1
|
Koppisetti H, Abdella S, Nakmode DD, Abid F, Afinjuomo F, Kim S, Song Y, Garg S. Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care. Pharmaceutics 2025; 17:626. [PMID: 40430917 PMCID: PMC12114852 DOI: 10.3390/pharmaceutics17050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) have been approved by the USFDA and are widely employed in the development of various LAIs, offering controlled drug release and minimizing the side effects. Various classes of veterinary medicines, including non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, and reproductive hormones, have been successfully formulated as LAIs. Some remarkable LAI products, such as ProHeart® (moxidectin), Excede® (ceftiofur), and POSILACTM (recombinant bovine somatotropin), show clinical relevance and commercial success. This review provides comprehensive information on the formulation strategies currently being used and the emerging technologies in LAIs for veterinary purposes. Additionally, challenges in characterization, in vitro testing, in vitro in vivo correlation (IVIVC), and safety concerns regarding biocompatibility are discussed, along with the prospects for next-generation LAIs. Continued advancement in the field of LAI in veterinary medicine is essential for improving animal health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.K.); (S.A.); (D.D.N.); (F.A.); (F.A.); (S.K.); (Y.S.)
| |
Collapse
|
2
|
Bernardi B, Malafatti JOD, Moreira AJ, de Almeida Nascimento AC, Lima JB, Vermeersch LAF, Paris EC. Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release. DISCOVER NANO 2025; 20:8. [PMID: 39808365 PMCID: PMC11732827 DOI: 10.1186/s11671-024-04161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m2 g-1), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h). Zeolites were incorporated into polymeric nanofibers to be a cloxacillin (CLX) carrier in wound treatment, using electrospinning as an efficient synthesis method. The fibers produced showed good mechanical resistance and the incorporation of CLX was proven by assays to inhibit the growth of Staphylococcus aureus bacteria. The controlled release of CLX in different pH conditions, which simulate the wound environment, was carried out for up to 229 h, achieving a released CLX concentration of up to 6.18 ± 0.02 mg L-1. These results prove that obtaining a hybrid fiber (polymer-zeolite) to incorporate drugs to be released in a controlled manner was successfully achieved. The bactericidal activity of this material shows that its use for measured applications could be an alternative to conventional methods.
Collapse
Affiliation(s)
- Bárbara Bernardi
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - João Otávio Donizette Malafatti
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Andressa Cristina de Almeida Nascimento
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Juliana Bruzaca Lima
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Lilian Aparecida Fiorini Vermeersch
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
| | - Elaine Cristina Paris
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
3
|
Oh S, Park SY, Seo HI, Chung I. L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release. Pharmaceutics 2024; 17:28. [PMID: 39861677 PMCID: PMC11769003 DOI: 10.3390/pharmaceutics17010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background and objectives: The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; Methods: In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone. LTPU NPs were fabricated by water-in-oil-in-water double emulsion solvent evaporation methods; Results: The polymerization of LTPU was confirmed by 1H-NMR, 13C-NMR, and FT-IR spectroscopies. The molecular weights and polydispersity, determined with GPC, were 28,800 g/mol and 1.46, respectively. The morphology and size of NPs, characterized by DLS, FE-SEM, TEM, and confocal microscopy, showed smooth and spherical particles with diameters less than 200 nm; Conclusions: In addition, the drug loading, encapsulation efficiency, and drug release profiles, using UV-Vis spectroscopy, showed the highest encapsulation efficiency with 2.5% carboplatin and sustained release profile.
Collapse
Affiliation(s)
- Seoeun Oh
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea;
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Rahimnia SM, Saeedi M, Akbari J, Morteza-Semnani K, Hedayatizadeh-Omran A, Yazdian-Robati R. Development, Optimization, and in vitro Evaluation of Silybin-loaded PLGA Nanoparticles and Decoration with 5TR1 Aptamer for Targeted Delivery to Colorectal Cancer Cells. AAPS PharmSciTech 2024; 25:141. [PMID: 38898204 DOI: 10.1208/s12249-024-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.
Collapse
Affiliation(s)
- Seyyed Mobin Rahimnia
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
6
|
Zhou Y, Guo L, Dai G, Li B, Bai Y, Wang W, Chen S, Zhang J. An Overview of Polymeric Nanoplatforms to Deliver Veterinary Antimicrobials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:341. [PMID: 38392714 PMCID: PMC10893358 DOI: 10.3390/nano14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need to find new solutions for the global dilemma of increasing antibiotic resistance in humans and animals. Modifying the performance of existing antibiotics using the nanocarrier drug delivery system (DDS) is a good option considering economic costs, labor costs, and time investment compared to the development of new antibiotics. Numerous studies on nanomedicine carriers that can be used for humans are available in the literature, but relatively few studies have been reported specifically for veterinary pharmaceutical products. Polymer-based nano-DDS are becoming a research hotspot in the pharmaceutical industry owing to their advantages, such as stability and modifiability. This review presents current research progress on polymer-based nanodelivery systems for veterinary antimicrobial drugs, focusing on the role of polymeric materials in enhancing drug performance. The use of polymer-based nanoformulations improves treatment compliance in livestock and companion animals, thereby reducing the workload of managers. Although promising advances have been made, many obstacles remain to be addressed before nanoformulations can be used in a clinical setting. Some crucial issues currently facing this field, including toxicity, quality control, and mass production, are discussed in this review. With the continuous optimization of nanotechnology, polymer-based DDS has shown its potential in reducing antibiotic resistance to veterinary medicines.
Collapse
Affiliation(s)
- Yaxin Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lihua Guo
- Shenniu Pharmaceutical Co., Ltd., Dezhou 253034, China;
| | - Guonian Dai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
7
|
Tyler BM, Guarnieri M. Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Vet Sci 2023; 10:372. [PMID: 37368758 DOI: 10.3390/vetsci10060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Long-acting injectable (LAI) opioid formulations mitigate the harm profiles and management challenges associated with providing effective analgesia for animals. A single dose of a long-acting opioid analgesic can provide up to 72 h of clinically relevant pain management. Yet, few of these new drugs have been translated to products for veterinary clinics. Regulatory pathways allow accelerated drug approvals for generic and biosimilar drugs. These pathways depend on rigorous evidence for drug safety and pharmacokinetic evidence demonstrating bioequivalence between the new and the legacy drug. This report reviews the animal PK data associated with lipid and polymer-bound buprenorphine LAI formulations. Buprenorphine is a widely used veterinary opioid analgesic. Because of its safety profile and regulatory status, buprenorphine is more accessible than morphine, methadone, and fentanyl. This review of PK studies coupled with the well-established safety profile of buprenorphine suggests that the accelerated approval pathways may be available for this new family of LAI veterinary pharmaceuticals.
Collapse
Affiliation(s)
- Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, 1550 Orleans Street, 1550 Orleans St. CRB II, Baltimore, MD 21287, USA
| | - Michael Guarnieri
- Department of Neurosurgery, Johns Hopkins University, 1550 Orleans Street, 1550 Orleans St. CRB II, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Chen X, Wu B, Perera HA, Yan M. Synthesis of Glycopolymer Micelles for Antibiotic Delivery. Molecules 2023; 28:molecules28104031. [PMID: 37241780 DOI: 10.3390/molecules28104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, we designed biodegradable glycopolymers consisting of a carbohydrate conjugated to a biodegradable polymer, poly(lactic acid) (PLA), through a poly(ethylene glycol) (PEG) linker. The glycopolymers were synthesized by coupling alkyne end-functionalized PEG-PLA with azide-derivatized mannose, trehalose, or maltoheptaose via the click reaction. The coupling yield was in the range of 40-50% and was independent of the size of the carbohydrate. The resulting glycopolymers were able to form micelles with the hydrophobic PLA in the core and the carbohydrates on the surface, as confirmed by binding with the lectin Concanavalin A. The glycomicelles were ~30 nm in diameter with low size dispersity. The glycomicelles were able to encapsulate both non-polar (rifampicin) and polar (ciprofloxacin) antibiotics. Rifampicin-encapsulated micelles were much smaller (27-32 nm) compared to the ciprofloxacin-encapsulated micelles (~417 nm). Moreover, more rifampicin was loaded into the glycomicelles (66-80 μg/mg, 7-8%) than ciprofloxacin (1.2-2.5 μg/mg, 0.1-0.2%). Despite the low loading, the antibiotic-encapsulated glycomicelles were at least as active or 2-4 times more active than the free antibiotics. For glycopolymers without the PEG linker, the antibiotics encapsulated in micelles were 2-6 times worse than the free antibiotics.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Bin Wu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harini A Perera
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
9
|
Capêto AP, Azevedo-Silva J, Sousa S, Pintado M, Guimarães AS, Oliveira ALS. Synthesis of Bio-Based Polyester from Microbial Lipidic Residue Intended for Biomedical Application. Int J Mol Sci 2023; 24:4419. [PMID: 36901850 PMCID: PMC10003017 DOI: 10.3390/ijms24054419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In the last decade, selectively tuned bio-based polyesters have been increasingly used for their clinical potential in several biomedical applications, such as tissue engineering, wound healing, and drug delivery. With a biomedical application in mind, a flexible polyester was produced by melt polycondensation using the microbial oil residue collected after the distillation of β-farnesene (FDR) produced industrially by genetically modified yeast, Saccharomyces cerevisiae. After characterization, the polyester exhibited elongation up to 150% and presented Tg of -51.2 °C and Tm of 169.8 °C. In vitro degradation revealed a mass loss of about 87% after storage in PBS solution for 11 weeks under accelerated conditions (40 °C, RH = 75%). The water contact angle revealed a hydrophilic character, and biocompatibility with skin cells was demonstrated. 3D and 2D scaffolds were produced by salt-leaching, and a controlled release study at 30 °C was performed with Rhodamine B base (RBB, 3D) and curcumin (CRC, 2D), showing a diffusion-controlled mechanism with about 29.3% of RBB released after 48 h and 50.4% of CRC after 7 h. This polymer offers a sustainable and eco-friendly alternative for the potential use of the controlled release of active principles for wound dressing applications.
Collapse
Affiliation(s)
- Ana P. Capêto
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Ana S. Guimarães
- CONSTRUCT, Faculdade de Engenharia do Porto (FEUP), Universidade do Porto, Rua Doutor Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L. S. Oliveira
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
10
|
Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022; 348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Owing to the rapid and significant progress in advanced materials and life sciences, nanotechnology is increasingly gaining in popularity. Among numerous bio-mimicking carriers, inverse lyotropic liquid crystals are known for their unique properties. These carriers make accommodation of molecules with varied characteristics achievable due to their complicated topologies. Besides, versatile symmetries of inverse LCNPs (lyotropic crystalline nanoparticles) and their aggregating bulk phases allow them to be applied in a wide range of fields including drug delivery, food, cosmetics, material sciences etc. In this review, in-depth summary, discussion and outlook for inverse lyotropic liquid crystals are provided.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhixin Yu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Biodegradation study of PLGA as an injectable in situ depot-forming implant for controlled release of paclitaxel. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-020-03347-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Mann G, Gurave PM, Kaul A, Kadiyala KG, Pokhriyal M, Srivastava RK, Kumar A, Datta A. Polymeric and electrospun patches for drug delivery through buccal route: Formulation and biointerface evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14010464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural fibers are an important source for producing polymers, which are highly applicable in their nanoform and could be used in very broad fields such as filtration for water/wastewater treatment, biomedicine, food packaging, harvesting, and storage of energy due to their high specific surface area. These natural nanofibers could be mainly produced through plants, animals, and minerals, as well as produced from agricultural wastes. For strengthening these natural fibers, they may reinforce with some substances such as nanomaterials. Natural or biofiber-reinforced bio-composites and nano–bio-composites are considered better than conventional composites. The sustainable application of nanofibers in agricultural sectors is a promising approach and may involve plant protection and its growth through encapsulating many bio-active molecules or agrochemicals (i.e., pesticides, phytohormones, and fertilizers) for smart delivery at the targeted sites. The food industry and processing also are very important applicable fields of nanofibers, particularly food packaging, which may include using nanofibers for active–intelligent food packaging, and food freshness indicators. The removal of pollutants from soil, water, and air is an urgent field for nanofibers due to their high efficiency. Many new approaches or applicable agro-fields for nanofibers are expected in the future, such as using nanofibers as the indicators for CO and NH3. The role of nanofibers in the global fighting against COVID-19 may represent a crucial solution, particularly in producing face masks.
Collapse
|
14
|
Goel S, Dubey S, Sharma S, Jacob J. Biodegradable and pH-responsive piperazine-based aliphatic polyesters with tunable hydrophilicity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021; 604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
One of the challenges to the success of veterinary pharmacotherapy is the limited number of drugs and dosage forms available exclusively to this market, due to the interspecies variability of animals, such as anatomy, physiology, pharmacokinetics, and pharmacodynamics. For this reason, studies in this area have become a highlight, since they are still scarce in comparison with those on human drug use. To overcome many limitations related to the bioavailability, efficacy, and safety of pharmacotherapy in animals, especially livestock and domestic animals, polymers-based drug delivery systems are promising tools if they guarantee greater selectivity and less toxicity in dosage forms. In addition, these tools may be developed according to the great interspecies variability. To contribute to these discussions, this paper provides an updated review of the major polymer-based drug delivery systems projected for veterinary use. Traditional and innovative drug delivery systems based on polymers are presented, with an emphasis on films, microparticles, micelles, nanogels, nanoparticles, tablets, implants and hydrogel-based drug delivery systems. We discuss important concepts for the veterinarian about the mechanisms of drug release and, for the pharmacist, the advantages in the development of pharmaceutical forms for the animal population. Finally, challenges and opportunities are presented in the field of pharmaceutical dosage forms for veterinary use in response to the interests of the pharmaceutical industry.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Winner Duque Rodrigues
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Janaína Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil.
| |
Collapse
|
16
|
Ahmad SU, Li B, Sun J, Arbab S, Dong Z, Cheng F, Zhou X, Mahfuz S, Zhang J. Recent advances in microencapsulation of drugs for veterinary applications. J Vet Pharmacol Ther 2021; 44:298-312. [PMID: 33438767 DOI: 10.1111/jvp.12946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/27/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023]
Abstract
Microencapsulation is a process where very minute droplets or particles of solid or liquid or gas are trapped with a polymer to isolate the internal core material from external environmental hazards. Microencapsulation is applied mostly for flavor masking, fortification, and sustained and control release. It improves palatability, absorption, and bioavailability of drugs with good conformity. Microencapsulation has been widely studied in numerous drug delivery systems for human health. The application of microcapsules in the veterinary pharmaceutical sciences is increasing day by day. The treatment systems for humans and animals are likely to be similar, but more complex in the veterinary field due to the diversity of the species, breeds, body size, biotransformation rate, and other factors associated with animal physiology. Commercially viable, economically profitable, and therapeutically effective microencapsulated vaccine, anthelmintic, antibacterial, and other therapeutics have a great demand for livestock and poultry production. Nowadays, researchers emphasize the controlled and sustained-release dosage form of drugs in the veterinary field. This paper has highlighted the microencapsulation materials, preparation techniques, characteristics, roles, and the application of microcapsules in veterinary medicine.
Collapse
Affiliation(s)
- Salah Uddin Ahmad
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Bing Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jichao Sun
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhen Dong
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fusheng Cheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuzheng Zhou
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shad Mahfuz
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
17
|
Karp F, Turino LN, Helbling IM, Islan GA, Luna JA, Estenoz DA. In situ Formed Implants, Based on PLGA and Eudragit Blends, for Novel Florfenicol Controlled Release Formulations. J Pharm Sci 2020; 110:1270-1278. [PMID: 33217426 DOI: 10.1016/j.xphs.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022]
Abstract
Drug controlled release technologies (DCRTs) represent an opportunity for designing new therapies. Main objectives are dose number optimization and secondary effects reduction to improve the level of patient/client acceptance. The present work studies DCRTs based in blended polymeric implants for single dose and long-term therapies of florfenicol (FF), a broad spectrum antibiotic. Polymers used were PLGA and Eudragit E100/S100 types. Eudragit/PLGA and FF/PLGA ratios were the main studied factors in terms of encapsulation efficiencies (EEs) and drug release profiles. In addition, morphological and physicochemical characterization were carried out. EEs were of 50-100% depending on formulation composition, and the FF releasing rate was increased or diminished when E100 or S100 were added, respectively. PLGA hydrolytic cleavage products possibly affect Eudragit solubility and matrix stability. Different mathematical models were used for better understanding and simulating release processes. Implants maintained the antimicrobial activity against Pseudomonas aeruginosa up to 12 days on agar plates. The developed DCRTs represents a suitable alternative for florfenicol long-term therapies.
Collapse
Affiliation(s)
- Federico Karp
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Ludmila N Turino
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Ignacio M Helbling
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, Calle 47 y 115, La Plata 1900, Argentina
| | - Julio A Luna
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Diana A Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina.
| |
Collapse
|
18
|
Abu Hajleh MN, Al-Samydai A, Al-Dujaili EAS. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. J Cosmet Dermatol 2020; 19:2805-2811. [PMID: 32954588 DOI: 10.1111/jocd.13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Poly lactic acid and its copolymers are considered to be the preferred substrates for drug delivery devices. Poly lactic acid is a biocompatible, biodegradable and nontoxic polymer. It was approved by Food and Drug Administration and thought to be among the most attractive polymeric candidates intended for controlling drug delivery. It was utilized for the development of devices for the delivery of small molecules, proteins, genes, vaccines, anticancer drugs, and macromolecules. OBJECTIVES AND METHODS This manuscript lists the different techniques for synthesizing poly lactic acid-based nano and microparticles such as emulsion-based methods, precipitation-based methods, direct compositing methods, in situ forming micro-particles, and microfluidic technique. CONCLUSIONS In addition, it describes the application and use of poly lactic acid in biomedical and cosmetic delivery systems.
Collapse
Affiliation(s)
- Maha N Abu Hajleh
- Department of Cosmetic Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Park SY, Kang J, Yoon JY, Chung I. Synthesis and Characterization of Polyfumarateurethane Nanoparticles for Sustained Release of Bupivacaine. Pharmaceutics 2020; 12:pharmaceutics12030281. [PMID: 32245172 PMCID: PMC7151093 DOI: 10.3390/pharmaceutics12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Biodegradable polyfumarateurethane (PFU) for use as a bupivacaine delivery vehicle, synthesized using di-(2-hydroxypropyl fumarate) (DHPF), polyethylene glycol (PEG) and 1,6-hexamethylene diisocyanate (HMDI), was designed to be degradable through the hydrolysis and enzymatic degradation of the ester bonds in its polymer backbone. Using a water-in-oil-in-water double emulsion techniques, nanoparticles encapsulating water or fluorescein isothiocyanate (FITC) were fabricated to avoid the immune system owing to the presence of PEG on their surface. The morphologies of these nanoparticles were characterized by DLS, TEM, FE-SEM, and fluorescent microscopies. The present study explored the encapsulation, loading efficiency and in vitro drug release of bupivacaine encapsulated with biodegradable PFU nanoparticles for the treatment of local anesthesia. Various concentrations of bupivacaine were encapsulated into nanoparticles and their encapsulation efficiencies and drug loading were investigated. Encapsulation efficiency was highest when 2.5% bupivacaine was encapsulated. Drug release behavior from the bupivacaine-loaded PFU nanoparticles followed a sustained release profile.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jiin Kang
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Ji-Young Yoon
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Gyeongsangnam-do 50612, Korea
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
- Correspondence:
| |
Collapse
|
20
|
Karp F, Busatto C, Turino L, Luna J, Estenoz D. PLGA nano- and microparticles for the controlled release of florfenicol: Experimental and theoretical study. J Appl Polym Sci 2018. [DOI: 10.1002/app.47248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- F. Karp
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - C. Busatto
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - L. Turino
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - J. Luna
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - D. Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| |
Collapse
|
21
|
van Tienderen GS, Berthel M, Yue Z, Cook M, Liu X, Beirne S, Wallace GG. Advanced fabrication approaches to controlled delivery systems for epilepsy treatment. Expert Opin Drug Deliv 2018; 15:915-925. [PMID: 30169981 DOI: 10.1080/17425247.2018.1517745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epilepsy is a chronic brain disease characterized by unprovoked seizures, which can have severe consequences including loss of awareness and death. Currently, 30% of epileptic patients do not receive adequate seizure alleviation from oral routes of medication. Over the last decade, local drug delivery to the focal area of the brain where the seizure originates has emerged as a potential alternative and may be achieved through the fabrication of drug-loaded polymeric implants for controlled on-site delivery. AREAS COVERED This review presents an overview of the latest advanced fabrication techniques for controlled drug delivery systems for refractory epilepsy treatment. Recent advances in the different techniques are highlighted and the limitations of the respective techniques are discussed. EXPERT OPINION Advances in biofabrication technologies are expected to enable a new paradigm of local drug delivery systems through offering high versatility in controlling drug release profiles, personalized customization and multi-drug incorporation. Tackling some of the current issues with advanced fabrication methods, including adhering to GMP-standards and industrial scale-up, together with innovative solutions for complex designs will see to the maturation of these techniques and result in increased clinical research into implant-based epilepsy treatment. ABBREVIATIONS GMP: Good manufacturing process; DDS(s): Drug delivery system(s); 3D: Three-dimensional; AEDs: Anti-epileptic drugs; BBB: Blood brain barrier; PLA: Polylactic acid; PLGA: Poly(lactic-co-glycolic acid); PCL: poly(ɛ-caprolactone); ESE: Emulsification solvent evaporation; O/W: Oil-in-water; W/O/W: Water-in-oil-in-water; DZP: Diazepam; PHT: Phenytoin; PHBV: Poly(hydroxybutyrate-hydroxyvalerate); PEG: Polyethylene glycol; SWD: Spike-and-wave discharges; CAD: Computer aided design; FDM: Fused deposition modeling; ABS: Acrylonitrile butadiene styren; eEVA: Ethylene-vinyl acetate; GelMA: Gelatin methacrylate; PVA: Poly-vinyl alcohol; PDMS: Polydimethylsiloxane; SLA: Stereolithography; SLS: Selective laser sintering.
Collapse
Affiliation(s)
- Gilles Sebastiaan van Tienderen
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia.,b Utrecht University , Utrecht , The Netherlands
| | - Marius Berthel
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia.,c Department for Functional Materials in Medicine and Dentistry , University Hospital Wuerzburg , Wurzburg , Germany
| | - Zhilian Yue
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia
| | - Mark Cook
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia.,d Medicine and Radiology , Clinical Neurosciences , Fitzroy , Australia.,e Department of Medicine , University of Melbourne , Fitzroy , Australia
| | - Xiao Liu
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia
| | - Stephen Beirne
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia
| | - Gordon G Wallace
- a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , Wollongong , Australia
| |
Collapse
|
22
|
Seggiani M, Altieri R, Puccini M, Stefanelli E, Esposito A, Castellani F, Stanzione V, Vitolo S. Polycaprolactone-collagen hydrolysate thermoplastic blends: Processability and biodegradability/compostability. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Turino LN, Stella B, Dosio F, Luna JA, Barresi AA. Nanoparticles obtained by confined impinging jet mixer: poly(lactide-co-glycolide) vs. Poly-ε-caprolactone. Drug Dev Ind Pharm 2018; 44:934-941. [DOI: 10.1080/03639045.2017.1421662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ludmila N. Turino
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Torino, Italy
- Laboratorio de Química Fina. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Franco Dosio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Julio A. Luna
- Laboratorio de Química Fina. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Antonello A. Barresi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Torino, Italy
| |
Collapse
|
24
|
Bilhalva AF, Finger IS, Pereira RA, Corrêa MN, Burkert Del Pino FA. Utilization of biodegradable polymers in veterinary science and routes of administration: a literature review. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1378104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alexandre Ferreira Bilhalva
- Department of Veterinary Clinic, Núcleo de Ensino, Pesquisa e Extensão em Pecuária, Federal University of Pelotas, Pelotas, Brazil
| | - Ilusca Sampaio Finger
- Department of Veterinary Clinic, Núcleo de Ensino, Pesquisa e Extensão em Pecuária, Federal University of Pelotas, Pelotas, Brazil
| | - Rubens Alves Pereira
- Department of Veterinary Clinic, Núcleo de Ensino, Pesquisa e Extensão em Pecuária, Federal University of Pelotas, Pelotas, Brazil
| | - Marcio Nunes Corrêa
- Department of Veterinary Clinic, Núcleo de Ensino, Pesquisa e Extensão em Pecuária, Federal University of Pelotas, Pelotas, Brazil
| | | |
Collapse
|
25
|
Liu S, Zhang J, Zuo W, Zhang W, Sun WH, Ye H, Li Z. Synthesis of Aluminum Complexes Bearing 8-Anilide-5,6,7-trihydroquinoline Ligands: Highly Active Catalyst Precursors for Ring-Opening Polymerization of Cyclic Esters. Polymers (Basel) 2017; 9:polym9030083. [PMID: 30970764 PMCID: PMC6432074 DOI: 10.3390/polym9030083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/15/2022] Open
Abstract
The stoichiometric reactions of 8-(2,6-R¹-4-R²-anilide)-5,6,7-trihydroquinoline (LH) with AlR₃ (R = Me or Et) afforded the aluminum complexes LAlR₂ (Al1⁻Al5,Al1: R¹ = iPr, R² = H, R = Me; Al2: R¹ = Me, R² = H, R = Me; Al3: R¹ = H, R² = H, R = Me; Al4: R¹ = Me, R² = Me, R = Me; Al5: R¹ = Me, R² = Me, R = Et) in high yields. All aluminum complexes were characterized by NMR spectroscopy and elemental analysis. The molecular structures of complexes Al4 and Al5 were determined by single-crystal X-ray diffractions and revealed a distorted tetrahedral geometry at aluminum. In the presence of BnOH, complexes Al1⁻Al5 efficiently initiated the ring-opening homopolymerization of ε-caprolactone (ε-CL) and rac-lactide (rac-LA), respectively, in a living/controlled manner.
Collapse
Affiliation(s)
- Shaofeng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jie Zhang
- Department of Chemistry and Engineering, Central South University, Changsha 410083, China.
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Wenjuan Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hongqi Ye
- Department of Chemistry and Engineering, Central South University, Changsha 410083, China.
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
26
|
Ahmed H, Afzal MS, Mobeen M, Simsek S. An overview on different aspects of hypodermosis: Current status and future prospects. Acta Trop 2016; 162:35-45. [PMID: 27260666 DOI: 10.1016/j.actatropica.2016.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Abstract
Livestock plays a vital role in economic development of a nation and is being used in agriculture for draft power, production of farmyard manure as well as milk and meat production. Bovine hypodermosis is the top culprit among all parasitic infections across the world. Hypodermosis is an endemic disease in the mountainous areas/plain areas and is regularly observed in the northern hemisphere of the globe affecting cattle, deer, yaks and buffaloes. There is a wide variation in geographical distribution of Hypoderma spp. during the years 1945-2015. The manuscript includes a geospatial study that tries to maps the global distribution of hypodermosis in different areas of the world in order to detect hotspots or endemic areas that may be a potential source for disease spread. This information's are very useful to predict the potential high risk areas that are prone to disease outbreak. The present review aims to evaluate the global distribution, molecular discrimination, diagnostics and vaccination of hypodermosis, focusing on its current status and future perspectives towards the management of the disease and its control strategies.
Collapse
Affiliation(s)
- Haroon Ahmed
- Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan; Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey
| | - Muhammad Sohail Afzal
- Department of Chemistry, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Muhammad Mobeen
- Department of Earth Sciences, University of Sargodha, Sargodha, Pakistan
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey.
| |
Collapse
|
27
|
Zhang XY, Tong BB, Wu T, Wang YD. Synthesis and characterization of a novel amphiphilic poly (ethylene glycol)–poly (ε-caprolactone) graft copolymers. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2016.1198882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xiao-yan Zhang
- Department of Mechanical and Electrical Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Bei-bei Tong
- Department of Mechanical and Electrical Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Tao Wu
- Henan Chemical Technician College, Kaifeng, China
| | - Yu-dong Wang
- School of Materials Science and Engineering, Zheng Zhou University, Zhengzhou, China
| |
Collapse
|
28
|
Ramesh Kumar D, Elumalai R, Raichur AM, Sanjuktha M, Rajan JJ, Alavandi SV, Vijayan KK, Poornima M, Santiago TC. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae. Antiviral Res 2016; 131:124-30. [PMID: 27132538 DOI: 10.1016/j.antiviral.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp.
Collapse
Affiliation(s)
- D Ramesh Kumar
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - Rajasegaran Elumalai
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
| | - M Sanjuktha
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - J J Rajan
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - S V Alavandi
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - K K Vijayan
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - M Poornima
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - T C Santiago
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India; Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600 034, India.
| |
Collapse
|
29
|
de B. Monteiro MSDS, Rodrigues CL, Miguez E, Tavares MIB. Development of Polycaprolactone/Poly(Vinyl Alcohol)/Clay Microparticles by Spray Drying. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/msa.2016.710048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zhang Q, Ren H, Baker GL. Synthesis and click chemistry of a new class of biodegradable polylactide towards tunable thermo-responsive biomaterials. Polym Chem 2015; 6:1275-1285. [PMID: 25685199 PMCID: PMC4326109 DOI: 10.1039/c4py01425a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of clickable and biodegradable polylactide was designed and prepared via bulk polymerization of 3,6-dipropargyloxymethyl-1,4-dioxane-2,5-dione (1) which was synthesized from easily accessible propargyloxylactic acid (5). A homopolymer of 1 and random copolymer of 1 with l-lactide were obtained as amorphous materials and exhibit low Tg of 8.5 and 34 °C, respectively, indicating their promising potentials for biomedical applications. The statistical nature of random copolymers was investigated by DSC analysis and 13C NMR spectroscopy, which implies the random distribution of terminal alkyne groups along the back bone of copolymers. The efficient click post-modification of this new class of polylactide with alkyl and mPEG azides affords novel hydrophilic biomaterials, which exhibit reversible thermo-responsive properties as evidenced by their tunable LCST ranging from 22 to 69 °C depending on the balance of the incorporated hydrophilic/hydrophobic side chains. These results indicate the generality of this new class of clickable polylactide in preparing novel smart biomaterials in a simple and efficient manner via click chemistry.
Collapse
Affiliation(s)
- Quanxuan Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Hong Ren
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gregory L. Baker
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
31
|
Chansuna M, Pimpha N, Vao-soongnern V. Mesoscale simulation and experimental studies of self-assembly behavior of a PLA-PEG-PLA triblock copolymer micelle for sustained drug delivery. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0452-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Abstract
AbstractPolymers have been widely used in agriculture for applications including controlled release of pesticides and other active ingredients. The ability to predict their delivery helps avoid environmental hazards. Macromolecular matrices used as carriers in controlled release of agricultural active agents, especially pesticides, are reviewed. The review focuses on the advantages and mechanisms of controlled release. It includes biodegradable polymers in agriculture, their manufacturing methods, and their degradation mechanisms and kinetics. The article also presents a critical account of recent release studies and considers upcoming challenges.
Collapse
|
33
|
Turino LN, Mariano RN, Boimvaser S, Luna JA. In Situ-Formed Microparticles of PLGA from O/W Emulsions Stabilized with PVA: Encapsulation and Controlled Release of Progesterone. J Pharm Innov 2014. [DOI: 10.1007/s12247-014-9180-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
GREHAN LAURA, KILLION JOHNA, DEVINE DECLANM, KENNY ELAINEK, DEVERY SINEAD, HIGGINBOTHAM CLEMENTL, GEEVER LUKEM. The Development of Hot Melt Extruded Biocompatible Controlled Release Drug Delivery Devices. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.854218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Zhang W, Wang Y, Wang L, Redshaw C, Sun WH. Dialkylaluminium 2-imidazolylphenolates: Synthesis, characterization and ring-opening polymerization behavior towards lactides. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Jagan Mohan D. Synthesis, characterization and swelling properties of copolymers of N(-1,1-dimethyll-3-oxobutyl)acrylamide with methyl methacrylate. Des Monomers Polym 2013. [DOI: 10.1080/15685551.2013.867567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Dodda Jagan Mohan
- New Technologies Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Plzeň, Czech Republic
| |
Collapse
|
37
|
Jiao M, Yang K, Cao J, Liu H, Pan W, Gao P. Designing and Characterization of Poly(L-Lactide)/Poly(ϵ-Caprolactone) Multiblock Copolymers. J MACROMOL SCI B 2013. [DOI: 10.1080/00222348.2013.810058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Dhamaniya S, Jaggi HS, Nimiya M, Sharma S, Satapathy BK, Jacob J. Synthesis, characterization and biodegradation studies of chain-coupled polyesters based on tartaric acid. POLYM INT 2013. [DOI: 10.1002/pi.4569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sunil Dhamaniya
- Centre for Polymer Science and Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
| | - Harjeet S. Jaggi
- Centre for Polymer Science and Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
| | - Mohita Nimiya
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Bhabani K. Satapathy
- Centre for Polymer Science and Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
| | - Josemon Jacob
- Centre for Polymer Science and Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
| |
Collapse
|
39
|
The use of soy protein polymers as a release device for nematophagous fungi in the control of parasitic nematodes in ruminants. J Helminthol 2013; 88:511-4. [DOI: 10.1017/s0022149x13000394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis trial was conducted to evaluate the predatory activity of Duddingtonia flagrans incorporated into soy protein-based polymers as a controlled-release device (CRD). The rate of fungal release from the polymers and time of residence of the CRD in the rumen of a cannulated sheep was also determined. After administration to the sheep, the CRD was extracted at weekly intervals over a month for observation of its physical structure and faeces were collected to observe the subsequent predatory activity of the fungus in Petri dishes with water-agar 2% and Panagrellus spp. as bait. The CRD slowly degraded in the rumen over 4 weeks and liberated D. flagrans into the faeces. The formulation of the soy protein-based polymers did not affect the predatory activity of the fungus. The study demonstrates that biodegradable soy protein polymers could potentially improve the use of nematophagous fungi for controlling nematode parasites of ruminants.
Collapse
|
40
|
Ozbolat IT, Marchany M, Gardella JA, Koc B. Computer-Aided 4D Modeling of Hydrolytic Degradation in Micropatterned Bioresorbable Membranes. J Med Device 2013. [DOI: 10.1115/1.4024158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Real-time degradation studies of bioresorbable polymers can take weeks, months, and even years to conduct. For this reason, developing and validating mathematical models that describe and predict degradation can provide a means to accelerate the development of materials and devices for controlled drug release. This study aims to develop and experimentally validate a computer-aided model that simulates the hydrolytic degradation kinetics of bioresorbable polymeric micropatterned membranes for tissue engineering applications. Specifically, the model applies to circumstances that are conducive for the polymer to undergo surface erosion. The developed model provides a simulation tool enabling the prediction and visualization of the dynamic geometry of the degrading membrane. In order to validate the model, micropatterned polymeric membranes were hydrolytically degraded in vitro and the morphological changes were analyzed using optical microscopy. The model is then extended to predict spatiotemporal degradation kinetics of variational micropatterned architectures.
Collapse
Affiliation(s)
- Ibrahim T. Ozbolat
- Department of Mechanical and Industrial Engineering, Biomanufacturing Laboratory, Center for Computer-Aided Design, The University of Iowa, Iowa, IA 52242 e-mail:
| | | | - Joseph A. Gardella
- Department of Chemistry, University at Buffalo, 359 Natural Sciences Complex, Buffalo, NY 14260
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, FENS G013 Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
41
|
Azizi M, Farahmandghavi F, Joghataei M, Zandi M, Imani M, Bakhtiary M, Dorkoosh FA, Ghazizadeh F. Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0110-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Visser M, Löwenstein M, Yoon S, Rehbein S. The treatment of bovine sarcoptic mange (Sarcoptes scabiei var. bovis) using eprinomectin extended-release injection. Vet Parasitol 2013; 192:359-64. [DOI: 10.1016/j.vetpar.2012.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Janaswamy S, Gill KL, Campanella OH, Pinal R. Organized polysaccharide fibers as stable drug carriers. Carbohydr Polym 2013; 94:209-15. [PMID: 23544530 DOI: 10.1016/j.carbpol.2013.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
Abstract
Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non-toxic.
Collapse
Affiliation(s)
- Srinivas Janaswamy
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
44
|
Therapeutic efficacy of eprinomectin extended-release injection against induced infections of developing (fourth-stage larvae) and adult nematode parasites of cattle. Vet Parasitol 2012; 192:338-45. [PMID: 23273929 DOI: 10.1016/j.vetpar.2012.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The therapeutic efficacy of eprinomectin in an extended-release injection (ERI) formulation was evaluated against induced infections of developing fourth-stage larval or adult gastrointestinal and pulmonary nematodes of cattle in a series of six studies under two identical protocols (three each for developing fourth-stage larvae or adults) conducted in the USA, Germany or the UK (two studies at each location, one per stage). Each study initially included 16 nematode-free cattle. The cattle were of various breeds or crosses, weighed 109-186.5 kg prior to treatment, and were approximately 4-7 months old. The animals were blocked based on pre-treatment bodyweight and then randomly allocated to treatment: eprinomectin ERI vehicle (control) at 1 mL/50 kg body weight or eprinomectin 5% ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg) for a total of eight and eight animals in each group. Treatments were administered once on Day 0 by subcutaneous injection in front of the shoulder. In each study, cattle were infected with a combination of infective third-stage larvae or eggs of gastrointestinal and pulmonary nematodes. Inoculation was scheduled so that the nematodes were expected to be fourth-stage larvae or adults at the time of treatment. For parasite recovery, all study animals were humanely euthanized and necropsied 14-15 (adult infections) or 21-22 days after treatment (developing fourth-stage larval infections). When compared with the vehicle-treated control counts, efficacy of eprinomectin ERI against developing fourth-stage larvae and adults was ≥98% (p<0.05) for the following nematodes: Dictyocaulus viviparus, Bunostomum phlebotomum, Cooperia curticei, C. oncophora, C. surnabada, C. punctata, Haemonchus contortus, H. placei, Nematodirus helvetianus, Oesophagostomum radiatum, Oes. venulosum, Ostertagia leptospicularis, O. ostertagi, O. circumcincta, O. pinnata, O. trifurcata (developing fourth-stage larval infections only), Strongyloides papillosus, Trichostrongylus axei, T. colubriformis, and Trichuris ovis (adult infections only). All animals accepted the treatment well. No adverse reaction to treatments was observed in any animal in any study.
Collapse
|
45
|
Rehbein S, Holste JE, Smith LL, Lloyd JL. The efficacy of eprinomectin extended-release injection against Hypoderma spp. (Diptera: Oestridae) in cattle. Vet Parasitol 2012; 192:353-8. [PMID: 23273587 DOI: 10.1016/j.vetpar.2012.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficacy of eprinomectin in an extended-release injection (ERI) formulation was determined in cattle harboring naturally acquired infestations of first- or second- and third-stage larvae of Hypoderma spp. in three studies conducted according to the same protocol in the USA (two studies) and Germany (one study). Thirty cattle sourced from herds with a history of Hypoderma infestation were included in each study. Cattle were formed into replicates of three animals each on the basis of pre-treatment anti-Hypoderma antibody titers. Within replicates each animal was randomly allocated to one of the following treatments: ERI vehicle (control) at 1 mL/50 kg bodyweight, administered once on Day 0; Eprinomectin 5% ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg), administered once on Day 0 (when larvae were expected to be first instars); or Eprinomectin 5% ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg), administered once when larvae were second or third instars (study dependent, Day 73, 119, or 140). Treatments were administered by subcutaneous injection in front of the shoulder. In all studies, emerging and/or expressed Hypoderma larvae were recovered, speciated, and counted and viability was determined. Eprinomectin LAI treatment was 100% (p<0.05) efficacious against first- and second- or third-stage larvae of Hypoderma bovis (two studies) and Hypoderma lineatum (one study). All animals accepted the treatment well. No adverse reaction to treatments was observed in any animal in any study.
Collapse
Affiliation(s)
- S Rehbein
- Merial GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany.
| | | | | | | |
Collapse
|
46
|
Rehbein S, Baggott DG, Johnson EG, Kunkle BN, Yazwinski TA, Yoon S, Cramer LG, Soll MD. Nematode burdens of pastured cattle treated once at turnout with eprinomectin extended-release injection. Vet Parasitol 2012; 192:321-31. [PMID: 23273928 DOI: 10.1016/j.vetpar.2012.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The efficacy of eprinomectin in an extended-release injection (ERI) formulation was evaluated against infections with third-stage larvae or eggs of gastrointestinal and pulmonary nematodes in cattle under 120-day natural challenge conditions in a series of five studies conducted in the USA (three studies) and in Europe (two studies). For each study, 30 nematode-free (four studies) or 30 cattle harboring naturally acquired nematode infections (one study) were included. The cattle were of various breeds or crosses, weighed 107.5-273 kg prior to treatment and aged approximately 4-11 months. For each study, animals were blocked based on pre-treatment bodyweight and then randomly allocated to treatment: ERI vehicle (control) at 1 mL/50 kg bodyweight or Eprinomectin 5% (w/v) ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg) for a total of 15 and 15 animals in each group. Treatments were administered once on Day 0 by subcutaneous injection in front of the shoulder. In each study, all animals grazed one naturally contaminated pasture for 120 days. At regular intervals during the studies, fecal samples from all cattle were examined for nematode egg and larval counts. In four studies pairs of tracer cattle were used to monitor pasture infectivity at 28-day intervals before and/or during the grazing period. All calves were weighed before turnout onto pasture and at regular intervals until housing on Day 120. For parasite recovery, all study animals were humanely euthanized 27-30 days after removal from pasture. Cattle treated with Eprinomectin ERI had significantly (p<0.05) fewer strongylid eggs (≤1 egg per gram; egg count reduction≥94%) than the control cattle and zero lungworm larvae at each post-treatment time point. At euthanasia, cattle treated with Eprinomectin ERI had significantly (p<0.05) fewer of the following nematodes than the ERI vehicle-treated (control) cattle with overall reduction of nematode counts by >92%: Dictyocaulus viviparus (adults and fourth-stage larvae (L4), Bunostomum phlebotomum, Cooperia curticei, Cooperia oncophora, Cooperia punctata, Cooperia surnabada, Cooperia spp. inhibited L4, Haemonchus contortus, Haemonchus placei, Haemonchus spp. inhibited L4, Nematodirus helvetianus, Nematodirus spp. inhibited L4, Oesophagostomum radiatum, Oesophagostomum spp. inhibited L4, Ostertagia leptospicularis, Ostertagia lyrata, Ostertagia ostertagi, Ostertagia spp. inhibited L4, Trichostrongylus axei, Trichostrongylus colubriformis, Trichostrongylus spp. inhibited L4, Trichuris discolor, and Trichuris ovis. Over the 120-day grazing period, Eprinomectin ERI-treated cattle gained between 4.8 kg and 31 kg more weight than the controls. This weight gain advantage was significant (p<0.05) in three studies. All animals accepted the treatment well. No adverse reaction to treatment was observed in any animal in any study.
Collapse
Affiliation(s)
- S Rehbein
- Merial GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
An eprinomectin extended-release injection formulation providing nematode control in cattle for up to 150 days. Vet Parasitol 2012; 192:313-20. [PMID: 23273777 DOI: 10.1016/j.vetpar.2012.11.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 10 dose confirmation studies was conducted to evaluate the persistent activity of an extended-release injectable (ERI) formulation of eprinomectin against single point challenge infections of gastrointestinal and pulmonary nematodes of cattle. The formulation, selected based on the optimal combination of high nematode efficacy, appropriate plasma profile, and satisfactory tissue residue levels, includes 5% poly(D,L-lactide-co-glycolic)acid (PLGA) and is designed to deliver eprinomectin at a dose of 1.0mg/kg bodyweight. Individual studies, included 16-30 cattle blocked based on pre-treatment bodyweight and randomly allocated to treatment with either ERI vehicle or saline (control), or the selected Eprinomectin ERI formulation. Treatments were administered once at a dose volume of 1 mL/50 kg bodyweight by subcutaneous injection in front of the shoulder. In each study, cattle were challenged with a combination of infective stages of gastrointestinal and/or pulmonary nematodes 100, 120 or 150 days after treatment and were processed for parasite recovery according to standard techniques 25-30 days after challenge. Based on parasite counts, Eprinomectin ERI (1mg eprinomectin/kg bodyweight) provided >90% efficacy (p<0.05) against challenge with Cooperia oncophora and Cooperia surnabada at 100 days after treatment; against challenge with Ostertagia ostertagi, Ostertagia lyrata, Ostertagia leptospicularis, Ostertagia circumcincta, Ostertagia trifurcata, Trichostrongylus axei, and Cooperia punctata at 120 days after treatment; and against challenge with Haemonchus contortus, Bunostomum phlebotomum, Oesophagostomum radiatum and Dictyocaulus viviparus at 150 days after treatment. Results of a study to evaluate eprinomectin plasma levels in cattle treated with the Eprinomectin ERI formulation reveal a characteristic second plasma concentration peak and a profile commensurate with the duration of efficacy. These results confirm that the Eprinomectin ERI formulation can provide high levels of parasite control against a range of nematodes of cattle for up to 5 months following a single treatment.
Collapse
|
48
|
Dhamaniya S, Das D, Satapathy BK, Jacob J. Influence of block composition on structural, thermal and mechanical properties of novel aliphatic polyester based triblock copolymers. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Khodaverdi E, Tekie FSM, Amoli SS, Sadeghi F. Comparison of plasticizer effect on thermo-responsive properties of Eudragit RS films. AAPS PharmSciTech 2012; 13:1024-30. [PMID: 22843079 DOI: 10.1208/s12249-012-9827-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022] Open
Abstract
Preparation of an intelligent drug delivery system which releases the drug in response to the environmental stimuli in a controlled manner is one of the interesting subjects and it is the purpose of this study. Films composed of Eudragit RS and different percentages of plasticizers (0%, 5%, 10%, or 20% w/w based on polymer weight), poly ethylene glycol 400 or triethyl citrate (TEC), were prepared by solvent casting method. Glass transition temperatures of the films were determined by differential scanning colorimetery. Water uptake and drug permeation through membranes with the glass transition temperature (Tg) close to the body temperature were investigated. Propranolol hydrochloride and acetaminophen were used as model drugs in permeation studies. The results showed that Eudragit RS films with 20% of either plasticizer showed thermo-responsivity around body temperature. The water uptake of the films and the permeation rates of both drugs increased at temperatures above the Tg of the films. The films containing TEC was found to be more appropriate thermo-responsive membrane due to a higher sensitivity to temperature and more ability to control drug release.
Collapse
|
50
|
Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM. pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydr Polym 2012; 89:667-675. [PMID: 24750772 DOI: 10.1016/j.carbpol.2012.03.074] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 03/15/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
Sodium alginate (SA) grafted with polyglycidyl methacrylate hydrogels (PGMA-g-SA) was prepared as pH sensitive drug delivery matrices for riboflavin (RF). The hydrogel copolymer matrices were compared with calcium alginate (CA) beads for swelling, degradation, entrapment efficiency and in vitro release of RF. The structure, surface morphology of the CA beads and the prepared hydrogels as well as the chemical stability of the encapsulated drug were characterized by FT-IR and SEM, respectively. The results demonstrate that the optimal formulation was achieved with PGMA-g-SA proportion of (0.75 mol/1 g) and loaded RF 0.03 g. It has been observed that the in vitro release study of RF from this formulation was superior to the other ones and was able to maintain the release for ∼3 and 4 days for the simulated intestinal fluid (SIF) and simulated gastric fluid (SGF), respectively. In general, it has been shown that, GMA grafted onto SA enhanced drug entrapment efficiency, decreased swelling and degradation behaviors of the carrier. In addition, it slowed and controlled the release of RF from the PGMA-g-SA hydrogel compared with pure SA beads crosslinked with Ca2+ ions alone, which thereby provides a facile and effective method to improve the drug delivery systems.
Collapse
Affiliation(s)
- M A Abd El-Ghaffar
- Polymers and Pigments Department, National Research Center, Dokki, Giza, Egypt
| | - M S Hashem
- Polymers and Pigments Department, National Research Center, Dokki, Giza, Egypt
| | - M K El-Awady
- Micobial Biotechnology Department, National Research Center, Dokki, Giza, Egypt
| | - A M Rabie
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|