round up properly and displayed retracting actin stress fibers. Hyperthermia down-regulated HDAC6, increased the acetylation level of microtubules, and perturbed the chromosome alignment in the mitotic cells at 40°C. Overexpression of HDAC6 rescued the cells from the G1 arrest and reduced the delay in cell rounding at 40°C suggesting a crucial role of HDAC6 in hyperthermia mediated responses. This study elucidates the significant role of cellular traction, focal adhesions, and cytoskeletal networks in mitotic cell rounding and chromosomal misalignment. It also highlights the significance of HDAC6 in heat-evoked senile cellular responses.
Collapse
|
13
|
Mancilla-Galindo J, Galindo-Sevilla N. Exploring the rationale for thermotherapy in COVID-19. Int J Hyperthermia 2021; 38:202-212. [PMID: 33682604 DOI: 10.1080/02656736.2021.1883127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increased transmissibility of the pandemic severe acute respiratory coronavirus 2 (SARS-CoV-2) has been noted to occur at lower ambient temperatures. This is seemingly related to a better replication of most respiratory viruses, including SARS-CoV-2, at lower-than-core body temperatures (i.e., 33 °C vs 37 °C). Also, intrinsic characteristics of SARS-CoV-2 make it a heat-susceptible pathogen. Thermotherapy has successfully been used to combat viral infections in plants which could otherwise result in great economic losses; 90% of viruses causing infections in plants are positive-sense single-stranded ribonucleic acid (+ssRNA) viruses, a characteristic shared by SARS-CoV-2. Thus, it is possible to envision the use of heat-based interventions (thermotherapy or mild-temperature hyperthermia) in patients with COVID-19 for which moderate cycles (every 8-12 h) of mild-temperature hyperthermia (1-2 h) have been proposed. However, there are potential safety and mechanistic concerns which could limit the use of thermotherapy only to patients with mild-to-moderate COVID-19 to prevent disease progression rather than to treat patients who have already progressed to severe-to-critical COVID-19. Here, we review the characteristics of SARS-CoV-2 which make it a heat-susceptible virus, potential host mechanisms which could be enhanced at higher temperatures to aid viral clearance, and how thermotherapy could be investigated as a modality of treatment in patients with COVID-19 while taking into consideration potential risks.
Collapse
Affiliation(s)
- Javier Mancilla-Galindo
- Facultad de Medicina, División de Investigación, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Norma Galindo-Sevilla
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
14
|
Cannabis-Derived Compounds Cannabichromene and Δ9-Tetrahydrocannabinol Interact and Exhibit Cytotoxic Activity against Urothelial Cell Carcinoma Correlated with Inhibition of Cell Migration and Cytoskeleton Organization. Molecules 2021; 26:molecules26020465. [PMID: 33477303 PMCID: PMC7830447 DOI: 10.3390/molecules26020465] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.
Collapse
|
15
|
Popescu RC, Straticiuc M, Mustăciosu C, Temelie M, Trușcă R, Vasile BȘ, Boldeiu A, Mirea D, Andrei RF, Cenușă C, Mogoantă L, Mogoșanu GD, Andronescu E, Radu M, Veldwijk MR, Savu DI. Enhanced Internalization of Nanoparticles Following Ionizing Radiation Leads to Mitotic Catastrophe in MG-63 Human Osteosarcoma Cells. Int J Mol Sci 2020; 21:ijms21197220. [PMID: 33007844 PMCID: PMC7583846 DOI: 10.3390/ijms21197220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Cosmin Mustăciosu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihaela Temelie
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Adina Boldeiu
- Laboratory of Nanobiotechnology, National Institute for Research and Development in Microtechnologies (IMT), 12A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Dragoş Mirea
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Radu Florin Andrei
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
- Department of Physics, Applied Science Faculty, “Politehnica” University of Bucharest (UPB), 303 Splaiul Independentei, 060042 Bucharest, Romania
| | - Constantin Cenușă
- Radioisotopes and Radiation Metrology Department, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania;
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim (UMM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| |
Collapse
|
16
|
Combination Therapy with Cinnamaldehyde and Hyperthermia Induces Apoptosis of A549 Non-Small Cell Lung Carcinoma Cells via Regulation of Reactive Oxygen Species and Mitogen-Activated Protein Kinase Family. Int J Mol Sci 2020; 21:ijms21176229. [PMID: 32872198 PMCID: PMC7504317 DOI: 10.3390/ijms21176229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the largest cause of cancer-induced deaths. Non-small cell lung cancer (NSCLC) is the most frequently observed subtype of lung cancer. Although recent studies have provided many therapeutic options, there is still a need for effective and safe treatments. This paper reports the combined effects of cinnamaldehyde (CNM), a flavonoid from cinnamon, together with hyperthermia, a therapeutic option for cancer treatment, on the A549 NSCLC cell line. A hyperthermia treatment of 43 °C potentiated the cytotoxicity of CNM in A549 cells. This was attributed to an increase in the apoptosis markers and suppression of the survival/protective factors, as confirmed by Western blot assays. Flow cytometry supported this result because the apoptotic profile, cell health profile, and cell cycle profile were regulated by CNM and hyperthermia combination therapy. The changes in reactive oxygen species (ROS) and its downstream target pathway, mitogen-activated protein kinases (MAPK), were evaluated. The CNM and hyperthermia combination increased the generation of ROS and MAPK phosphorylation. N-acetylcysteine (NAC), a ROS inhibitor, abolished the apoptotic events caused by CNM and hyperthermia co-treatment, suggesting that the cytotoxic effect was dependent of ROS signaling. Therefore, we suggest CNM and hyperthermia combination as an effective therapeutic option for the NSCLC treatment.
Collapse
|
17
|
Tang X, Cao F, Ma W, Tang Y, Aljahdali B, Alasir M, Salih IE, Dibart S. Cancer cells resist hyperthermia due to its obstructed activation of caspase 3. Rep Pract Oncol Radiother 2020; 25:323-326. [PMID: 32194353 DOI: 10.1016/j.rpor.2020.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 01/16/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Aim It is well known that inducing hyperthermia is a type of cancer treatment but some research groups indicate that this treatment is not effective. This article finds and explains the mechanism of this treatment and its possible problems. Background Hyperthermia is commonly known as a state when the temperature of the body rises to a level that can threaten one's health. Hyperthermia is a type of cancer treatment in which body tissue is exposed to high temperatures (up to 45 °C). Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. However, this mechanism is not known. Materials and Methods We recently treated cancer cells with different temperatures ranging from 37 °C to 47 °C and further measured their caspase 3 secretion by ELISA, western blot and cell survival rate by microscope. Results We found that most cancer cells are able to resist hyperthermia more than normal cells most likely via non-activation of caspase3. We also found that hyperthermia-treated (≥41°) cancer cells extend a long pseudopod-like extension in comparison to the same cancer cells under normal conditions. Conclusion Our data here indicates that cancer cells have resistance to higher temperatures compared to normal cells via non-activation of caspase 3. This is a significant issue that needs to be brought to attention as the medical community has always believed that a high temperature treatment can selectively kill cancer/tumor cells. Additionally, we believe that the pseudopod-like extensions of hyperthermia-treated cancer cells must be related to its resistance to hyperthermia.
Collapse
Affiliation(s)
- Xiaoren Tang
- Henry M. Goldman School of Dental Medicine, Department of Periodontology, 650 Albany Street, Boston, MA, USA
| | - Feng Cao
- Henry M. Goldman School of Dental Medicine, Department of Periodontology, 650 Albany Street, Boston, MA, USA
| | - Weiyuan Ma
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, USA
| | - Yinian Tang
- School of Medicine, Boston University, 72 East Concord St, Boston, MA, USA
| | - Bushra Aljahdali
- Henry M. Goldman School of Dental Medicine, Department of Periodontology, 650 Albany Street, Boston, MA, USA
| | - Mansour Alasir
- Henry M. Goldman School of Dental Medicine, Department of Periodontology, 650 Albany Street, Boston, MA, USA
| | - I Erdjan Salih
- Henry M. Goldman School of Dental Medicine, Department of Periodontology, 650 Albany Street, Boston, MA, USA
| | - Serge Dibart
- Henry M. Goldman School of Dental Medicine, Department of Periodontology, 650 Albany Street, Boston, MA, USA
| |
Collapse
|
18
|
Kakihana A, Oto Y, Saito Y, Nakayama Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint. FASEB J 2018; 33:3936-3953. [PMID: 30496702 DOI: 10.1096/fj.201801369r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat shock causes proteotoxic stress that induces various cellular responses, including delayed mitotic progression and the generation of an aberrant number of chromosomes. In this study, heat shock delayed the onset of anaphase by increasing the number of misoriented cells, accompanied by the kinetochore localization of budding uninhibited by benzimidazole-related (BubR)1 in a monopolar spindle (Mps)1-dependent manner. The mitotic delay was canceled by knockdown of mitotic arrest defect (Mad)2. Knockdown of heat shock protein (Hsp)105 partially abrogated the mitotic delay with the loss of the kinetochore localization of BubR1 under heat shock conditions and accelerated mitotic progression under nonstressed conditions. Consistent with this result, Hsp105 knockdown increased the number of anaphase cells with lagging chromosomes, through mitotic slippage, and decreased taxol sensitivity more than Mad2 knockdown. Hsp105 was coprecipitated with cell division cycle (Cdc)20 in an Mps1-dependent manner; however, its knockdown did not affect coprecipitation of Mad2 and BubR1 with Cdc20. We propose that heat shock delays the onset of anaphase via the activation of the spindle assembly checkpoint (SAC). Hsp105 prevents abnormal cell division by contributing to SAC activation under heat shock and nonstressed conditions by interacting with Cdc20 but not affecting formation of the mitotic checkpoint complex.-Kakihana, A., Oto, Y., Saito, Y., Nakayama, Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint.
Collapse
Affiliation(s)
- Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yui Oto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
19
|
Zhao YY, Wu Q, Wu ZB, Zhang JJ, Zhu LC, Yang Y, Ma SL, Zhang SR. Microwave hyperthermia promotes caspase‑3-dependent apoptosis and induces G2/M checkpoint arrest via the ATM pathway in non‑small cell lung cancer cells. Int J Oncol 2018; 53:539-550. [PMID: 29901106 PMCID: PMC6017221 DOI: 10.3892/ijo.2018.4439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
Post-operative microwave (MW) hyperthermia has been applied as an important adjuvant therapy to enhance the efficacy of traditional cancer treatment. A better understanding of the molecular mechanisms of MW hyperthermia may provide guided and further information on clinical hyperthermia treatment. In this study, we examined the effects of MW hyperthermia on non‑small cell lung carcinoma (NSCLC) cells in vitro, as well as the underlying mechanisms. In order to mimic clinical treatment, we developed special MW heating equipment for this study. Various NSCLC cells (H460, PC-9 and H1975) were exposed to hyperthermia treatment using a water bath or MW heating system. The results revealed that MW hyperthermia significantly inhibited cell growth compared with the water bath heating system. Furthermore, MW hyperthermia increased the production of reactive oxygen species (ROS), decreased the levels of mitochondrial membrane potential (MMP) and induced caspase‑3 dependent apoptosis. It also induced G2/M phase arrest through the upregulation of the expression of phosphorylated (p‑) ataxia telangiectasia mutated (ATM), p‑checkpoint kinase 2 (Chk2) and p21, and the downregulation of the expression of cdc25c, cyclin B1 and cdc2. On the whole, the findings of this study indicate that the exposure of NSCLC cells to MW hyperthermia promotes caspase‑3 dependent apoptosis and induces G2/M cell cycle arrest via the ATM pathway. This preclinical study may help to provide laboratory-based evidence for MW hyperthermia treatment in clinical practice.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University
| | - Qiong Wu
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University
| | - Zhi-Bing Wu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310006
| | - Jing-Jing Zhang
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University
| | - Lu-Cheng Zhu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310006
| | - Yang Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Sheng-Lin Ma
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University
| | - Shi-Rong Zhang
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University
| |
Collapse
|
20
|
Ebrahimi A, Atashi A, Soleimani M, Mashhadikhan M, Barahimi A, Kaviani S. Comparison of anticancer effect of Pleurotus ostreatus extract with doxorubicin hydrochloride alone and plus thermotherapy on erythroleukemia cell line. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 15:/j/jcim.ahead-of-print/jcim-2016-0136/jcim-2016-0136.xml. [PMID: 29257758 DOI: 10.1515/jcim-2016-0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/16/2017] [Indexed: 11/15/2022]
Abstract
Background Recent studies have introduced Pleurotus ostreatus (Pleurotaceae) as a herbal medicine for treating different types of cancer. This survey utilizes P. ostreatus and doxorubicin hydrochloride (DOX) alone and then with hyperthermia to investigate the erythroleukemia cell line. This study evaluates and compares the apoptotic and necrotic effects of various treatments on the KG-1 cell line. Methods The proliferation of KG-1 cells was measured by using a tetrazolium salt (MTT)-based colorimetric assay during 96 h after treatment by gradient dilutions of 100 ng/mL to 100 mg/mL of P. ostreatus methanol extract and then the minimum inhibitory concentration (MIC) was determined and was applied in additional experiments. Afterward, the cells were treated using P. ostreatus extract, DOX (6.95 mg/L), and hyperthermia (42 and 44 °C), separately and then applying hyperthermia. Finally, the ratios of apoptosis and necrosis after 24 h incubation were evaluated by using flow cytometry. Results The MIC of the extract was determined (1 mg/mL), which significantly increased the ratio of apoptosis rather than necrosis, whereas the DOX treatment primarily induced necrosis on the KG-1 cells. The anticancer effects of the mushroom extract were significantly increased when it was combined with thermotherapy, which exhibited apoptotic effects at 42 °C but induced necrosis at 44 °C. Conclusions The results suggest that P. ostreatus extract induces apoptosis on KG-1 cells and its anticancer effects are significantly increased in combination with thermotherapy. Therefore, P. ostreatus could be considered as an alternative with anticancer effect for further studies in erythroleukemia patients.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cells and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maedeh Mashhadikhan
- Department of Biology, Faculty of Sciences, Tehran Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmadreza Barahimi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Pfammatter S, Bonneil E, Thibault P. Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry. J Proteome Res 2016; 15:4653-4665. [PMID: 27723353 DOI: 10.1021/acs.jproteome.6b00745] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.
Collapse
Affiliation(s)
- Sibylle Pfammatter
- Institute for Research in Immunology and Cancer, ‡Department of Chemistry, Université de Montréal , C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, ‡Department of Chemistry, Université de Montréal , C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, ‡Department of Chemistry, Université de Montréal , C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
22
|
Lenart P, Bienertová-Vašků J. Double strand breaks may be a missing link between entropy and aging. Mech Ageing Dev 2016; 157:1-6. [DOI: 10.1016/j.mad.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023]
|
23
|
Ahmed K, Tabuchi Y, Kondo T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis 2016; 20:1411-9. [PMID: 26354715 DOI: 10.1007/s10495-015-1168-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetic Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
24
|
Kulkarni VM, Bodas D, Paknikar KM. Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 2015. [DOI: 10.1039/c5ra02731d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple uses of LSMO nanoparticles in anticancer therapy.
Collapse
Affiliation(s)
| | - Dhananjay Bodas
- Center for Nanobioscience
- Agharkar Research Institute
- Pune 411004
- India
| | | |
Collapse
|
25
|
Alvarez-Berrios MP, Castillo A, Merida F, Mendez J, Rinaldi C, Torres-Lugo M. Enhanced proteotoxic stress: one of the contributors for hyperthermic potentiation of the proteasome inhibitor bortezomib using magnetic nanoparticles. Biomater Sci 2014. [PMID: 26218130 DOI: 10.1039/c4bm00223g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The induction of hyperthermia using nanoparticles, known as magnetic fluid hyperthermia (MFH) in combination with anti-cancer drugs is an attractive method because of the potential for enhanced anti-cancer effects. Recent studies have shown that cells treated with MFH are more sensitive to the proteasome inhibitor bortezomib (BZ) than cells treated by hot water hyperthermia (HWH) under the same temperature conditions. We hypothesized that enhanced proteotoxic stress, caused by a combination of microtubule damage and an increase in the amount of aggregated proteins, may be partially responsible for this observation. To test this hypothesis MCF-7 cells were exposed to hyperthermic treatment (MFH or HWH) at 43 °C or 45 °C for 30 minutes. Then, aggresome formation and microtubule disruption studies at 30 minutes or 2.5 hours of recovery time were performed to evaluate the progressive effects induced by the two treatments. Cell viability at short and long times was evaluated. Aggresome formation and microtubule disruption results suggested that one of the mechanisms by which MFH enhances BZ cytotoxicity is the formation and subsequent accumulation of aggregated proteins in the cytosol due to the interruption of their transport to the perinuclear area through microtubules. Our data show evidence that MFH induces a more toxic and unmitigated proteotoxic stress than HWH under similar temperature conditions.
Collapse
|
26
|
Hou CH, Lin FL, Hou SM, Liu JF. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int J Mol Sci 2014; 15:17380-95. [PMID: 25268613 PMCID: PMC4227168 DOI: 10.3390/ijms151017380] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/12/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS) cells. Treatment at 43 °C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS) and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER) stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM) blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Feng-Ling Lin
- Department of Dermatology, Sijhih Cathay General Hospital, Taipei 221, Taiwan.
| | - Sheng-Mon Hou
- Department of Orthopedic Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| |
Collapse
|
27
|
Abstract
AbstractCaffeine is the most common natural neuroactive substance around the world. The exact mechanism of the anticancer effects of caffeine is not clear, especially in the contexts of the cytoskeletal changes. It is known that caffeine exerts an effect on cell cycle, cell proliferation, radiosensivity of cells, and also induces cell death. The aim of the study was to determine the effect of 10 and 20 mM L−1 caffeine on the major cytoskeletal proteins in non-small lung cancer cell line H1299. Caffeine treatment induced abnormalities in morphology and ultrastructure of cells. Moreover, the fluorescence studies showed changes in organization of vimentin, β-tubulin, lamin A/C and F-actin, which were attributed to the induction of cell death. The results also demonstrated that caffeine induced formation of two cell populations: giant, mono- or multinucleated cells, with the phenotype of mitotic catastrophe and shrunken cells with condensation of chromatin, typical of apoptosis. This study for the first time shows the effect of caffeine on the cytoskeleton of H1299 cell line. In conclusion, a high-dose caffeine treatment induces apoptotic cell death and makes it a powerful anticancer agent that should be considered for the treatment of non-small cell lung cancer.
Collapse
|
28
|
Abstract
The final stage of cell division (mitosis), involves the compaction of the duplicated genome into chromatid pairs. Each pair is captured by microtubules emanating from opposite spindle poles, aligned at the metaphase plate, and then faithfully segregated to form two identical daughter cells. Chromatids that are not correctly attached to the spindle are detected by the constitutively active spindle assembly checkpoint (SAC). Any stress that prevents correct bipolar spindle attachment, blocks the satisfaction of the SAC, and induces a prolonged mitotic arrest, providing the cell time to obtain attachment and complete segregation correctly. Unfortunately, during mitosis repairing damage is not generally possible due to the compaction of DNA into chromosomes, and subsequent suppression of gene transcription and translation. Therefore, in the presence of significant damage cell death is instigated to ensure that genomic stability is maintained. While most stresses lead to an arrest in mitosis, some promote premature mitotic exit, allowing cells to bypass mitotic cell death. This mini-review will focus on the effects and outcomes that common stresses have on mitosis, and how this impacts on the efficacy of mitotic chemotherapies.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia ; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia , Sydney, NSW , Australia
| | - Mina Rasouli
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Samuel Rogers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| |
Collapse
|
29
|
Velichko AK, Markova EN, Petrova NV, Razin SV, Kantidze OL. Mechanisms of heat shock response in mammals. Cell Mol Life Sci 2013; 70:4229-41. [PMID: 23633190 PMCID: PMC11113869 DOI: 10.1007/s00018-013-1348-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
Abstract
Heat shock (HS) is one of the best-studied exogenous cellular stresses. The cellular response to HS utilizes ancient molecular networks that are based primarily on the action of stress-induced heat shock proteins and HS factors. However, in one way or another, all cellular compartments and metabolic processes are involved in such a response. In this review, we aimed to summarize the experimental data concerning all aspects of the HS response in mammalian cells, such as HS-induced structural and functional alterations of cell membranes, the cytoskeleton and cellular organelles; the associated pathways that result in different modes of cell death and cell cycle arrest; and the effects of HS on transcription, splicing, translation, DNA repair, and replication.
Collapse
Affiliation(s)
- Artem K. Velichko
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena N. Markova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda V. Petrova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V. Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Omar L. Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
30
|
Actin is required for cellular death. Acta Histochem 2013; 115:775-82. [PMID: 23683404 DOI: 10.1016/j.acthis.2013.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023]
Abstract
Actin is one of the most abundant cytoskeletal proteins, which takes part in many cellular processes. This review provides information on the history, forms and localization of actin and its role, in particular in cellular death processes. We discuss the relationships between reorganization of actin filaments and apoptosis, mitotic catastrophe and differentiation. Finally, we discuss the translocation and accumulation of actin in the nuclear area. Moreover, owing to the difficulties of F-actin localization by transmission electron microscopy (TEM), the phalloidin-based method of its detection using streptavidin-coated quantum dots is presented in this review.
Collapse
|
31
|
Sooampon S, Phoolcharoen W, Pavasant P. Thermal stimulation of TRPV1 up-regulates TNFα expression in human periodontal ligament cells. Arch Oral Biol 2013; 58:887-95. [PMID: 23411401 DOI: 10.1016/j.archoralbio.2013.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/15/2013] [Accepted: 01/19/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We previously demonstrated that the activation of transient receptor potential vanilloid 1 (TRPV1), a nociceptive ion channel receptor, by capsaicin led to the up-regulation of the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL) ratio in human periodontal ligament (HPDL) cells. Since TRPV1 is recognised as one of the thermo-sensitive cation channels, this study investigated the response of TRPV1 to thermal stimulation in HPDL cells. METHODS HPDL cells were incubated at 45°C for thermal stimulation. The mRNA expression of OPG, RANKL, tumour necrosis factor α (TNFα), and interleukin-1 β (IL-1β) was determined by using RT-PCR. OPG secretion and RANKL protein expression were analysed by ELISA and Western blot analysis, respectively. The mechanisms of heat-induced TNFα expression were studied using several TRPV1 inhibitors. RESULTS In contrast to capsaicin, thermal stimulation had no effect on OPG or RANKL expression. Interestingly, the mRNA expression of TNFα, but not IL-1β, was increased by heat. Using TRPV1 antagonists, we confirmed that TNFα up-regulation was mediated by TRPV1. Phospholipase C (PLC) was previously shown to be involved in capsaicin-induced OPG expression. However, we found that protein kinase C, not PLC, was required for heat-induced TNFα expression. Additionally, the use of cytochalasin D, an inhibitor of actin polymerisation, revealed that cytoskeleton rearrangement might be an important mechanism for cellular sensing of thermal stimuli. CONCLUSION Our results indicate that TRPV1 plays a multi-functional role in HPDL cells depending on the stimuli. In response to heat, TRPV1 activation leads to the induction of TNFα expression.
Collapse
Affiliation(s)
- Sireerat Sooampon
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | |
Collapse
|