1
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
2
|
Li J, Wang H, Xu J, Wu S, Han M, Li J, Wang Q, Ge Z. Mimic Lipoproteins Responsive to Intratumoral pH and Allosteric Enzyme for Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:404-416. [PMID: 34962752 DOI: 10.1021/acsami.1c21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jingbo Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Papegay B, Nuyens V, Albert A, Cherkaoui-Malki M, Andreoletti P, Leo O, Kruys V, Boogaerts JG, Vamecq J. Adenosine Diphosphate and the P2Y13 Receptor Are Involved in the Autophagic Protection of Ex Vivo Perfused Livers From Fasted Rats: Potential Benefit for Liver Graft Preservation. Liver Transpl 2021; 27:997-1006. [PMID: 33306256 DOI: 10.1002/lt.25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.
Collapse
Affiliation(s)
- Bérengère Papegay
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Vincent Nuyens
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Pierre Andreoletti
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Oberdan Leo
- Laboratory of Immunobiology and ULB Centre for Research in Immunology (U-CRI), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), Gosselies, Belgium
| | - Jean G Boogaerts
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Joseph Vamecq
- Inserm, and Hormonology/Metabolism/Nutrition/Oncology Department of the Centre of Biology and Pathology, Metabolism Branch, University Hospital Center of Lille and EA 7364-RADEME (Rare Developmental and Metabolic Disorders), North France University Lille, Lille, France
| |
Collapse
|
4
|
Case study-based systematic review of literature on lymphoma-associated cardiac tamponade. Contemp Oncol (Pozn) 2021; 25:57-63. [PMID: 33911983 PMCID: PMC8063898 DOI: 10.5114/wo.2021.103828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to compile all the relevant studies of patients presenting with pericardial tamponade before or after diagnosis of lymphoma, describe the clinical presentations of patients with lymphoma and cardiac tamponade, and assess the difference in overall survival based on the timing of cardiac tamponade diagnosis. A comprehensive search strategy was conducted in the following databases: PubMed and Cochrane Library, using the following keywords: Lymphoma AND Cardiac Tamponade. The criteria for eligibility included cases with a confirmed diagnosis of lymphoma and cardiac tamponade, human studies, and publications in English language. The statistical analysis was performed using IBM Statistical Package for Social Sciences (SPSS) version 20. We included 48 research articles (n = 52 cases) with adequate reporting of measured outcomes. The median age of the patients was 52 (9–94) years. Only 6 patients were noted to have primary cardiac lymphoma, while the majority of cases were considered to have secondary cardiac lymphoma (88.5%). According to the data on the type of lymphoma reported through cytology and immunohistochemistry, 49 patients were diagnosed with non-Hodgkin lymphoma, and of these cases the most common subtype was large B-cell lymphoma (42.9%). Overall, the average duration of illness was 14 ± 23 days. A total of 13 patients had distant heart sounds, 12 cases were noted to be hypotensive, and 13 subjects were found to have increased jugular venous pressure. Our retrospective study demonstrated that most patients presented with pericardial tamponade after lymphoma diagnosis, and those were mostly secondary cardiac lymphoma of the non-Hodgkin type with large B-cell as the most common subtype. Dyspnoea, oedema, and constitutional symptoms were the most common presenting signs. The median overall survival of patients with lymphoma and cardiac tamponade is 4 months, with no significant difference in mortality in the presentation timing before and after the diagnosis of lymphoma.
Collapse
|
5
|
Manna LB, Williamson C. Nuclear receptors, gestational metabolism and maternal metabolic disorders. Mol Aspects Med 2021; 78:100941. [PMID: 33455843 DOI: 10.1016/j.mam.2021.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Normal pregnancy is characterised by a gradual alteration in metabolism that results in elevated serum bile acids, dyslipidaemia and impaired glucose tolerance in the third trimester. Nuclear receptors play important roles in regulating metabolic pathways that influence alterations in these parameters. There is evidence for altered function of FXR and LXR in gestation; these nuclear receptors play an integral role in bile acid and lipid homeostasis. There is some evidence for influence of clock genes in late pregnancy metabolic changes, and this may be linked to alterations in placental gene expression and function, thereby influencing fetal growth. This article will review the current data from human studies and investigation of animal models to illustrate the role of nuclear receptors (namely LXR, FXR, PPARs and clock genes) in gestational alterations in metabolism and the ways this may influence susceptibility to metabolic disorders of pregnancy such as gestational diabetes mellitus and intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Luiza Borges Manna
- Division of Women and Children's Health, King's College London, London, United Kingdom
| | - Catherine Williamson
- Division of Women and Children's Health, King's College London, London, United Kingdom.
| |
Collapse
|
6
|
Han M, Ji X, Li J, Ge Z, Luo B, Zhou K, Wang Q, Sun X, Zhang W, Li J. Lipoprotein-Inspired Nanocarrier Composed of Folic Acid-Modified Protein and Lipids: Preparation and Evaluation of Tumor-Targeting Effect. Int J Nanomedicine 2020; 15:3433-3445. [PMID: 32523342 PMCID: PMC7234978 DOI: 10.2147/ijn.s241448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Reconstituted lipoproteins (rLips) based on endogenous lipid nanostructures has been increasingly regarded as an excellent and promising antitumor drug delivery. However, some problems relating to the main component, apolipoprotein, for instance, rare source, unaffordable price, and low specificity of relevant receptor expression, become chief obstacles to its broad development and application. Purpose The primary aim of this study is to develop biomimetic rLips by utilizing folic acid (FA)-modified bovine serum albumin (BSA) as a replacement for apolipoprotein and demonstrate its tumor targeting and antitumor efficacy. Methods The amino groups of BSA were covalently conjugated with FA through the amide reaction. PTX-loaded nanostructured lipid carrier (termed as P-NLC) consisting of phospholipid, cholesteryl ester, triglyceride and cholesterol was prepared by the emulsification–evaporation method and utilized as the lipid core. FA-modified BSA (FA-BSA) was characterized for the protein substitute degree and attached with NLC by incubation-insert method to form the lipoprotein-mimic nanocomplex (termed as PFB-rLips). The morphology of nanoparticles was observed under transmission electron microscopy (TEM), and the particle size and zeta potential were determined using dynamic light scattering. In vitro release behavior of PTX from PFB-rLips was investigated with the dialysis method. Hemolysis tests were conducted to evaluate the biosecurity of PFB-rLips. Cell uptake and cytotoxicity assays were performed on human hepatocytes (LO2) and human hepatoma cells (HepG2). Tumor targeting was assessed using in vivo imaging system in H22 tumor-bearing mice model. Antitumor efficacy in vivo was investigated and compared between Taxol® (paclitaxel) formulation and PTX-incorporated nanoparticles in the same tumor model. Results A fixed molar ratio 50:1 of FA to BSA was chosen as the optimal input ratio based on the balance between appropriate degree of protein substitution and amphiphilicity of FA-BSA. The morphology of FB-rLips exhibited as a homogeneous spherical structure featured by lipid cores surrounded with a cloudy protein shell observed under TEM. The particle size, zeta potential and encapsulation efficiency were 174.6±3.2 nm, −17.26±0.9 mV and 82.2±2.4%, respectively. In vitro release behavior of PTX from PFB-rLips was slow and sustained. The uptake of FB-rLips was much higher in HepG2 cells than in LO2 cells. Furthermore, the uptake of FB-rLips was significantly higher than that of rLips without FA involved (termed as B-rLips) and NLC in HepG2 cells. Hemolysis and cytotoxicity assays showed good biocompatibility of FB-rLips. The internalization mechanism of FB-rLips mainly depended on clathrin-mediated and caveolin-mediated endocytosis coupling with energy consumption, and FA receptors expressed on tumor cells played a critical role in cellular uptake process. CCK-8 studies demonstrated that PFB-rLips exhibited significantly better tumor killing ability than Taxol® (paclitaxel) formulation in vitro. Moreover, FB-rLips produced more excellent tumor-targeting properties than NLC through in vivo imaging assays. On the basis of this, PTX-loaded FB-rLips also performed more remarkable anticancer activity than other therapy groups in H22 tumor-bearing mice. Conclusion FB-rLips would serve as a potential nanocarrier for improving tumor-targeting and therapeutic efficacy while reducing the side effects on normal tissues and organs.
Collapse
Affiliation(s)
- Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Xiaoman Ji
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Bin Luo
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Kai Zhou
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Xin Sun
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Chen C, Sun R, Sun Y, Chen X, Li F, Wen X, Yuan H, Chen D. Synthesis, biological evaluation and SAR studies of ursolic acid 3β-ester derivatives as novel CETP inhibitors. Bioorg Med Chem Lett 2020; 30:126824. [PMID: 31780304 DOI: 10.1016/j.bmcl.2019.126824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/12/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022]
Abstract
Cholesteryl ester transfer protein (CETP) is an attractive therapeutic target for the prevention and treatment of cardiovascular diseases by lowering low-density lipoprotein cholesterol levels as well as raising high-density lipoprotein cholesterol levels in human plasma. Herein, a series of ursolic acid 3β-ester derivatives were designed, synthesized and evaluated for the CETP inhibiting activities. Among these compounds, the most active compound is U12 with an IC50 value of 2.4 μM in enzymatic assay. The docking studies showed that the possible hydrogen bond interactions between the carboxyl groups at both ends of the molecule skeleton and several polar residues (such as Ser191, Cys13 and Ser230) in the active site region of CETP could significantly enhance the inhibition activity. This study provides structural insight of the interactions between these pentacyclic triterpenoid 3β-ester derivatives and CETP protein for the further modification and optimization.
Collapse
Affiliation(s)
- Chao Chen
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Renhua Sun
- Department of Cardiology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng 224005, China
| | - Yan Sun
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoan Wen
- State Key Laboratory of Natural Medicines and Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- State Key Laboratory of Natural Medicines and Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Near-infrared heat lamp therapeutic effect on paraoxonase 1 and myeloperoxidase as potential biomarkers of redox state changes induced by γ-irradiation in albino rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:105-112. [DOI: 10.1016/j.jphotobiol.2018.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/21/2022]
|
9
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
10
|
Jiang C, Zhao Y, Yang Y, He J, Zhang W, Liu J. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle. Mol Pharm 2018; 15:1017-1027. [DOI: 10.1021/acs.molpharmaceut.7b00923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Yi Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Yun Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| |
Collapse
|
11
|
Chen D, Huang X, Zhou H, Luo H, Wang P, Chang Y, He X, Ni S, Shen Q, Cao G, Sun H, Wen X, Liu J. Discovery of pentacyclic triterpene 3β-ester derivatives as a new class of cholesterol ester transfer protein inhibitors. Eur J Med Chem 2017; 139:201-213. [DOI: 10.1016/j.ejmech.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/08/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
|
12
|
Martinez LO, Genoux A, Ferrières J, Duparc T, Perret B. Serum inhibitory factor 1, high-density lipoprotein and cardiovascular diseases. Curr Opin Lipidol 2017; 28:337-346. [PMID: 28504983 DOI: 10.1097/mol.0000000000000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The atheroprotective properties of HDL are supported by epidemiological and preclinical research. However, the results of interventional trials paradoxically indicate that drugs increasing HDL-cholesterol (HDL-C) do not reduce coronary artery disease (CAD) risk. Moreover, Mendelian randomization studies have shown no effect of HDL-C-modifying variants on CAD outcome. Thus, the protective effects of HDL particles are more governed by their functional status than their cholesterol content. In this context, any successful clinical exploitation of HDL will depend on the identification of HDL-related biomarkers, better than HDL-C level, for assessing cardiovascular risk and monitoring responses to treatment. RECENT FINDINGS Recent studies have enlightened the role of ecto-F1-ATPase as a cell surface receptor for apoA-I, the major apolipoprotein of HDL, involved in the important metabolic and vascular atheroprotective functions of HDL. In the light of these findings, the clinical relevance of ecto-F1-ATPase in humans has recently been supported by the identification of serum F1-ATPase inhibitor (IF1) as an independent determinant of HDL-C, CAD risk and cardiovascular mortality in CAD patients. SUMMARY Serum IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in high-risk populations or to determine pharmacotherapy.
Collapse
Affiliation(s)
- Laurent O Martinez
- aInstitut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases bUniversity of Toulouse, UMR1048, Paul Sabatier University cService de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse dDepartment of Cardiology, Toulouse Rangueil University Hospital eINSERM UMR 1027, Department of Epidemiology, Toulouse University School of Medicine, Toulouse, France
| | | | | | | | | |
Collapse
|
13
|
Vallianou I, Hadzopoulou-Cladaras M. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression. PLoS One 2016; 11:e0147117. [PMID: 26784701 PMCID: PMC4718691 DOI: 10.1371/journal.pone.0147117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect.
Collapse
Affiliation(s)
- Ioanna Vallianou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Margarita Hadzopoulou-Cladaras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- * E-mail:
| |
Collapse
|
14
|
Ljunggren SA, Levels JHM, Hovingh K, Holleboom AG, Vergeer M, Argyri L, Gkolfinopoulou C, Chroni A, Sierts JA, Kastelein JJ, Kuivenhoven JA, Lindahl M, Karlsson H. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1587-95. [PMID: 26454245 DOI: 10.1016/j.bbalip.2015.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/24/2022]
Abstract
The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1(P297S) mutation are characterized by increased HDL cholesterol levels, impaired cholesterol efflux from macrophages and attenuated adrenal function. Here, the composition and function of lipoproteins were studied in SR-B1(P297S) heterozygotes.Lipoproteins from six SR-B1(P297S) carriers and six family controls were investigated. HDL and LDL/VLDL were isolated by ultracentrifugation and proteins were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. HDL antioxidant properties, paraoxonase 1 activities, apoA-I methionine oxidations and HDL cholesterol efflux capacity were assessed.Multivariate modeling separated carriers from controls based on lipoprotein composition. Protein analyses showed a significant enrichment of apoE in LDL/VLDL and of apoL-1 in HDL from heterozygotes compared to controls. The relative distribution of plasma apoE was increased in LDL and in lipid-free form. There were no significant differences in paraoxonase 1 activities, HDL antioxidant properties or HDL cholesterol efflux capacity but heterozygotes showed a significant increase of oxidized methionines in apoA-I.The SR-B1(P297S) mutation affects both HDL and LDL/VLDL protein compositions. The increase of apoE in carriers suggests a compensatory mechanism for attenuated SR-B1 mediated cholesterol uptake by HDL. Increased methionine oxidation may affect HDL function by reducing apoA-I binding to its targets. The results illustrate the complexity of lipoprotein metabolism that has to be taken into account in future therapeutic strategies aiming at targeting SR-B1.
Collapse
Affiliation(s)
- Stefan A Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Johannes H M Levels
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| | - Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| | - Menno Vergeer
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| | - Letta Argyri
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece.
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece.
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece.
| | - Jeroen A Sierts
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| | - John J Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, section for Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Mats Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Ramirez A, Hu PP. Low High-Density Lipoprotein and Risk of Myocardial Infarction. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:113-7. [PMID: 26692765 PMCID: PMC4670046 DOI: 10.4137/cmc.s26624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
Low HDL is an independent risk factor for myocardial infarction. This paper reviews our current understanding of HDL, HDL structure and function, HDL subclasses, the relationship of low HDL with myocardial infarction, HDL targeted therapy, and clinical trials and studies. Furthermore potential new agents, such as alirocumab (praluent) and evolocumab (repatha) are discussed.
Collapse
Affiliation(s)
- A Ramirez
- University of California, Riverside, School of Medicine, Riverside, CA, USA. ; Riverside Medical Clinic, Riverside, CA, USA
| | - P P Hu
- University of California, Riverside, School of Medicine, Riverside, CA, USA. ; Riverside Medical Clinic, Riverside, CA, USA
| |
Collapse
|
16
|
Protective effects of Xiongshao Capsule (芎芍胶囊) on anti-inflammatory function of high-density lipoprotein in an atherosclerosis rabbit model. Chin J Integr Med 2015; 23:357-361. [DOI: 10.1007/s11655-015-2298-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 12/29/2022]
|
17
|
Lichtenstein L, Serhan N, Espinosa-Delgado S, Fabre A, Annema W, Tietge UJF, Robaye B, Boeynaems JM, Laffargue M, Perret B, Martinez LO. Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport. Cardiovasc Res 2015; 106:314-23. [PMID: 25770145 DOI: 10.1093/cvr/cvv109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/07/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS High-density lipoproteins (HDLs) protect against atherosclerosis mainly due to their function in hepatobiliary reverse cholesterol transport (RCT). This is a process whereby excess cholesterol from peripheral tissues is transported by HDL particles to the liver for further metabolism and biliary excretion. Hepatic uptake of HDL holoparticles involves the P2Y13 receptor, independently of the selective cholesteryl ester uptake mediated by scavenger receptor class B, type I (SR-BI). Accordingly, P2Y13-deficient mice (P2Y13 (-/-)) have impaired RCT. This study assessed whether P2Y13 deficiency would affect atherosclerotic development. METHODS AND RESULTS P2Y13 (-/-) mice were crossbred with atherosclerosis-prone apoE(-/-) mice. When 15 weeks old, P2Y13 (-/-)/apoE(-/-) mice had more aortic sinus lesions than apoE(-/-) mice. Bone marrow transplantation showed that the absence of the P2Y13 receptor in blood cells did not lead to significantly greater atherosclerotic plaque size formation compared with control apoE(-/-) reconstituted animals. Conversely, the absence of the P2Y13 receptor, except in blood cells, resulted in lesion sizes similar to that in P2Y13 (-/-)/apoE(-/-) reconstituted mice, pointing to a role for non-haematopoietic-derived P2Y13. Unexpectedly, P2Y13 (-/-)/apoE(-/-) mice displayed a lower HDL-cholesterol level than apoE(-/-) mice, which might be due to greater SR-BI expression in the liver. However, P2Y13 deficiency in apoE(-/-) mice was translated into reduced biliary and faecal sterol excretion and impaired RCT from macrophage to faeces, suggesting that an alteration in hepatobiliary RCT could be solely responsible for the greater atherosclerosis observed. CONCLUSION The P2Y13 receptor protects against atherosclerosis, primarily through its role in hepatobiliary RCT.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Nizar Serhan
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Sara Espinosa-Delgado
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Aurélie Fabre
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Laffargue
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Bertrand Perret
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent O Martinez
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France CHU de Toulouse, Hôpital Purpan, Toulouse, France INSERM U1048, Bât. L3, Hôpital Rangueil, BP 84225, 31432 Toulouse cedex 04, France
| |
Collapse
|
18
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
19
|
George M, Selvarajan S, Muthukumar R, Elangovan S. Looking into the Crystal Ball—Upcoming Drugs for Dyslipidemia. J Cardiovasc Pharmacol Ther 2014; 20:11-20. [DOI: 10.1177/1074248414545127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dyslipidaemia is a critical risk factor for the development of cardiovascular complications such as ischemic heart disease and stroke. Although statins are effective anti-dyslipidemic drugs, their usage is fraught with issues such as failure of adequate lipid control in 30% of cases and intolerance in select patients. The limited potential of other alternatives such as fibrates, bile acid sequestrants and niacin has spurred the search for novel drug molecules with better efficacy and safety. CETP inhibitors such as evacetrapib and anacetrapib have shown promise in raising HDL besides LDL lowering property. Microsomal triglyceride transfer protein (MTP) inhibitors such as lomitapide and Apo CIII inhibitors such as mipomersen have recently been approved in Familial Hypercholesterolemia but experience in the non-familial setting is pretty much limited. One of the novel anti-dyslipidemic drugs which is greatly anticipated to make a mark in LDL-C control is the PCSK9 inhibitors. Some of the anti-dyslipidemic drugs which work by PCSK9 inhibition include evolocumab, alirocumab and ALN-PCS. Other approaches that are being given due consideration include farnesoid X receptor modulation and Lp-PLA2 inhibition. While it may not be an easy proposition to dismantle statins from their current position as a cholesterol reducing agent and as a drug to reduce coronary and cerebro-vascular atherosclerosis, our improved understanding of the disease and appropriate harnessing of resources using sound and robust technology could make rapid in-roads in our pursuit of the ideal anti-dyslipidemic drug.
Collapse
Affiliation(s)
- Melvin George
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| | - Sandhiya Selvarajan
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Rajaram Muthukumar
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| | - Shanmugam Elangovan
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| |
Collapse
|
20
|
A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925302. [PMID: 25110708 PMCID: PMC4109135 DOI: 10.1155/2014/925302] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 12/18/2022]
Abstract
Hyperlipidemia, characterized by the abnormal blood lipid profiles, is one of the dominant factors of many chronic diseases such as diabetes, obesity, and cardiovascular diseases (CVD). For the low cost, effectiveness, and fewer side effects, the popularity of using traditional Chinese medicine (TCM) to handle hyperlipidemia is increasing and its role in health care has been recognized by the public at large. Despite the importance of TCM herbs and formulations, there is no comprehensive review summarizing their scientific findings on handling hyperlipidemia. This review summarizes the recent experimental and clinical results of nine representative single Chinese herbs and seven classic TCM formulae that could improve lipid profiles so as to help understand and compare their underlying mechanisms. Most of single herbs and formulae demonstrated the improvement of hyperlipidemic conditions with multiple and diverse mechanisms of actions similar to conventional Western drugs in spite of their mild side effects. Due to increasing popularity of TCM, more extensive, well-designed preclinical and clinical trials on the potential synergistic and adverse side effects of herb-drug interactions as well as their mechanisms are warranted. Hyperlipidemic patients should be warned about the potential risks of herb-drug interactions, particularly those taking anticoagulants and antiplatelet drugs.
Collapse
|