1
|
Kim YS, Lee JS, Jeong MY, Jang JW, Kim MS. Recombinant human fibroblast growth factor 7 obtained from stable Chinese hamster ovary cells enhances wound healing. Biotechnol J 2024; 19:e2300596. [PMID: 38719591 DOI: 10.1002/biot.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Although fibroblast growth factor 7 (FGF7) is known to promote wound healing, its mass production poses several challenges and very few studies have assessed the feasibility of producing FGF7 in cell lines such as Chinese hamster ovary (CHO) cells. Therefore, this study sought to produce recombinant FGF7 in large quantities and evaluate its wound healing effect. To this end, the FGF7 gene was transfected into CHO cells and FGF7 production was optimized. The wound healing efficacy of N-glycosylated FGF7 was evaluated in animals on days 7 and 14 post-treatment using collagen patches (CPs), FGF7-only, and CP with FGF7 (CP+FGF7), whereas an untreated group was used as the control. Wound healing was most effective in the CP+FGF7 group. Particularly, on day 7 post-exposure, the CP+FGF7 and FGF7-only groups exhibited the highest expression of hydroxyproline, fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor. Epidermalization in H&E staining showed the same order of healing as hydroxyproline content. Additionally, the CP+FGF7 and FGF7-only group exhibited more notable blood vessel formation on days 7 and 14. In conclusion, the prepared FGF7 was effective in promoting wound healing and CHO cells can be a reliable platform for the mass production of FGF7.
Collapse
Affiliation(s)
- Young Sik Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Sourh Korea
| | - Jung Soo Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Sourh Korea
| | - Mi Yeong Jeong
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Sourh Korea
| | - Ju Woong Jang
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Sourh Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Hazrati R, Davaran S, Keyhanvar P, Soltani S, Alizadeh E. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev Rep 2024; 20:362-393. [PMID: 37922106 DOI: 10.1007/s12015-023-10636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/05/2023]
Abstract
To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Peyman Keyhanvar
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Alhazmi A, Aldairi AF, Alghamdi A, Alomery A, Mujalli A, Obaid AA, Farrash WF, Allahyani M, Halawani I, Aljuaid A, Alharbi SA, Almehmadi M, Alharbi MS, Khan AA, Jastaniah MA, Alghamdi A. Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing. Molecules 2022; 27:molecules27103320. [PMID: 35630797 PMCID: PMC9143547 DOI: 10.3390/molecules27103320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Commiphora gileadensis (CG) is a small tree distributed throughout the Middle East. It was traditionally used in perfumes in countries in this area. In Saudi Arabia, it was used to treat wounds burns and as an antidote to scorpion stings. This study aimed to evaluate the antimicrobial activity and cutaneous wound healing efficiency of the CG extracts using microbiological tests, rate of wound contraction and histopathological changes. CG plant were extracted using the methanol extraction technique; then, the methanolic extract was characterized using liquid chromatography coupled with mass spectrometry (LC−MS). Afterwards, a six-millimetre (mm) excision wound was induced in 60 male Balb/c mice. Mice were classified into two classes; each class consisted of three groups of 10 mice. In the non-infected wound class, the group I was assigned as control and received normal saline. Group II received gentamicin treatment, and group III treated with CG-methanolic extract. In the Staphylococcus aureus-infected class, group IV received normal saline, and groups V and VI were treated with gentamicin and CG-methanolic extract, respectively. The colonization of infected wounds was determined using colony-forming units (CFUs), and the percentage of wound contraction was measured in all groups. Finally, the histopathologic semi-quantitative determination of wound healing was evaluated by inflammatory cell infiltration, the presence of collagen fibres and granulation tissue, and the grade of re-epithelization. Composition analysis of the methanolic extract confirmed the presence of a high amount of ceramide (69%) and, to a lesser extent, hexosylceramide (18%) and phosphatidylethanolamine (7%) of the total amount. Additionally, there was a statistically significant difference between the percentage of wound contraction in the CG-treated and control groups in both Staphylococcus aureus-infected and non-infected wounds (p < 0.01). The colonization of the infected wounds was lower in the group treated with CG than in the control group (p < 0.01). In both non-infected and infected wounds, the CG-treated group showed significant statistical differences in inflammatory cell infiltration, collagen fibres, re-epithelization and granulation tissue formation compared with the control group (p < 0.01). The CG extract possesses antibacterial and anti-inflammatory properties that induce wound healing.
Collapse
Affiliation(s)
- Ayman Alhazmi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Abdullah F. Aldairi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 21961, Saudi Arabia; (A.M.); (A.A.O.); (W.F.F.); (A.A.K.)
- Correspondence:
| | - Ahmad Alghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Anas Alomery
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Abdulrahman Mujalli
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 21961, Saudi Arabia; (A.M.); (A.A.O.); (W.F.F.); (A.A.K.)
| | - Ahmad A. Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 21961, Saudi Arabia; (A.M.); (A.A.O.); (W.F.F.); (A.A.K.)
| | - Wesam F. Farrash
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 21961, Saudi Arabia; (A.M.); (A.A.O.); (W.F.F.); (A.A.K.)
| | - Mamdouh Allahyani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Ibrahim Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Abdulelah Aljuaid
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Sarah A. Alharbi
- Laboratory Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of National Guard-Health Affairs, Al Madinah 41511, Saudi Arabia;
| | - Mazen Almehmadi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (A.A.); (A.A.); (M.A.); (I.H.); (A.A.); (M.A.)
| | - Moodi S. Alharbi
- Diabetic Centre, King Abdulaziz Speciality Hospital, Ministry of Health, Qurwa, Taif 26521, Saudi Arabia;
| | - Anmar A. Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 21961, Saudi Arabia; (A.M.); (A.A.O.); (W.F.F.); (A.A.K.)
| | - Maisam A. Jastaniah
- Laboratory Department, King Faisal Hospital, Ministry of Health, Makkah 24236, Saudi Arabia;
| | | |
Collapse
|
4
|
Kir MC, Onal MO, Uluer ET, Ulman C, Inan S. Continuous and intermittent parathyroid hormone administration promotes osteogenic differentiation and activity of programmable cells of monocytic origin. Biotech Histochem 2022; 97:593-603. [PMID: 35473476 DOI: 10.1080/10520295.2022.2049876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Bone healing deficiencies are challenging for orthopedic practice. The use of stem cells with scaffolds to treat bone tissue losses currently is popular for promoting regeneration of tissue. Programmable cells of monocytic origin (PCMO) may differentiate into three germ layers and may be a promising alternative treatment due to their stem cell-like properties. Parathyroid hormone (PTH) participates in bone metabolism. Intermittent administration of PTH promotes osteogenic activity of mesenchymal stem cdells (MSC). We investigated the osteogenic effects of continuous and intermittent administration of PTH on PCMO. Mononuclear cells were harvested from the peripheral blood of healthy donors. Isolated cells were cultured for six days in a de-differentiation medium. Indirect immunocytochemistry using anti-CD14, anti-CD45 and anti-CD90 primary antibodies, as well as electron microscopy were used to detect PCMO. PCMO then were cultured in an osteogenic differentiation medium supplemented with continuous or intermittent 50 ng/ml PTH. The PTH-free control group (CG), intermittent PTH treated group (IPG) and continuous PTH treated group (CPG) were cultured and assessed for their differentiation into osteogenic lineage cells by indirect immunocytochemistry using anti-collagen I, anti-osteonectin and anti-osteocalcin primary antibodies. Osteoblast-like cells obtained by continuous or intermittent PTH administration exhibited increased levels of collagen I, osteonectin and osteocalcin immunoreactivity. We found that continuous and intermittent PTH administration to PCMO enhanced their differentiation to osteogenic lineage cells and increased osteoblastic activity.
Collapse
Affiliation(s)
- M C Kir
- Department of Orthopedics and Traumatology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - M O Onal
- Department of Histology & Embryology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - E T Uluer
- Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - C Ulman
- Department of Biochemistry, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - S Inan
- Department of Histology & Embryology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
5
|
Wu R, Du D, Bo Y, Zhang M, Zhang L, Yan Y. Hsp90α promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice. Biochem Biophys Res Commun 2019; 520:145-151. [DOI: 10.1016/j.bbrc.2019.09.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
|
6
|
Uluer ET, Vatansever HS, Aydede H, Ozbilgin MK. Keratinocytes derived from embryonic stem cells induce wound healing in mice. Biotech Histochem 2018; 94:189-198. [PMID: 30460873 DOI: 10.1080/10520295.2018.1541479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The skin plays an important role in defending the body against the environment. Treatments for burns and skin injuries that use autologous or allogenic skin grafts derived from adult or embryonic stem cells are promising. Embryonic stem cells are candidates for regenerative and reparative medicine. We investigated the utility of keratinocyte-like cells, which are differentiated from mouse embryonic stem cells, for wound healing using a mouse surgical wound model. Mice were allocated to the following groups: experimental, in which dressing and differentiated cells were applied after the surgical wound was created; control, in which only the surgical wound was created; sham, in which only the dressing was applied after the surgical wound was created; and untreated animal controls with healthy skin. Biopsies were taken from each group on days 3, 5 and 7 after cell transfer. Samples were fixed in formalin, then stained with Masson's trichrome and primary antibodies to interleukin-8 (IL-8), fibroblast growth factor-2 (FGF-2), monocyte chemoattractant protein-1 (MCP-1), collagen-1 and epidermal growth factor (EGF) using the indirect immunoperoxidase technique for light microscopy. Wound healing was faster in the experimental group compared to the sham and control groups. The experimental group exhibited increased expression of IL-8, FGF-2 and MCP-1 during early stages of wound healing (inflammation) and collagen-1 and EGF expression during late stages of wound healing (proliferation and remodeling). Keratinocytes derived from embryonic stem cells improved wound healing and influenced the wound healing stages.
Collapse
Affiliation(s)
- E T Uluer
- a Departments of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| | - H S Vatansever
- a Departments of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| | - H Aydede
- b Departments of General Surgery, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| | - M K Ozbilgin
- a Departments of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| |
Collapse
|
7
|
Bayati V, Abbaspour MR, Neisi N, Hashemitabar M. Skin-derived precursors possess the ability of differentiation into the epidermal progeny and accelerate burn wound healing. Cell Biol Int 2016; 41:187-196. [PMID: 27981666 DOI: 10.1002/cbin.10717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Skin-derived precursors (SKPs) are remnants of the embryonic neural crest stem cells that reside in the dermis until adulthood. Although they possess a wide range of differentiation potentials, their differentiation into keratinocyte-like cells and their roles in skin wound healing are obscure. The present study aimed to investigate the differentiation of SKPs into keratinocyte-like cells and evaluate their role in healing of third degree burn wounds. To this aim, SKPs were differentiated into keratinocyte-like cells on tissue culture plate and collagen-chitosan scaffold prepared by freeze-drying. Their differentiation capability was detected by real-time RT-PCR and immunofluorescence. Thereafter, they were cultured on scaffold and implanted in a rat model of burn wound. Histopathological and immunohistochemical analyses were employed to examine the reconstituted skin. The research findings revealed that SKPs were able to differentiate along the epidermal lineage and this ability can be enhanced on a suitable scaffold. Additionally, the results indicated that SKPs apparently promoted wound healing process and accelerate its transition from proliferating stage to maturational phase, especially if they were differentiated into keratinocyte-like cells. Regarding the results, it is concluded that SKPs are able to differentiate into keratinocyte-like cells, particularly when they are cultured on collagen-chitosan scaffold. Moreover, they can regenerate epidermal and dermal layers including thick collagen bundles, possibly through differentiation into keratinocyte-like cells.
Collapse
Affiliation(s)
- Vahid Bayati
- Cellular and Molecular Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Centre, Mashhad University of Medical Sciences, Mashhad, 91775-1365, Iran
| | - Niloofar Neisi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| |
Collapse
|
8
|
|