1
|
Fan Q, Yan R, Li Y, Lu L, Liu J, Li S, Fu T, Xue Y, Liu J, Li Z. Exploring Immune Cell Diversity in the Lacrimal Glands of Healthy Mice: A Single-Cell RNA-Sequencing Atlas. Int J Mol Sci 2024; 25:1208. [PMID: 38279208 PMCID: PMC10816500 DOI: 10.3390/ijms25021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.
Collapse
Affiliation(s)
- Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yan Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jiangman Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
2
|
Liu J, Si H, Huang D, Lu D, Zou S, Qi D, Pei X, Huang S, Li Z. Mechanisms of Extraorbital Lacrimal Gland Aging in Mice: An Integrative Analysis of the Temporal Transcriptome. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37695604 PMCID: PMC10501490 DOI: 10.1167/iovs.64.12.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study used high-throughput RNA sequencing (RNA-Seq) and bioinformatics analysis to investigate the altered transcriptome profile of aging lacrimal glands in mice that occurs over the course of a 24-hour cycle. Methods Male C57BL/6J mice aged 12 weeks (young) and 20 months (aging) were housed in a pathogen-free setting with a 12-hour light/12-hour dark cycle. Throughout a 24-hour cycle, mouse extraorbital lacrimal glands (ELGs) were collected at eight time points at three-hour intervals. To prepare for the high-throughput RNA-Seq, whole mRNA was extracted. Differentially expressed genes (DEGs) in the young and aging groups were subjected to bioinformatic analysis based on diurnal patterns. Furthermore, the cell populations in which significant DEGs express and signaling pathways occur were validated at the single-cell RNA sequencing (scRNA-seq) level. Results The total transcriptome composition was significantly altered in aging ELGs compared with that in young mouse ELGs at eight time points during the 24-hour cycle, with 864 upregulated and 228 downregulated DEGs, which were primarily enriched in inflammatory pathways. Further comparative analysis of the point-to-point transcriptome revealed that aging ELGs underwent alterations in the temporal transcriptome profile in several pathways, including the inflammation-related, metabolism-related, mitochondrial bioenergetic function-associated, synaptome neural activity-associated, cell processes-associated, DNA processing-associated and fibrosis-associated pathways. Most of these pathways occurred separately in distinct cell populations. Conclusions Transcriptome profiles of aging lacrimal glands undergo considerable diurnal time-dependent changes; this finding offers a comprehensive source of information to better understand the pathophysiology of lacrimal gland aging and its underlying mechanisms.
Collapse
Affiliation(s)
- Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
3
|
Expression of Androgen and Estrogen Receptors in the Human Lacrimal Gland. Int J Mol Sci 2023; 24:ijms24065609. [PMID: 36982683 PMCID: PMC10053362 DOI: 10.3390/ijms24065609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Lacrimal gland dysfunction causes dry eye disease (DED) due to decreased tear production. Aqueous-deficient DED is more prevalent in women, suggesting that sexual dimorphism of the human lacrimal gland could be a potential cause. Sex steroid hormones are a key factor in the development of sexual dimorphism. This study aimed to quantify estrogen receptor (ER) and androgen receptor (AR) expression in the human lacrimal gland and compare it between sexes. RNA was isolated from 35 human lacrimal gland tissue samples collected from 19 cornea donors. AR, ERα, and ERβ mRNA was identified in all samples, and their expression was quantified using qPCR. Immunohistochemical staining was performed on selected samples to evaluate protein expression of the receptors. ERα mRNA expression was significantly higher than the expression of AR and ERβ. No difference in sex steroid hormone (SSH) receptor mRNA expression was observed between sexes, and no correlation was observed with age. If ERα protein expression is found to be concordant with mRNA expression, it should be investigated further as a potential target for hormone therapy of DED. Further research is needed to elucidate the role of sex steroid hormone receptors in sex-related differences of lacrimal gland structure and disease.
Collapse
|
4
|
Zou S, Jiao X, Liu J, Qi D, Pei X, Lu D, Huang S, Li Z. High-Fat Nutritional Challenge Reshapes Circadian Signatures in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35588356 PMCID: PMC9123521 DOI: 10.1167/iovs.63.5.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose A high-fat diet (HFD) increases the risk of developing many systemic diseases; however, the effects of high fat intake on lacrimal gland functions and the molecular mechanisms underlying these effects are unknown. We explored the effects of an HFD on the circadian rhythms of the extraorbital lacrimal glands (ELGs). Methods Male C57BL/6J mice maintained on a 12/12-hour light/dark cycle were fed an ad libitum HFD or normal chow (NC) for 2 weeks. The ELGs were collected from euthanized animals every 3 hours throughout the circadian cycle (24 hours). Using high-throughput RNA-sequencing (RNA-Seq), we studied the circadian transcriptomic profile of the ELGs. Circadian oscillations in cell size, secretion response, lipid deposition, and immune cell trafficking of the ELGs were also analyzed. Results An HFD modulated the circadian transcriptomic profile of the ELGs, including the composition, phase, and amplitude of cyclical transcript oscillations, and affected the associated signaling pathways at spatiotemporal levels. HFD feeding significantly altered the normal rhythmic oscillations of ELG cell size, immune cell trafficking, secretion response, and lipid deposition. After dietary reversal in HFD-fed animals, the activity, core temperature, and lipid accumulation in lacrimal glands recovered partially to the level of NC-fed animals. However, the average cell size of the ELGs, the recruitment of immune cells, and the rhythm of lacrimal secretion did not return to the levels of the NC-fed group. Conclusions HFD perturbation interferes with the cyclical transcriptomic profile, cell size, immune cell trafficking, and secretion function of the ELGs with a strikingly high sensitivity.
Collapse
Affiliation(s)
- Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| |
Collapse
|
5
|
Zhai Y, Li M, Gui Z, Wang Y, Hu T, Liu Y, Xu F. Whole Brain Mapping of Neurons Innervating Extraorbital Lacrimal Glands in Mice and Rats of Both Genders. Front Neural Circuits 2021; 15:768125. [PMID: 34776876 PMCID: PMC8585839 DOI: 10.3389/fncir.2021.768125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The extraorbital lacrimal glands (ELGs) secret tears to maintain a homeostatic environment for ocular surfaces, and pheromones to mediate social interactions. Although its distinct gender-related differences in mice and rats have been identified, its comprehensive histology together with whole-brain neuronal network remain largely unknown. The primary objective of the present study was to investigate whether sex-specific differences take place in histological and physiological perspectives. Morphological and histological data were obtained via magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining in mice and rats of both genders. The innervating network was visualized by a pseudorabies virus (PRV) mediated retrograde trans-multi-synaptic tracing system for adult C57BL6/J mice of both genders. In terms of ELGs' anatomy, mice and rats across genders both have 7 main lobes, with one exception observed in female rats which have only 5 lobes. Both female rats and mice generally have relatively smaller shape size, absolute weight, and cell size than males. Our viral tracing revealed a similar trend of innervating patterns antero-posteriorly, but significant gender differences were also observed in the hypothalamus (HY), olfactory areas (OLF), and striatum (STR). Brain regions including piriform area (Pir), post-piriform transition area (TR), central amygdalar nucleus (CEA), medial amygdalar nucleus (MEA), lateral hypothalamic area (LHA), parasubthalamic nucleus (PSTN), pontin reticular nucleus (caudal part) (PRNc), and parabrachial nucleus, (PB) were commonly labeled. In addition, chemical isotope labeling-assisted liquid chromatography-mass spectrometry (CIL-LC-MS) and nuclear magnetic resonance spectroscopy (NMR spectroscopy) were performed to reveal the fatty acids and metabolism of the ELGs, reflecting the relationship between pheromone secretion and brain network. Overall, our results revealed basic properties and the input neural networks for ELGs in both genders of mice, providing a structural basis to analyze the diverse functions of ELGs.
Collapse
Affiliation(s)
- Ying Zhai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Min Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, China.,Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, China
| | - Zhu Gui
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yeli Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, Wuhan University, Wuhan, China
| | - Ting Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Shenzhen Key Laboratory of Viral Vectors for Biomedicine, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|