1
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Rangel-López A, González-Cabello H, Paniagua-Medina ME, López-Romero R, Arriaga-Pizano LA, Lozano-Ramírez M, Pérez-Barragán JJ, Márquez-González H, López-Sánchez DM, Mata-Rocha M, Paniagua-Sierra R, Majluf-Cruz A, Villanueva-García D, Zavala-Vega S, Núñez-Enríquez JC, Mejía-Aranguré JM, Arellano-Galindo J. Levels of Plasma Endothelin-1, Circulating Endothelial Cells, Endothelial Progenitor Cells, and Cytokines after Cardiopulmonary Bypass in Children with Congenital Heart Disease: Role of Endothelin-1 Regulation. Int J Mol Sci 2024; 25:8895. [PMID: 39201580 PMCID: PMC11354401 DOI: 10.3390/ijms25168895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Congenital heart disease (CHD) can be complicated by pulmonary arterial hypertension (PAH). Cardiopulmonary bypass (CPB) for corrective surgery may cause endothelial dysfunction, involving endothelin-1 (ET-1), circulating endothelial cells (CECs), and endothelial progenitor cells (EPCs). These markers can gauge disease severity, but their levels in children's peripheral blood still lack consensus for prognostic value. The aim of our study was to investigate changes in ET-1, cytokines, and the absolute numbers (Ɲ) of CECs and EPCs in children 24 h before and 48 h after CPB surgery to identify high-risk patients of complications. A cohort of 56 children was included: 41 cases with CHD-PAH (22 with high pulmonary flow and 19 with low pulmonary flow) and 15 control cases. We observed that Ɲ-CECs increased in both CHD groups and that Ɲ-EPCs decreased in the immediate post-surgical period, and there was a strong negative correlation between ET-1 and CEC before surgery, along with significant changes in ET-1, IL8, IL6, and CEC levels. Our findings support the understanding of endothelial cell precursors' role in endogenous repair and contribute to knowledge about endothelial dysfunction in CHD.
Collapse
Affiliation(s)
- Angélica Rangel-López
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico; (A.R.-L.); (M.L.-R.); (R.P.-S.)
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico
| | - Héctor González-Cabello
- Departamento de Neonatología e Infantes, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico; (H.G.-C.); (J.J.P.-B.)
| | | | - Ricardo López-Romero
- Unidad de Investigación en Biomedicina y Oncología Genómica, Hospital de Gineco-Pediatría 3A, IMSS, Mexico City 07760, Mexico;
| | - Lourdes Andrea Arriaga-Pizano
- Unidad de Investigación en Inmunoquímica, UMAE Hospital de Especialidades, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Miguel Lozano-Ramírez
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico; (A.R.-L.); (M.L.-R.); (R.P.-S.)
| | - Juan José Pérez-Barragán
- Departamento de Neonatología e Infantes, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico; (H.G.-C.); (J.J.P.-B.)
- Departamento de Trasplantes, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Horacio Márquez-González
- Servicio de Cardiopatías Congénitas-UMAE Hospital de Cardiología, CMN SXXI IMSS, Mexico City 06720, Mexico;
- Departamento de Investigación Clínica, Hospital Infantil de México Federico Gómez, SS, Mexico City 06720, Mexico
| | - Dulce María López-Sánchez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico; (D.M.L.-S.); (J.C.N.-E.)
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, SS, Mexico City 14080, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana-UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Ramon Paniagua-Sierra
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico; (A.R.-L.); (M.L.-R.); (R.P.-S.)
| | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Hemostasia, Trombosis y Aterogénesis, Hospital General Regional 1, IMSS, Mexico City 03103, Mexico;
| | - Dina Villanueva-García
- División de Neonatología, Hospital Infantil de México Federico Gómez, SS, Mexico City 06720, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, SS, Mexico City 14269, Mexico;
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico; (D.M.L.-S.); (J.C.N.-E.)
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico; (D.M.L.-S.); (J.C.N.-E.)
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico
| |
Collapse
|
3
|
Adão R, Perez-Vizcaino F, Redwan B, Brás-Silva C. Editorial: Therapeutics in pulmonary arterial hypertension. Front Cardiovasc Med 2024; 11:1463305. [PMID: 39165259 PMCID: PMC11333342 DOI: 10.3389/fcvm.2024.1463305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Affiliation(s)
- Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bassam Redwan
- Department of Thoracic Surgery, Klinik am Park, Klinikum Westfalen, Lünen, Germany
- Faculty of Medicine, University of Witten Herdecke, Witten, Germany
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Santos-Gomes J, Mendes-Ferreira P, Adão R, Maia-Rocha C, Rego B, Poels M, Saint-Martin Willer A, Masson B, Provencher S, Bonnet S, Montani D, Perros F, Antigny F, Leite-Moreira AF, Brás-Silva C. Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function. Int J Mol Sci 2024; 25:8054. [PMID: 39125620 PMCID: PMC11311781 DOI: 10.3390/ijms25158054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Rats
- Cell Proliferation/genetics
- Disease Models, Animal
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Monocrotaline
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Vascular Remodeling/genetics
- Ventricular Function, Right
Collapse
Affiliation(s)
- Joana Santos-Gomes
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, 91190 Paris, France;
| | - Rui Adão
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carolina Maia-Rocha
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Beatriz Rego
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Manu Poels
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Anaïs Saint-Martin Willer
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Bastien Masson
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 4G5, Canada; (S.P.); (S.B.)
- Department of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 4G5, Canada; (S.P.); (S.B.)
- Department of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - David Montani
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, 91190 Paris, France;
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Fabrice Antigny
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Adelino F. Leite-Moreira
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Faculty of Nutrition and Food Sciences, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
5
|
Correale M, Tricarico L, Bevere EML, Chirivì F, Croella F, Severino P, Mercurio V, Magrì D, Dini F, Licordari R, Beltrami M, Dattilo G, Salzano A, Palazzuoli A. Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update. Biomolecules 2024; 14:552. [PMID: 38785959 PMCID: PMC11117582 DOI: 10.3390/biom14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare subtype of group 1 pulmonary hypertension (PH) diseases, characterized by high pulmonary artery pressure leading to right ventricular dysfunction and potential life-threatening consequences. PAH involves complex mechanisms: vasoconstriction, vascular remodeling, endothelial dysfunction, inflammation, oxidative stress, fibrosis, RV remodeling, cellular hypoxia, metabolic imbalance, and thrombosis. These mechanisms are mediated by several pathways, involving molecules like nitric oxide and prostacyclin. PAH diagnosis requires clinical evaluation and right heart catheterization, confirming a value of mPAP ≥ 20 mmHg at rest and often elevated pulmonary vascular resistance (PVR). Even if an early and accurate diagnosis is crucial, PAH still lacks effective biomarkers to assist in its diagnosis and prognosis. Biomarkers could contribute to arousing clinical suspicion and serve for prognosis prediction, risk stratification, and dynamic monitoring in patients with PAH. The aim of the present review is to report the main novelties on new possible biomarkers for the diagnosis, prognosis, and treatment monitoring of PAH.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Ospedali Riuniti University Hospital, 71100 Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Francesca Croella
- Cardiothoracic Vascular Department, Division of Provincial Cardiology, Santissima Annunziata Hospital and Delta Hospital, Azienda Unità Sanitaria Locale di Ferrara, 44121 Ferrara, Italy;
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 00185 Rome, Italy;
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, 80138 Naples, Italy;
| | - Damiano Magrì
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant’Andrea, “Sapienza” Università degli Studi di Roma, 00161 Rome, Italy;
| | - Frank Dini
- Istituto Auxologico IRCCS, Centro Medico Sant’Agostino, Via Temperanza, 6, 20127 Milan, Italy;
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Roberto Licordari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy; (R.L.); (G.D.)
| | - Matteo Beltrami
- Arrhythmia and Electrophysiology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Giuseppe Dattilo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy; (R.L.); (G.D.)
| | - Andrea Salzano
- Cardiology Unit, AORN A Cardarelli, 80131 Naples, Italy;
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio-Thoracic and Vascular Department, S. Maria alle Scotte Hospital, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
6
|
Judina A, Niglas M, Leonov V, Kirkby NS, Diakonov I, Wright PT, Zhao L, Mitchell JA, Gorelik J. Pulmonary Hypertension-Associated Right Ventricular Cardiomyocyte Remodelling Reduces Treprostinil Function. Cells 2023; 12:2764. [PMID: 38067192 PMCID: PMC10705885 DOI: 10.3390/cells12232764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Pulmonary hypertension (PH)-associated right ventricular (RV) failure is linked to a reduction in pulmonary vasodilators. Treprostinil has shown effectiveness in PAH patients with cardiac decompensation, hinting at potential cardiac benefits. We investigated treprostinil's synergy with isoprenaline in RV and LV cardiomyocytes. We hypothesised that disease-related RV structural changes in cardiomyocytes would reduce contractile responses and cAMP/PKA signalling activity. (2) We induced PH in male Sprague Dawley rats using monocrotaline and isolated their ventricular cardiomyocytes. The effect of in vitro treprostinil and isoprenaline stimulation on contraction was assessed. FRET microscopy was used to study PKA activity associated with treprostinil stimulation in AKAR3-NES FRET-based biosensor-expressing cells. (3) RV cells exhibited maladaptive remodelling with hypertrophy, impaired contractility, and calcium transients compared to control and LV cardiomyocytes. Combining treprostinil and isoprenaline failed to enhance inotropy in PH RV cardiomyocytes. PH RV cardiomyocytes displayed an aberrant contractile behaviour, which the combination treatment could not rectify. Finally, we observed decreased PKA activity in treprostinil-treated PH RV cardiomyocytes. (4) PH-associated RV cardiomyocyte remodelling reduced treprostinil sensitivity, inotropic support, and impaired relaxation. Overall, this study highlights the complexity of RV dysfunction in advanced PH and suggests the need for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Judina
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Marili Niglas
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Vladislav Leonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, 37134 Verona, Italy
| | - Nicholas S. Kirkby
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Peter T. Wright
- Definitely School of Life and Health Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
| | - Lan Zhao
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Jane A. Mitchell
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| |
Collapse
|
7
|
Wan M, Lu C, Liu Y, Luo F, Zhou J, Xu F. Mesenchymal stem cell-derived extracellular vesicles prevent the formation of pulmonary arterial hypertension through a microRNA-200b-dependent mechanism. Respir Res 2023; 24:233. [PMID: 37759281 PMCID: PMC10523762 DOI: 10.1186/s12931-023-02474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) have been highly studied with their critical roles as carriers of therapeutic targets such as microRNAs (miRNAs) in the treatment of human diseases, including pulmonary arterial hypertension (PAH). Herein, we tried to study the potential of BMSC-EVs to deliver miR-200b for the regulation of macrophage polarization in PAH. METHODS Rat models of PAH were induced with monocrotaline treatment, followed by miR-200b expression detection in lung tissues, pulmonary artery smooth muscle cells (PASMCs) and macrophages. miR-200b-containing BMSCs or miR-200b-deficient BMSCs were selected to extract EVs. Then, we assessed the changes in rats with PAH-associated disorders as well as in vitro macrophage polarization and the functions of PASMCs after treatment with BMSC-EVs. Moreover, the interaction between miR-200b, phosphodiesterase 1 A (PDE1A) was identified with a luciferase assay, followed by an exploration of the downstream pathway, cAMP-dependent protein kinase (PKA). RESULTS miR-200b was reduced in lung tissues, PASMCs and macrophages of rats with PAH-like pathology. BMSC-EVs transferred miR-200b into macrophages, and subsequently accelerated their switch to the M2 phenotype and reversed the PAH-associated disorders. Furthermore, miR-200b carried by BMSC-EVs induced PKA phosphorylation by targeting PDE1A, thereby expediting macrophage polarization. CONCLUSION Our current study highlighted the inhibitory role of BMSC-EV-miR-200b in PAH formation.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Caiju Lu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Yu Liu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Feng Luo
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| |
Collapse
|
8
|
Zhai C, Zhang N, Wang J, Cao M, Luan J, Liu H, Zhang Q, Zhu Y, Xue Y, Li S. Activation of Autophagy Induces Monocrotaline-Induced Pulmonary Arterial Hypertension by FOXM1-Mediated FAK Phosphorylation. Lung 2022; 200:619-631. [PMID: 36107242 DOI: 10.1007/s00408-022-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE It has been shown that activation of autophagy promotes the development of pulmonary arterial hypertension (PAH). Meanwhile, forkhead box M1 (FOXM1) has been found to induce autophagy in several types of cancer. However, it is still unclear whether FOXM1 mediates autophagy activation in PAH, and detailed mechanisms responsible for these processes are indefinite. METHOD PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) to rats. The right ventricle systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-smooth muscle actin (α-SMA) staining, and Ki67 staining were performed to evaluate the development of PAH. The protein levels of FOXM1, phospho-focal adhesion kinase (p-FAK), FAK, and LC3B were determined by immunoblotting or immunohistochemistry. RESULTS FOXM1 protein level and FAK activity were significantly increased in MCT-induced PAH rats, this was accompanied with the activation of autophagy. Pharmacological inhibition of FOXM1 or FAK suppressed MCT-induced autophagy activation, decreased RVSP, RVHI and %MT in MCT-induced PAH rats, and inhibited the proliferation of pulmonary arterial smooth muscle cells and pulmonary vessel muscularization in MCT-induced PAH rats. CONCLUSION FOXM1 promotes the development of PAH by inducing FAK phosphorylation and subsequent activation of autophagy in MCT-treated rats.
Collapse
Affiliation(s)
- Cui Zhai
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Nana Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Meng Cao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Huan Liu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yanting Zhu
- Center of Nephropathy and Hemodialysis, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Yuxin Xue
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Hong HJ, Oh YI, Park SM, An JH, Kim TH, Chae HK, Seo KW, Youn HY. Evaluation of endothelial cell-specific molecule-1 as a biomarker of glycocalyx damage in canine myxomatous mitral valve disease. BMC Vet Res 2022; 18:261. [PMID: 35790968 PMCID: PMC9254417 DOI: 10.1186/s12917-022-03344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial cell-specific molecule-1 (ESM-1) has emerged as a potential biomarker for cardiovascular disease in humans. Myxomatous mitral valve disease (MMVD) is the most common heart disease in dogs, and we hypothesized that MMVD causes chronic inflammation that increases susceptibility to endothelial glycocalyx (eGCX) damage. In this study, we measured the concentration of ESM-1 in a group of dogs with MMVD and evaluated factors affecting eGCX damage. Results Sixty-four dogs (control, n = 6; MMVD, n = 58) were enrolled in this study. There was no significant difference in serum ESM-1 concentrations among the MMVD stages. The serum ESM-1 concentration was significantly higher in the death group than in the alive group in MMVD dogs. (p = 0.006). In five dogs with MMVD, serum ESM-1 concentrations tended to decrease when the cardiac drug (pimobendan, furosemide, and digoxin) dose was increased. Conclusions In cases where MMVD progressed to decompensated heart failure with clinical symptoms and resulted in death, the concentration of serum ESM-1 increased significantly. Therefore, ESM-1 could be utilized as a new potential negative prognostic factor in patients with MMVD.
Collapse
|
11
|
Hsieh MCW, Wang WT, Yeh JL, Lin CY, Kuo YR, Lee SS, Hou MF, Wu YC. The Potential Application and Promising Role of Targeted Therapy in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10061415. [PMID: 35740436 PMCID: PMC9220101 DOI: 10.3390/biomedicines10061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet serious progressive disorder that is currently incurable. This female-predominant disease unfolds as a pan-vasculopathy that affects all layers of the vessel wall. Five classes of pharmacological agents currently exist to target the three major cellular signaling pathways identified in PAH but are incapable of effectively reversing the disease progression. While several targets have been identified for therapy, none of the current PAH specific therapies are curative and cost-effective as they fail to reverse vascular remodeling and do not address the cancer-like features of PAH. Our purpose is to review the current literature on the therapeutic management of PAH, as well as the molecular targets under consideration for therapy so as to shed light on the potential role and future promise of novel strategies in treating this high-mortality disease. This review study summarizes and discusses the potential therapeutic targets to be employed against PAH. In addition to the three major conventional pathways already used in PAH therapy, targeting PDGF/PDGFR signaling, regulators in glycolytic metabolism, PI3K/AKT pathways, mitochondrial heat shock protein 90 (HSP90), high-mobility group box-1 (HMGB1), and bromodomain and extra-terminal (BET) proteins by using their specific inhibitors, or a pharmacological induction of the p53 expression, could be attractive strategies for treating PAH.
Collapse
Affiliation(s)
- Meng-Chien Willie Hsieh
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Wei-Ting Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7675)
| |
Collapse
|
12
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
13
|
Urocortins as biomarkers in cardiovascular disease. Clin Sci (Lond) 2022; 136:1-14. [PMID: 34939089 DOI: 10.1042/cs20210732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The urocortins (Ucns) belong to the corticotropin-releasing factor (CRF) family of peptides and have multiple effects within the central nervous and the cardiovascular systems. With growing evidence indicating significant cardioprotective properties and cardiovascular actions of these peptides, the question arises as to whether the plasma profiles of the Ucns are altered in pathologic settings. While reports have shown conflicting results and findings have not been corroborated in multiple independent cohorts, it seems likely that plasma Ucn concentrations are elevated in multiple cardiovascular conditions. The degree of increase and accurate determination of circulating values of the Ucns requires further validation.
Collapse
|
14
|
Vilskersts R, Kigitovica D, Korzh S, Videja M, Vilks K, Cirule H, Skride A, Makrecka-Kuka M, Liepinsh E, Dambrova M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci 2021; 23:45. [PMID: 35008470 PMCID: PMC8744985 DOI: 10.3390/ijms23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Dana Kigitovica
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Nephrology, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Molecular Biology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Helena Cirule
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Andris Skride
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Rare Diseases, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
15
|
Han Z, Li X, Cui X, Yuan H, Wang H. The roles of immune system and autoimmunity in pulmonary arterial hypertension: A Review. Pulm Pharmacol Ther 2021; 72:102094. [PMID: 34740751 DOI: 10.1016/j.pupt.2021.102094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by increased pulmonary artery pressure which if left untreated, can lead to poor quality of life and ultimately death. It is a group of conditions and includes idiopathic PAH, familial/hereditary PAH and associated PAH. The condition has been studied for many years and its association with the immune system and in particular autoimmunity has been investigated. The mechanisms for the pathobiology of PAH are unclear although research has highlighted the role of adaptive and innate immune systems in its development. Diagnostics and therapeutic approaches range from cytokine treatments to the use of immunomodulating drugs, although there is still scope for improvements in the field. This article discusses the mechanisms linked to PAH, its association with other conditions and recent therapeutic interventions.
Collapse
Affiliation(s)
- Zhijie Han
- Department of Rheumatology and Immunology, Laizhou People's Hospital, Laizhou 261400, Shandong Province, China
| | - Xiujuan Li
- Department of Cardiology, Laizhou People's Hospital, Laizhou 261400,Shandong Province, China
| | - Xiuli Cui
- Department of Cardiology, Laizhou People's Hospital, Laizhou 261400,Shandong Province, China
| | - Hongjuan Yuan
- Department of Cardiology, Laizhou People's Hospital, Laizhou 261400,Shandong Province, China
| | - Haiping Wang
- Department of Cardiology, Laizhou People's Hospital, Laizhou 261400,Shandong Province, China.
| |
Collapse
|
16
|
Exploring Functional Differences between the Right and Left Ventricles to Better Understand Right Ventricular Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993060. [PMID: 34497685 PMCID: PMC8421158 DOI: 10.1155/2021/9993060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The right and left ventricles have traditionally been studied as individual entities. Furthermore, modifications found in diseased left ventricles are assumed to influence on right ventricle alterations, but the connection is poorly understood. In this review, we describe the differences between ventricles under physiological and pathological conditions. Understanding the mechanisms that differentiate both ventricles would facilitate a more effective use of therapeutics and broaden our knowledge of right ventricle (RV) dysfunction. RV failure is the strongest predictor of mortality in pulmonary arterial hypertension, but at present, there are no definitive therapies directly targeting RV failure. We further explore the current state of drugs and molecules that improve RV failure in experimental therapeutics and clinical trials to treat pulmonary arterial hypertension and provide evidence of their potential benefits in heart failure.
Collapse
|
17
|
Song R, Lei S, Yang S, Wu SJ. LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis. J Cell Mol Med 2021; 25:7321-7334. [PMID: 34245091 PMCID: PMC8335679 DOI: 10.1111/jcmm.16761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1‐AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1‐AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1‐AS1 and RhoA were assessed using qRT‐PCR and Western blotting, respectively. CCK‐8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual‐luciferase reporter assay, co‐immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1‐AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1‐AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT‐induced PAH rats, as well as in hypoxia‐induced hPASMCs. PAXIP1‐AS1 knockdown remarkably suppressed hypoxia‐induced cell viability and migration of hPASMCs. PAXIP1‐AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1‐AS1‐mediated biological functions. Co‐immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1‐AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1‐AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Rong Song
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Resveratrol Prevents Right Ventricle Dysfunction, Calcium Mishandling, and Energetic Failure via SIRT3 Stimulation in Pulmonary Arterial Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912434. [PMID: 34239697 PMCID: PMC8238598 DOI: 10.1155/2021/9912434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.
Collapse
|
19
|
Poitras EL, Gust SL, Kerr PM, Plane F. Repurposing of the PDE5 Inhibitor Sildenafil for the Treatment of Persistent Pulmonary Hypertension in Neonates. Curr Med Chem 2021; 28:2418-2437. [PMID: 32964819 DOI: 10.2174/0929867327666200923151924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), an important endogenous signaling molecule released from vascular endothelial cells and nerves, activates the enzyme soluble guanylate cyclase to catalyze the production of cyclic guanosine monophosphate (cGMP) from guanosine triphosphate. cGMP, in turn, activates protein kinase G to phosphorylate a range of effector proteins in smooth muscle cells that reduce intracellular Ca2+ levels to inhibit both contractility and proliferation. The enzyme phosphodiesterase type 5 (PDE5) curtails the actions of cGMP by hydrolyzing it into inactive 5'-GMP. Small molecule PDE5 inhibitors (PDE5is), such as sildenafil, prolong the availability of cGMP and therefore, enhance NO-mediated signaling. PDE5is are the first-line treatment for erectile dysfunction but are also now approved for the treatment of pulmonary arterial hypertension (PAH) in adults. Persistent pulmonary hypertension in neonates (PPHN) is currently treated with inhaled NO, but this is an expensive option and around 1/3 of newborns are unresponsive, resulting in the need for alternative approaches. Here the development, chemistry and pharmacology of PDE5is, the use of sildenafil for erectile dysfunction and PAH, are summarized and then current evidence for the utility of further repurposing of sildenafil, as a treatment for PPHN, is critically reviewed.
Collapse
Affiliation(s)
- Erika L Poitras
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Stephen L Gust
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul M Kerr
- Faculty of Nursing, Robbins Health Learning Centre, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Frances Plane
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
20
|
Yang X, Zhang L, Ye JQ, Wu XH, Zeng XX, Chen LW, Li YM. The role of ATG-7 contributes to pulmonary hypertension by impacting vascular remodeling. J Mol Cell Cardiol 2021; 157:1-13. [PMID: 33819456 DOI: 10.1016/j.yjmcc.2021.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Pulmonary hypertension (PH) is a pathophysiological syndrome with functional abnormalities of the pulmonary artery and heart, eventually becoming life threatening to the patients. Autophagy-related gene 7 (ATG)-7 is involved in many cardiovascular diseases, but little is known about the specific role of ATG-7 in the development of PH. We aimed to examine the expression of ATG-7 in PH patients and PH mice, specifically investigate pulmonary physiological responses in a mouse model with conditional deletion of ATG-7 in smooth muscle cells (SMCs) and further clarify the mechanism of PH caused by ATG-7 deficiency. METHODS AND RESULTS SMC-ATG-7-/- mice underwent echocardiography and subsequent pulmonary arterial pressure (PAP) checks. The PAP was lower in wild-type (WT) mice (22.6 ± 2.0 mmHg) than knockout (KO) mice (34.0 ± 2.5 mmHg; p < 0.001). Pulmonary artery resistance was increased in KO (17.61 ± 2.03 mm2·s-1) versus WT mice (8.91 ± 1.62 mm2·s-1; p < 0.005). Combined with these statistics, SMC-ATG7-/- mice were diagnosed with PH. The increase of ATG-7 expression in vessels from PH patients and PH mice were assessed and the effects of ATG-7 on vascular remodeling were investigated in SMCs using relevant methods. We also identified silencing ATG-7 in SMCs induced the increased level of Ca2+ and abnormal proliferation through PP2A/ 4EBP-1/ elf-4E pathway. CONCLUSIONS ATG-7 affects vascular remodeling and exerts a protective function during the pathogenesis of PH. Our study revealed a novel mechanism ATG-7 deficiency promotes cell proliferation via the interaction between PP2A, 4EBP-1 and elf-4E.
Collapse
Affiliation(s)
- Xi Yang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jian-Qiang Ye
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xiao-Hui Wu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xi-Xi Zeng
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liang-Wan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yu-Mei Li
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
21
|
Llucià-Valldeperas A, de Man FS, Bogaard HJ. Adaptation and Maladaptation of the Right Ventricle in Pulmonary Vascular Diseases. Clin Chest Med 2021; 42:179-194. [PMID: 33541611 DOI: 10.1016/j.ccm.2020.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The right ventricle is coupled to the low-pressure pulmonary circulation. In pulmonary vascular diseases, right ventricular (RV) adaptation is key to maintain ventriculoarterial coupling. RV hypertrophy is the first adaptation to diminish RV wall tension, increase contractility, and protect cardiac output. Unfortunately, RV hypertrophy cannot be sustained and progresses toward a maladaptive phenotype, characterized by dilation and ventriculoarterial uncoupling. The mechanisms behind the transition from RV adaptation to RV maladaptation and right heart failure are unraveled. Therefore, in this article, we explain the main traits of each phenotype, and how some early beneficial adaptations become prejudicial in the long-term.
Collapse
Affiliation(s)
- Aida Llucià-Valldeperas
- Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Frances S de Man
- Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Harm J Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
22
|
Tang B, Kang P, Zhu L, Xuan L, Wang H, Zhang H, Wang X, Xu J. Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure. J Bioenerg Biomembr 2021; 53:1-12. [PMID: 33394312 DOI: 10.1007/s10863-020-09867-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023]
Abstract
The favorable effect of simvastatin on pulmonary arterial hypertension (PAH) has been well defined despite the unknown etiology of PAH. However, whether simvastatin exerts similar effects on PAH induced right heart failure (RHF) remains to be determined. We aimed to investigate the function of simvastatin in PAH induced RHF. Rats in the RHF and simvastatin groups were injected intraperitoneally with monocrotaline to establish PAH-induced RHF model. The expression of miR-21-5p in rat myocardium was detected and miR-21-5p expression was inhibited using antagomiRNA. The effect of simvastatin on hemodynamic indexes, ventricular remodeling of myocardial tissues, myocardial energy metabolism, and calmodulin was explored. Dual-luciferase reporter system was used to verify the binding relationship between miR-21-5p and Smad7. In addition, the regulatory role of simvastatin in Smad7, TGFBR1 and Smad2/3 was investigated. Simvastatin treatment improved hemodynamic condition, myocardial tissue remodeling, and myocardial energy metabolism, as well as increasing calmodulin expression in rats with PAH-induced RHF. After simvastatin treatment, the expression of miR-21-5p in myocardium of rats was decreased significantly. miR-21-5p targeted Smad7 and inhibited the expression of Smad7. Compared with RHF rats, the expressions of TGFBR1 and Smad2/3 in myocardium of simvastatin-treated rats were decreased significantly. Collectively, we provided evidence that simvastatin can protect ATPase activity and maintain myocardial ATP energy reserve through the miR-21-5p/Smad/TGF-β axis, thus ameliorating PAH induced RHF.
Collapse
Affiliation(s)
- Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Pinfang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Lei Zhu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Ling Xuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Hongju Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Heng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Xiaojing Wang
- Clinical and Basic Provincial Laboratory of Respiratory System Diseases of Anhui Province, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Jiali Xu
- Department of Paediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.
| |
Collapse
|
23
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch Pharm Res 2020; 43:1276-1296. [PMID: 33245518 DOI: 10.1007/s12272-020-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
24
|
Frede W, Medert R, Poth T, Gorenflo M, Vennekens R, Freichel M, Uhl S. TRPM4 Modulates Right Ventricular Remodeling Under Pressure Load Accompanied With Decreased Expression Level. J Card Fail 2020; 26:599-609. [PMID: 32147520 DOI: 10.1016/j.cardfail.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Survival of patients with congenital heart defects including increased right ventricular pressure load (ie, tetralogy of Fallot) or pulmonary hypertension is dependent on the function of the right ventricle (RV). RV remodeling has several effects with progressive transition from compensated status to heart failure. Transient receptor potential melastatin 4 (TRPM4) forms cation channels expressed in myocardium, which was shown to modulate cardiac remodeling in the left ventricle of mice. Aim of this study was to identify the role of TRPM4 for contractile function and remodeling of the RV in a rat model of right ventricular pressure load. METHODS AND RESULTS We performed experiments with untreated rats and under monocrotaline (MCT)-induced pressure load comparing wild-type (Trpm4+/+) and TRPM4-deficient (Trpm4-/-) rats. RV function was characterized by echocardiography and contractility measurements of isolated papillary muscles. RV hypertrophy was investigated by echocardiography and by determination of hypertrophy indices. Pulmonary arterial remodeling was evaluated by echocardiography and histology. TRPM4 protein expression in RV of human, rat and mouse was detected by Western blot and quantified in rat. TRPM4 proteins were detected in RV myocardium of rat and mouse, which were not detectable in TRPM4-deficient animals. Proteins of the same size were found in RV of a pediatric patient with tetralogy of Fallot. In untreated status, Trpm4+/+ and Trpm4-/- rats showed comparable RV contractile function and dimensions. Under pressure load (42 days after MCT injection), RV hypertrophy was significantly increased in Trpm4-/- rats compared with Trpm4+/+ controls, whereas MCT-mediated alterations in cardiac contractility and pulmonary arterial remodeling were not affected by TRPM4 inactivation in rats. Finally, TRPM4 protein expression in RV was drastically reduced in MCT-treated rats, whereas left ventricle of the same animals showed no alteration in TRPM4 expression. CONCLUSIONS Right ventricular pressure load evoked by MCT treatment in rats leads to a prominent downregulation of TRPM4 protein expression in the RV and complete deletion of TRPM4 expression aggravates right ventricular hypertrophy. Thus, therapeutic modulation of TRPM4 expression and activity might represent a novel approach to target right ventricular remodeling in patients with pulmonary hypertension or otherwise loaded RV.
Collapse
Affiliation(s)
- Wiebke Frede
- Department Pediatric and Congenital Cardiology, University Medical Center, Heidelberg, Germany; Institute of Pharmacology, University Medical Center, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, University Medical Center, Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, University Medical Center, Heidelberg, Germany
| | - Matthias Gorenflo
- Department Pediatric and Congenital Cardiology, University Medical Center, Heidelberg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Vlaams Brabant, Belgium
| | - Marc Freichel
- Institute of Pharmacology, University Medical Center, Heidelberg, Germany
| | - Sebastian Uhl
- Department Pediatric and Congenital Cardiology, University Medical Center, Heidelberg, Germany; Institute of Pharmacology, University Medical Center, Heidelberg, Germany.
| |
Collapse
|
25
|
Hu Y, Yang W, Xie L, Liu T, Liu H, Liu B. Endoplasmic reticulum stress and pulmonary hypertension. Pulm Circ 2020; 10:2045894019900121. [PMID: 32110387 PMCID: PMC7000863 DOI: 10.1177/2045894019900121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Guo L, Li Y, Tian Y, Gong S, Chen X, Peng T, Wang A, Jiang Z. eIF2α promotes vascular remodeling via autophagy in monocrotaline-induced pulmonary arterial hypertension rats. Drug Des Devel Ther 2019; 13:2799-2809. [PMID: 31496656 PMCID: PMC6698179 DOI: 10.2147/dddt.s213817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Eukaryotic initiation factor 2α (eIF2α) plays important roles in the proliferation and survival of pulmonary artery smooth muscle cells (PASMCs) in animal hypoxia-induced pulmonary hypertension models. However, the underlying mechanism remains unknown at large. Autophagy has been reported to play a key role in the vascular remodeling in pulmonary arterial hypertension (PAH). The purposes of this study are to determine the functions of eIF2α and autophagy in the vascular remodeling of the monocrotaline-induced PAH rats and to clarify the correlation between eIF2α and autophagy. METHODS We established a rat model of monocrotaline-induced PAH, and we established a cell model of platelet derived growth factor (PDGF)-induced PASMCs proliferation. The vascular morphology and the expression of eIF2α, LC3B, and p62 were assessed in the pulmonary arterial tissue of Sprague-Dawleyrats and PDGF-induced PASMCs. RESULTS Autophagy was significantly active in monocrotaline model group (MCT)-induced PAH rats, which obviously promotes vascular remodeling in MCT-induced PAH rats. Furthermore, the proliferation of PASMCs was induced by PDGF in vitro. The expression of LC3B, eIF2α was increased in the PDGF-induced PASMCs proliferation, and the expression of p62 was reduced in the PDGF-induced PASMCs proliferation. Moreover, eIF2α siRNA downregulated the expression of eIF2α and LC3B, and upregulated the expression of p62 in PDGF-induced PASMCs proliferation. eIF2α siRNA inhibited the PDGF-induced PASMCs proliferation. Finally, chloroquine can upregulate the protein expression of LC3B and p62, it also can inhibit proliferation in PDGF-induced PASMCs. CONCLUSION Based on these observations, we conclude that eIF2α promotes the proliferation of PASMCs and vascular remodeling in monocrotaline-induced PAH rats through accelerating autophagy pathway.
Collapse
Affiliation(s)
- Linya Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou510000, Guangdong, People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, 510000, Guangdong, People’s Republic of China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang421002, Hunan, People’s Republic of China
- Postdoctoral Research Institute on Basic Medicine, University of South China, Hengyang, 421001, Hunan, People’s Republic of China
| | - Shaoxin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Aiping Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang421002, Hunan, People’s Republic of China
- Postdoctoral Research Institute on Basic Medicine, University of South China, Hengyang, 421001, Hunan, People’s Republic of China
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Zhisheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang421001, Hunan, People’s Republic of China
| |
Collapse
|
27
|
Toxvig AK, Wehland M, Grimm D, Infanger M, Krüger M. A focus on riociguat in the treatment of pulmonary arterial hypertension. Basic Clin Pharmacol Toxicol 2019; 125:202-214. [PMID: 31206240 DOI: 10.1111/bcpt.13272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023]
Abstract
Current treatment of pulmonary arterial hypertension (PAH) targets three signalling pathways: the nitric oxide (NO) pathway, the endothelin pathway and the prostacyclin pathway. Riociguat is a soluble guanylate cyclase stimulator, acting via the NO pathway in a new way: unlike other common drugs targeting this pathway (eg tadalafil and sildenafil), riociguat acts independently of endogenous NO. This MiniReview focuses on PAH treatment with riociguat and on its advantages and disadvantages compared with other drugs targeting the NO pathway. In the PATENT-1 trial (NCT00810693), riociguat improved significantly the 6-minute walking distance in patients suffering from PAH, with a mean difference (MD) of 36 m compared with a placebo group. The results are comparable to those found for its competitors tadalafil (MD of 33 m) and sildenafil (MD of 50 m) in the PHIRST-1 trial (NCT00125918) and the SUPER-1 trial (NCT00644605). No obvious advantages were found regarding pharmacokinetic features and adverse events. In the RESPITE study (NCT02007629), patients with PAH with insufficient response to treatment with tadalafil or sildenafil were switched to riociguat. These results indicate that riociguat might be superior regarding efficacy to PDE-5 inhibitors in a patient group, where endogenous NO production might be insufficient. This finding was further examined in the REPLACE study (NCT02891850). Moreover, riociguat has shown promising anti-proliferative, anti-inflammatory and anti-fibrotic effects in animal models. Further investigations are needed to determine whether this applies also to human beings. Taken together, riociguat induces vasodilation of the pulmonary arteries and leads to an improvement in the ability to carry out physical activity.
Collapse
Affiliation(s)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark.,Department of Microgravity and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
28
|
Rode B, Bailey MA, Marthan R, Beech DJ, Guibert C. ORAI Channels as Potential Therapeutic Targets in Pulmonary Hypertension. Physiology (Bethesda) 2019; 33:261-268. [PMID: 29897302 DOI: 10.1152/physiol.00016.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension is a complex and fatal disease that lacks treatments. Its pathophysiology involves pulmonary artery hyperreactivity, endothelial dysfunction, wall remodelling, inflammation, and thrombosis, which could all depend on ORAI Ca2+ channels. We review the knowledge about ORAI channels in pulmonary artery and discuss the interest to target them in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Baptiste Rode
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,CHU de Bordeaux, Pôle Cardio-Thoracique, Bordeaux , France
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France
| |
Collapse
|
29
|
Elucidation of Vasodilation Response and Structure Activity Relationships of N², N⁴ -Disubstituted Quinazoline 2,4-Diamines in a Rat Pulmonary Artery Model. Molecules 2019; 24:molecules24020281. [PMID: 30646523 PMCID: PMC6358775 DOI: 10.3390/molecules24020281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease arising from various etiologies and pathogenesis. PAH decreases life expectancy due to pulmonary vascular remodeling, elevation of mean pulmonary arterial pressure, and ultimately progresses to heart failure. While clinical treatments are available to reduce the associated symptoms, a complete cure has yet to be found. Phosphodiesterase-5 (PDE-5) inhibition has been identified as a possible intervention point in PAH treatment. The functional vasodilation response to N2,N4-diamino quinazoline analogues with differing PDE-5 inhibitory activities and varying physicochemical properties were assessed in both endothelium-intact and denuded rat pulmonary arteries to gain greater insight into their mode of action. All analogues produced vasorelaxant effects with EC50s ranging from 0.58 ± 0.22 µM to ˃30 µM. It was observed that vasodilation response in intact vessels was highly correlated with that of denuded vessels. The ~10% drop in activity is consistent with a loss of the nitric oxide mediated cyclic guanosine monophosphate (NO/cGMP) pathway in the latter case. A moderate correlation between the vasodilation response and PDE-5 inhibitory activity in the intact vessels was observed. Experimental protocol using the alpha-adrenergic (α1) receptor agonist, phenylephrine (PE), was undertaken to assess whether quinazoline derivatives showed competitive behavior similar to the α1 receptor blocker, prazosin, itself a quinazoline derivative, or to the PDE-5 inhibitor, sildenafil. Competitive experiments with the α1-adrenergic receptor agonist point to quinazoline derivatives under investigation here act via PDE-5 inhibition and not the former. The pre-incubation of pulmonary arterial rings with quinazoline test compounds (10 μM) reduced the contractile response to PE around 40–60%. The most promising compound (9) possessed ~32 folds higher selectivity in terms of vasodilation to its mammalian A549 cell cytotoxicity. This study provides experi0 0mental basis for PDE-5 inhibition as the mode of action for vasodilation by N2,N4-diamino quinazoline analogues along with their safety studies that may be beneficial in the treatment of various cardiovascular pathologies.
Collapse
|
30
|
Adão R, Mendes-Ferreira P, Maia-Rocha C, Santos-Ribeiro D, Rodrigues PG, Vidal-Meireles A, Monteiro-Pinto C, Pimentel LD, Falcão-Pires I, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clin Exp Pharmacol Physiol 2018; 46:255-265. [PMID: 30339273 DOI: 10.1111/1440-1681.13043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Abstract
We have previously shown that treatment with recombinant human neuregulin-1 (rhNRG-1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)-induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG-1 treatment showed direct myocardial anti-remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG-1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG-1 treatment on ventricular passive stiffness in RV and LV samples from MCT-induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling-associated genes and calcium handling proteins. Chronic rhNRG-1 treatment decreased passive tension development in RV and LV isolated from animals with MCT-induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG-1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB-induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac-specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG-1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.
Collapse
Affiliation(s)
- Rui Adão
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diana Santos-Ribeiro
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Gonçalves Rodrigues
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Vidal-Meireles
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Monteiro-Pinto
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís D Pimentel
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Zhai C, Shi W, Feng W, Zhu Y, Wang J, Li S, Yan X, Wang Q, Zhang Q, Chai L, Li C, Liu P, Li M. Activation of AMPK prevents monocrotaline-induced pulmonary arterial hypertension by suppression of NF-κB-mediated autophagy activation. Life Sci 2018; 208:87-95. [DOI: 10.1016/j.lfs.2018.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023]
|
32
|
The integrated stress response system in cardiovascular disease. Drug Discov Today 2018; 23:920-929. [DOI: 10.1016/j.drudis.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
|
33
|
Adão R, Mendes-Ferreira P, Santos-Ribeiro D, Maia-Rocha C, Pimentel LD, Monteiro-Pinto C, Mulvaney EP, Reid HM, Kinsella BT, Potus F, Breuils-Bonnet S, Rademaker MT, Provencher S, Bonnet S, Leite-Moreira AF, Brás-Silva C. Urocortin-2 improves right ventricular function and attenuates pulmonary arterial hypertension. Cardiovasc Res 2018; 114:1165-1177. [DOI: 10.1093/cvr/cvy076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Abstract
Aims
Pulmonary arterial hypertension (PAH) is a devastating disease and treatment options are limited. Urocortin-2 (Ucn-2) has shown promising therapeutic effects in experimental and clinical left ventricular heart failure (HF). Our aim was to analyse the expression of Ucn-2 in human and experimental PAH, and to investigate the effects of human Ucn-2 (hUcn-2) administration in rats with monocrotaline (MCT)-induced pulmonary hypertension (PH).
Methods and results
Tissue samples were collected from patients with and without PAH and from rats with MCT-induced PH. hUcn-2 (5 μg/kg, bi-daily, i.p., for 10 days) or vehicle was administered to male wistar rats subjected to MCT injection or to pulmonary artery banding (PAB) to induce right ventricular (RV) overload without PAH. Expression of Ucn-2 and its receptor was increased in the RV of patients and rats with PAH. hUcn-2 treatment reduced PAH in MCT rats, resulting in decreased morbidity, improved exercise capacity and attenuated pulmonary arterial and RV remodelling and dysfunction. Additionally, RV gene expression of hypertrophy and failure signalling pathways were attenuated. hUcn-2 treatment also attenuated PAB-induced RV hypertrophy.
Conclusions
Ucn-2 levels are altered in human and experimental PAH. hUcn-2 treatment attenuates PAH and RV dysfunction in MCT-induced PH, has direct anti-remodelling effects on the pressure-overloaded RV, and improves pulmonary vascular function.
Collapse
Affiliation(s)
- Rui Adão
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Diana Santos-Ribeiro
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís D Pimentel
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Cláudia Monteiro-Pinto
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Eamon P Mulvaney
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin,Ireland
| | - Helen M Reid
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin,Ireland
| | - B Therese Kinsella
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin,Ireland
| | - François Potus
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Canada
| | - Miriam T Rademaker
- Department of Medicine, Christchurch Heart Institute, University of Otago-Christchurch, Christchurch, New Zealand
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Canada
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular Research and Development Center - UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
34
|
Zhang J, Cao Y, Gao X, Zhu M, Zhang Z, Yang Y, Guo Q, Peng Y, Wang E. Lipopolysaccharide acutely suppresses right-ventricular strain in rats with pulmonary artery hypertension. Pulm Circ 2017; 8:2045893217744504. [PMID: 29251561 PMCID: PMC5798687 DOI: 10.1177/2045893217744504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Worsening right ventricular (RV) dysfunction in the presence of pulmonary artery hypertension (PAH) increases morbidity and mortality in this patient population. Transthoracic echocardiography (TTE) is a non-invasive modality to evaluate RV function over time. Using a monocrotaline-induced PAH rat model, we evaluated the effect of acute inflammation on RV function. In this study, both PAH and control rats were injected with Escherichia coli lipopolysaccharide (LPS) to induce an acute inflammatory state. We evaluated survival curves, TTE parameters, and inflammatory markers to better understand the mechanism and impact of acute inflammation on RV function in the presence of PAH. The survival curve of the PAH rats dropped sharply within 9 h after LPS treatment. Several echocardiographic parameters including left ventricular (LV) stroke volume, RV tricuspid annular plane systolic excursion, RV longitudinal peak systolic strain, and strain rate decreased significantly in PAH rats before LPS injection and 2 h after LPS injection. The expression of phospholamban (PLB) and tumor necrosis factor-α (TNF-α) significantly increased and the expression of SERCA2a significantly decreased in PAH rats after LPS administration. LPS suppressed the RV longitudinal peak systolic strain and strain rate and cardiac function deteriorated in PAH rats. These effects may be associated with the signal pathway activity of SERCA2a/PLB.
Collapse
Affiliation(s)
- Junjie Zhang
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanan Cao
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowei Gao
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maoen Zhu
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Zhang
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Yang
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qulian Guo
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yonggang Peng
- 2 Department of Anesthesiology, Shands Hospital, University of Florida, Gainesville, FL, USA
| | - E Wang
- 1 159374 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Liu R, Zhang Q, Luo Q, Qiao H, Wang P, Yu J, Cao Y, Lu B, Qu L. Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling. Int J Biochem Cell Biol 2017; 88:100-112. [PMID: 28476501 DOI: 10.1016/j.biocel.2017.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/20/2017] [Accepted: 05/02/2017] [Indexed: 11/25/2022]
Abstract
It has been shown that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH). Norepinephrine (NE) levels are increased by chemoreflex-dependent sympathetic overactivation and involved in pulmonary vascular remodeling. However, the underlying mechanisms of the remodeling induced by NE are poorly understood. In this study, we found that, in vivo, the expression of tyrosine hydroxylase and the concentration of plasma NE were increased in PAH rats compared with normal rats. Increases in ventricular hypertrophy and medial width of the pulmonary arteries were reversed by prazosin, α1-adrenoceptor (α1-AR) antagonists, in PAH rats. Elevated expression of α1D-AR was detected in PAH rats. In addition, prazosin reduced the increasing expression of PCNA, CyclinA and CyclinE induced by hypoxia. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of NE on proliferation of pulmonary artery smooth muscle cells (PASMCs). We revealed that NE promoted PASMCs viability, increased the expression of PCNA, CyclinA and CyclinE, made more cells from G0/G1 phase to G2/M+S phase and enhanced the microtubule formation. Above NE-induced changes could be suppressed by BMY 7378, an inhibitor of α1D-AR. Furthermore, ERK-1/2 pathway was activated by NE. U0126, a specific inhibitor for ERK-1/2, attenuated the NE-induced proliferation of PASMCs under normoxia and hypoxia. Taken together, our results suggest that NE which stimulates α1D-AR promotes proliferation of PASMCs and the effect is, at least in part, mediated via the ERK-1/2 pathway.
Collapse
Affiliation(s)
- Ruxia Liu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qian Luo
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hui Qiao
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Juan Yu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Bo Lu
- Department of Genetics and Cell Biology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
36
|
Ahmed LA, Rizk SM, El-Maraghy SA. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats. Biochem Pharmacol 2017; 138:193-204. [PMID: 28450224 DOI: 10.1016/j.bcp.2017.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
Abstract
Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation/adverse effects
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Progenitor Cells/cytology
- Endothelial Progenitor Cells/drug effects
- Endothelial Progenitor Cells/immunology
- Endothelial Progenitor Cells/transplantation
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Flavanones/therapeutic use
- Graft Rejection/prevention & control
- Heart Ventricles/immunology
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/surgery
- Lung/blood supply
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Pulmonary Artery/pathology
- Random Allocation
- Rats, Wistar
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|