1
|
Yu Q, Zhang Q, Wu Z, Yang Y. Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. ACS NANO 2025; 19:3037-3053. [PMID: 39808505 DOI: 10.1021/acsnano.4c16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases. Metal-organic frameworks (MOFs) assembled from inorganic metal ions and organic ligands, characterized by customizable porous architecture and chemical composition, modifiable porosity, vast surface area, straightforward surface modification, and adjustable biocompatibility, have garnered extensive attention in the biomedical sphere. The introduction of MOFs into inhalation therapy represents a promising avenue to navigate past the hurdles associated with traditional inhalation methods. Therefore, this review summarizes the characteristics of inhalation delivery together with the latest advances, challenges, and opportunities in utilizing inhalable MOFs for treating lung diseases and discusses prospects in this field alongside the potential pathways for translating this strategy into clinic.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
2
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Han X, Li D, Reyes-Ortega F, Schneider-Futschik EK. Dry Powder Inhalation for Lung Delivery in Cystic Fibrosis. Pharmaceutics 2023; 15:1488. [PMID: 37242730 PMCID: PMC10223735 DOI: 10.3390/pharmaceutics15051488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary drug delivery has long been used for local and systemic administration of different medications used in acute and chronic respiratory diseases. Certain lung diseases, such as cystic fibrosis, rely heavily on chronic treatments, including targeted lung delivery. Pulmonary drug delivery possesses various physiological advantages compared to other delivery methods and is also convenient for the patient to use. However, the formulation of dry powder for pulmonary delivery proves challenging due to aerodynamic restrictions and the lower tolerance of the lung. The aim of this review is to provide an overview of the respiratory tract structure in patients with cystic fibrosis, including during acute and chronic lung infections and exacerbations. Furthermore, this review discusses the advantages of targeted lung delivery, including the physicochemical properties of dry powder and factors affecting clinical efficacy. Current inhalable drug treatments and drugs currently under development will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Elena K. Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Sodeifian G, Usefi MMB. Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamhossein Sodeifian
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| | - Mohammad Mahdi Behvand Usefi
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| |
Collapse
|
5
|
Jiang J, Ma X, Ouyang D, Williams RO. Emerging Artificial Intelligence (AI) Technologies Used in the Development of Solid Dosage Forms. Pharmaceutics 2022; 14:2257. [PMID: 36365076 PMCID: PMC9694557 DOI: 10.3390/pharmaceutics14112257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Artificial Intelligence (AI)-based formulation development is a promising approach for facilitating the drug product development process. AI is a versatile tool that contains multiple algorithms that can be applied in various circumstances. Solid dosage forms, represented by tablets, capsules, powder, granules, etc., are among the most widely used administration methods. During the product development process, multiple factors including critical material attributes (CMAs) and processing parameters can affect product properties, such as dissolution rates, physical and chemical stabilities, particle size distribution, and the aerosol performance of the dry powder. However, the conventional trial-and-error approach for product development is inefficient, laborious, and time-consuming. AI has been recently recognized as an emerging and cutting-edge tool for pharmaceutical formulation development which has gained much attention. This review provides the following insights: (1) a general introduction of AI in the pharmaceutical sciences and principal guidance from the regulatory agencies, (2) approaches to generating a database for solid dosage formulations, (3) insight on data preparation and processing, (4) a brief introduction to and comparisons of AI algorithms, and (5) information on applications and case studies of AI as applied to solid dosage forms. In addition, the powerful technique known as deep learning-based image analytics will be discussed along with its pharmaceutical applications. By applying emerging AI technology, scientists and researchers can better understand and predict the properties of drug formulations to facilitate more efficient drug product development processes.
Collapse
Affiliation(s)
- Junhuang Jiang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiangyu Ma
- Global Investment Research, Goldman Sachs, New York, NY 10282, USA
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
| | - Robert O. Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Kankala RK, Xu PY, Chen BQ, Wang SB, Chen AZ. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv Drug Deliv Rev 2021; 176:113846. [PMID: 34197896 DOI: 10.1016/j.addr.2021.113846] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
Despite the success in developing various pharmaceutical formulations, most of the active pharmaceutical ingredients (APIs)/drugs, according to the Biopharmaceutics Classification System (BCS), often suffer from various intrinsic limitations of solubility and permeability, substantially hindering their bioavailability in vivo. Regardless of the fact that the availability of different particle fabrication approaches (top-down and bottom-up) towards pharmaceutical manufacturing, the supercritical fluid (SCF) technology has emerged as one of the highly effective substitutes due to the environmentally benign nature and processing convenience, as well as the economically promising character of SCFs. The exceptional features of SCFs have endowed the fabrication of various APIs either solely or in combination with the compatible supramolecular species towards achieving improved drug delivery. Operating such APIs in high-pressure conditions often results in arbitrary-sized particulate forms, ranging from micron-sized to sub-micron/nano-sized particles. Comparatively, these SCF-processed particles offer enhanced tailorable physicochemical and morphological properties (size, shape, and surface), as well as improved performance efficacy (bioavailability and therapy) over the unprocessed APIs. Although the "carrier-based" delivery is practical among diverse delivery systems, the direct fabrication of APIs into suitable particulate forms, referred to as "carrier-free" delivery, has increased attention towards improving the bioavailability and conveying a high payload of the APIs. This review gives a comprehensive emphasis on the SCF-assisted fabrication of diverse APIs towards exploring their great potential in drug delivery. Initially, we discuss various challenges of drug delivery and particle fabrication approaches. Further, different supercritical carbon dioxide (SC-CO2)-based fabrication approaches depending on the character of SCFs are explicitly described, highlighting their advantages and suitability in processing diverse APIs. Then, we provide detailed insights on various processing factors affecting the properties and morphology of SCF-processed APIs and their pharmaceutical applications, emphasizing their performance efficacy when administered through multiple routes of administration. Finally, we summarize this compilation with exciting perspectives based on the lessons learned so far and moving forward in terms of challenges and opportunities in the scale-up and clinical translation of these drugs using this innovative technology.
Collapse
|
8
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
9
|
Chaurasiya B, Zhao YY. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2020; 13:pharmaceutics13010031. [PMID: 33379136 PMCID: PMC7824629 DOI: 10.3390/pharmaceutics13010031] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
The pulmonary route has long been used for drug administration for both local and systemic treatment. It possesses several advantages, which can be categorized into physiological, i.e., large surface area, thin epithelial membrane, highly vascularized, limited enzymatic activity, and patient convenience, i.e., non-invasive, self-administration over oral and systemic routes of drug administration. However, the formulation of dry powder for pulmonary delivery is often challenging due to restrictions on aerodynamic size and the lung’s lower tolerance capacity in comparison with an oral route of drug administration. Various physicochemical properties of dry powder play a major role in the aerosolization, deposition, and clearance along the respiratory tract. To prepare suitable particles with optimal physicochemical properties for inhalation, various manufacturing methods have been established. The most frequently used industrial methods are milling and spray-drying, while several other alternative methods such as spray-freeze-drying, supercritical fluid, non-wetting templates, inkjet-printing, thin-film freezing, and hot-melt extrusion methods are also utilized. The aim of this review is to provide an overview of the respiratory tract structure, particle deposition patterns, and possible drug-clearance mechanisms from the lungs. This review also includes the physicochemical properties of dry powder, various techniques used for the preparation of dry powders, and factors affecting the clinical efficacy, as well as various challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Birendra Chaurasiya
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, and Department of Medicine (Division of Pulmonary and Critical Care Division), Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-(312)-503-7593
| |
Collapse
|
10
|
ElKasabgy NA, Adel IM, Elmeligy MF. Respiratory Tract: Structure and Attractions for Drug Delivery Using Dry Powder Inhalers. AAPS PharmSciTech 2020; 21:238. [PMID: 32827062 DOI: 10.1208/s12249-020-01757-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory tract is one of the oldest routes for drug delivery. It can be used for local and systemic drug deliveries. Inhalation therapy has several advantages over oral. It delivers the drug efficiently to the lung with minimal systemic exposure, thus avoiding systemic side effects common with oral route. In this review, different types of inhaler devices are illustrated like metered dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and the new soft mist inhalers (SMIs). Since dry powder is more stable than when in liquid form, we will discuss in detail DPIs highlighting different techniques utilized in preparation of dry powders with or without carrier to improve flowability and drug delivery to deep lungs. Types of DPIs are briefly discussed with examples from the market. Several mechanisms for particle deposition are mentioned with factors governing the process. Pharmacokinetic profile of the inhaled particles is detailed starting from the dissolution, followed by the rapid absorption and ending with systemic clearance. New technologies like 3D printing in pulmonary field are also highlighted.
Collapse
Affiliation(s)
- Nermeen A ElKasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Mohamed F Elmeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. J Control Release 2020; 324:728-749. [PMID: 32380201 DOI: 10.1016/j.jconrel.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance has become a global crisis, driving the exploration for novel antibiotics and novel treatment approaches. Among these research efforts two classes of antibiotics, bicyclic nitroimidazoles and antimicrobial peptides, have recently shown promise as novel antimicrobial agents with the possibility to treat multi-drug resistant infections. However, they suffer from the issue of poor oral bioavailability due to disparate factors: low solubility in the case of nitroimidazoles (BCS class II drugs), and low permeability in the case of peptides (BCS class III drugs). Moreover, antimicrobial peptides present another challenge as they are susceptible to chemical and enzymatic degradation, which can present an additional pharmacokinetic hurdle for their oral bioavailability. Formulation technologies offer a potential means for improving the oral bioavailability of poorly permeable and poorly soluble drugs, but there are still drawbacks and limitations associated with this approach. This review discusses in depth the challenges associated with oral delivery of nitroimidazoles and antimicrobial peptides and the formulation technologies that have been used to overcome these problems, including an assessment of the drawbacks and limitations associated with the technologies that have been applied. Furthermore, the potential for supercritical fluid technology to overcome the shortcomings associated with conventional drug formulation methods is reviewed.
Collapse
|
12
|
Chakravarty P, Famili A, Nagapudi K, Al-Sayah MA. Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems. Pharmaceutics 2019; 11:E629. [PMID: 31775292 PMCID: PMC6956038 DOI: 10.3390/pharmaceutics11120629] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Micro- and nano-carrier formulations have been developed as drug delivery systems for active pharmaceutical ingredients (APIs) that suffer from poor physico-chemical, pharmacokinetic, and pharmacodynamic properties. Encapsulating the APIs in such systems can help improve their stability by protecting them from harsh conditions such as light, oxygen, temperature, pH, enzymes, and others. Consequently, the API's dissolution rate and bioavailability are tremendously improved. Conventional techniques used in the production of these drug carrier formulations have several drawbacks, including thermal and chemical stability of the APIs, excessive use of organic solvents, high residual solvent levels, difficult particle size control and distributions, drug loading-related challenges, and time and energy consumption. This review illustrates how supercritical fluid (SCF) technologies can be superior in controlling the morphology of API particles and in the production of drug carriers due to SCF's non-toxic, inert, economical, and environmentally friendly properties. The SCF's advantages, benefits, and various preparation methods are discussed. Drug carrier formulations discussed in this review include microparticles, nanoparticles, polymeric membranes, aerogels, microporous foams, solid lipid nanoparticles, and liposomes.
Collapse
Affiliation(s)
- Paroma Chakravarty
- Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; (P.C.); (K.N.)
| | - Amin Famili
- Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA;
| | - Karthik Nagapudi
- Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; (P.C.); (K.N.)
| | - Mohammad A. Al-Sayah
- Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA;
| |
Collapse
|
13
|
Park HJ, Yoon TJ, Son WS, Lee CJ, Kim SN, Song SU, Lee YW. Precipitation of VEGF from mesenchymal stem cell culture supernatant using the PCA process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Lin X, Kankala RK, Tang N, Xu P, Hao L, Yang D, Wang S, Zhang YS, Chen A. Supercritical Fluid-Assisted Porous Microspheres for Efficient Delivery of Insulin and Inhalation Therapy of Diabetes. Adv Healthc Mater 2019; 8:e1800910. [PMID: 30284409 DOI: 10.1002/adhm.201800910] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/31/2018] [Indexed: 12/16/2022]
Abstract
Pulmonary delivery of drugs has attracted increasing attention in healthcare, as the lungs are an easily accessible site for noninvasive systemic delivery of drugs. Although pulmonary inhalation of porous microparticles has been shown to sustain drug delivery, there are limited reports on efficient delivery of insulin and inhalation therapy of diabetes based on supercritical carbon dioxide (SC-CO2 ) technology. Herein, this study reports the fabrication of insulin-loaded poly-l-lactide porous microspheres (INS-PLLA PMs) by using the SC-CO2 technology, and their use as an inhalation delivery system potentially for diabetes therapy. Biocompatibility and delivery efficiency of the PLLA PMs in the lungs are investigated. The PLLA PMs show negligible toxicity to lung-derived cells, resulting in no significant reduction in cell viability, as well as levels of various inflammatory mediators such as interleukin (IL)-6, IL-8, and tumor necrosis factor-α, compared with the negative control group. INS-PLLA PMs are further efficiently deposited in the trachea and the bronchi of superior lobes of the lungs, which exhibit pronounced hypoglycemic activity in induced diabetic rats. Together, the results demonstrate that the INS-PLLA PMs have a strong potential as an effective strategy for inhalation treatment of diabetes.
Collapse
Affiliation(s)
- Xiao‐Fen Lin
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University) Xiamen 361021 P. R. China
| | - Na Tang
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Pei‐Yao Xu
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Liu‐Zhi Hao
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Da‐Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative DiseasesInstitute for Translational MedicineSchool of Basic Medical SciencesFujian Medical University Fuzhou Fujian 350108 P. R. China
| | - Shi‐Bin Wang
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University) Xiamen 361021 P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women’s HospitalHarvard Medical School Cambridge MA 02139 USA
| | - Ai‐Zheng Chen
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University) Xiamen 361021 P. R. China
| |
Collapse
|
15
|
Some Advances in Supercritical Fluid Extraction for Fuels, Bio-Materials and Purification. Processes (Basel) 2019. [DOI: 10.3390/pr7030156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Supercritical fluids are used for the extraction of desired ingredients from natural materials, but also for the removal of undesired and harmful ingredients. In this paper, the pertinent physical and chemical properties of supercritical water, methanol, ethanol, carbon dioxide, and their mixtures are provided. The methodologies used with supercritical fluid extraction are briefly dealt with. Advances in the application of supercritical extraction to fuels, the gaining of antioxidants and other useful items from biomass, the removal of undesired ingredients or contaminants, and the preparation of nanosized particles of drugs are described.
Collapse
|
16
|
Dosing challenges in respiratory therapies. Int J Pharm 2018; 548:659-671. [PMID: 30033395 DOI: 10.1016/j.ijpharm.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 01/16/2023]
Abstract
The pulmonary route of administration has been commonly used for local lung conditions such as asthma and chronic obstructive pulmonary disease (COPD). Recently, with the advent of new technologies available for both formulation and device design, molecules usually delivered at high doses, such as antibiotics and insulin to treat cystic fibrosis (CF) and diabetes, respectively, can now be delivered by inhalation as a dry powder. These molecules are generally delivered in milligrams instead of traditional microgram quantities. High dose delivery is most commonly achieved via dry powder inhalers (DPIs), breath activated devices designed with a formulated powder containing micronized drug with aerodynamic diameters between 1 and 5 µm. The powder formulation may also contain other excipients and/or carrier particles to improve the flowability and aerosol dispersion of the powder. A drawback with high doses is that the formulation contains a great number of fine particles, leading to a greater degree of cohesive forces, producing strongly bound agglomerates. With greater cohesive forces holding fine particles together, higher dispersion forces are needed for efficient de-agglomeration and aerosolisation. This requirement of greater dispersion forces has led to different dry powder formulations and vastly different inhaler designs. The purpose of this review is to evaluate the different formulation types, various DPI devices currently available, and how these affect the aerosolisation process and delivery of high dosed inhalable dry powder formulations to the lungs.
Collapse
|
17
|
Immunoglobulin G particles manufacturing by spray drying process for pressurised metered dose inhaler formulations. ANNALES PHARMACEUTIQUES FRANÇAISES 2018; 76:291-298. [DOI: 10.1016/j.pharma.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 11/20/2022]
|
18
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
19
|
Hong DX, Yun YL, Guan YX, Yao SJ. Preparation of micrometric powders of parathyroid hormone (PTH1-34)-loaded chitosan oligosaccharide by supercritical fluid assisted atomization. Int J Pharm 2018; 545:389-394. [PMID: 29751142 DOI: 10.1016/j.ijpharm.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 11/28/2022]
Abstract
Parathyroid hormone (PTH1-34)-loaded dry powders were fabricated from aqueous solution for pulmonary administration using supercritical fluid assisted atomization introduced by a hydrodynamic cavitation mixer (SAA-HCM). Herein, chitosan oligosaccharide (CSO) was selected as a carrier in an effort to enhance transmucosal absorption of the drug. Well-defined, separated and spherical PTH(1-34)/CSO composite microparticles were obtained, and the particles size could be well controlled with narrow distribution. Aerodynamic performance was determined using next generation impactor (NGI), and the mass median aerodynamic diameter (MMAD) ranged strictly 1-5 μm range with fine particle fraction (FPF) up to 63.51%. The structural integrity of coprecipitated PTH(1-34) was validated by HPLC, FT-IR and circular dichroism, and a high loading efficiency up to 92.8% was obtained. TGA analyses revealed its thermal stability was preserved and XRD patterns showed amorphous structure of particles. The SAA-HCM process is proposed as a green technique for preparation of inhalable protein/polymer composite dry powders without use of any organic solvents.
Collapse
Affiliation(s)
- Dong-Xiao Hong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 China
| | - Yu-Long Yun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 China
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 China.
| | - Shan-Jing Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 China
| |
Collapse
|
20
|
Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv Healthc Mater 2017; 6:10.1002/adhm.201700433. [PMID: 28752598 PMCID: PMC5849475 DOI: 10.1002/adhm.201700433] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Indexed: 12/18/2022]
Abstract
During the past few decades, supercritical fluid (SCF) has emerged as an effective alternative for many traditional pharmaceutical manufacturing processes. Operating active pharmaceutical ingredients (APIs) alone or in combination with various biodegradable polymeric carriers in high-pressure conditions provides enhanced features with respect to their physical properties such as bioavailability enhancement, is of relevance to the application of SCF in the pharmaceutical industry. Herein, recent advances in drug delivery systems manufactured using the SCF technology are reviewed. We provide a brief description of the history, principle, and various preparation methods involved in the SCF technology. Next, we aim to give a brief overview, which provides an emphasis and discussion of recent reports using supercritical carbon dioxide (SC-CO2 ) for fabrication of polymeric carriers, for applications in areas related to drug delivery, tissue engineering, bio-imaging, and other biomedical applications. We finally summarize with perspectives.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Shen YB, Du Z, Tang C, Guan YX, Yao SJ. Formulation of insulin-loaded N -trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int J Pharm 2016; 505:223-33. [DOI: 10.1016/j.ijpharm.2016.03.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/24/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
|
22
|
Effect of process parameters on the recrystallization and size control of puerarin using the supercritical fluid antisolvent process. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Asai A, Okuda T, Yamauchi T, Sugiura Y, Okamoto H. Safety Evaluation of Dry Powder Formulations by Direct Dispersion onto Air-Liquid Interface Cultured Cell Layer. Biol Pharm Bull 2016; 39:368-77. [PMID: 26754254 DOI: 10.1248/bpb.b15-00791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most safety evaluations of dry powder inhalers (DPIs) using cultured cells have been performed with dry powder formulations dissolved in a medium. However, this method is not considered to be suitable to evaluate the safety of inhaled dry powder formulations correctly since it cannot reflect the actual phenomenon on the respiratory epithelial surface. In this study, we established a novel in-vitro safety evaluation system suitable for DPIs by combining an air-liquid interface cultured cell layer and a device for dispersing dry powders, and evaluated the safety of candidate excipients of dry powders for inhalation. The safety of excipients (sugars, amino acids, cyclodextrins, and positive controls) in solutions was compared using submerged cell culture systems with a conventional 96-well plate and Transwell(®). The sensitivity of the cells grown in Transwell(®) was lower than that of those grown in the 96-well plate. Dry powders were prepared by spray-drying and we evaluated their safety with a novel in-vitro safety evaluation system using an air-liquid interface cultured cell layer. Dry powders decreased the cell viability with doses more than solutions. On the other hand, dissolving the dry powders attenuated their cytotoxicity. This suggested that the novel in-vitro safety evaluation system would be suitable to evaluate the safety of DPIs with high sensitivity.
Collapse
|
24
|
Maincent J, Williams RO. Precipitation Technologies for Nanoparticle Production. FORMULATING POORLY WATER SOLUBLE DRUGS 2016. [DOI: 10.1007/978-3-319-42609-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Aguiar-Ricardo A, Bonifácio VDB, Casimiro T, Correia VG. Supercritical carbon dioxide design strategies: from drug carriers to soft killers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2015.0009. [PMID: 26574528 DOI: 10.1098/rsta.2015.0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
The integrated use of supercritical carbon dioxide (scCO(2)) and micro- and nanotechnologies has enabled new sustainable strategies for the manufacturing of new medications. 'Green' scCO(2)-based methodologies are well suited to improve either the synthesis or materials processing leading to the assembly of three-dimensional multifunctional constructs. By using scCO(2) either as C1 feedstock or as solvent, simple, economic, efficient and clean routes can be designed to synthesize materials with unique properties such as polyurea dendrimers and oxazoline-based polymers/oligomers. These new biocompatible, biodegradable and water-soluble polymeric materials can be engineered into multifunctional constructs with antimicrobial activity, targeting moieties, labelling units and/or efficiently loaded with therapeutics. This mini-review highlights the particular features exhibited by these materials resulting directly from the followed supercritical routes.
Collapse
Affiliation(s)
- Ana Aguiar-Ricardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Vasco D B Bonifácio
- CQFM and IN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Teresa Casimiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Vanessa G Correia
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| |
Collapse
|
26
|
Asai A, Okuda T, Sonoda E, Yamauchi T, Kato S, Okamoto H. Drug Permeation Characterization of Inhaled Dry Powder Formulations in Air-Liquid Interfaced Cell Layer Using an Improved, Simple Apparatus for Dispersion. Pharm Res 2015; 33:487-97. [PMID: 26490362 DOI: 10.1007/s11095-015-1804-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE An improved, simple apparatus was developed to easily and uniformly disperse dry powders onto an air-liquid interfaced cultured cell layer. We investigated drug permeation in cell cultures with access to the air-liquid interface (ALI) following deposition of a dry powder using the apparatus. METHOD The improved apparatus for dispersing the powders was assembled. Dry powders containing model drugs were prepared and dispersed onto the cell layer with ALI. After the dispersion, the permeation of each model drug was measured and compared with other samples (solutions with the same compositions). RESULTS The improved apparatus could with ease uniformly disperse 40% of the loading dose onto the cell layer with ALI. Dry powders showed higher drug permeability compared to the samples. without cytotoxicity or an effect on tight junctions. The high drug permeability of dry powders was independent of the molecular weight of model drugs. The contribution of active transport was small, while an increase in passive drug transport via trans- and paracellular routes was observed. CONCLUSIONS Inhaled dry powder formulations achieved higher drug permeability than their solution formulations in ALI. A high local concentration of drugs on the cell layer, caused by direct attachment of the inhaled dry powder, contributed to increased drug permeability via both trans- and paracellular routes.
Collapse
Affiliation(s)
- Ayumu Asai
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Tomoyuki Okuda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Erina Sonoda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Tomoyo Yamauchi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Saki Kato
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Hirokazu Okamoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan.
| |
Collapse
|
27
|
Al-Tabakha MM. Future prospect of insulin inhalation for diabetic patients: The case of Afrezza versus Exubera. J Control Release 2015. [PMID: 26222134 DOI: 10.1016/j.jconrel.2015.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The current review was designed to compare between the insulin inhalation systems Exubera and Afrezza and to investigate the reasons why Exubera was unsuccessful, when Afrezza maker is expecting their product to be felicitous. In January 2006, Pfizer secured FDA and EC approval for the first of its kind, regular insulin through Exubera inhaler device for the management of types 1 and 2 diabetes mellitus (DM) in adults. The product was no longer available to the market after less than two years from its approval triggering a setback for competitive new inhalable insulins that were already in various clinical development phases. In contrary, MannKind Corporation started developing its ultra-rapid-acting insulin Afrezza in a bold bid, probably by managing the issues in which Exubera was not successful. Afrezza has been marketed since February, 2015 by Sanofi after getting FDA approval in June 2014. The results from this systematic review indicate the effectiveness of insulin inhalation products, particularly for patients initiating insulin therapy. Pharmaceutical companies should capitalize on the information available from insulin inhalation to produce competitive products that are able to match the bioavailability of subcutaneous (SC) insulin injection and to deal with the single insulin unit increments and basal insulin requirements in some diabetic patients or extending the horizon to inhalable drug products with completely different drug entities for other indications.
Collapse
Affiliation(s)
- Moawia M Al-Tabakha
- Pharmaceutical Sciences Unit, College of Pharmacy, Al Ain University of Science and Technology, P.O. Box 64141, Al Ain, United Arab Emirates.
| |
Collapse
|
28
|
Ihara D, Hattori N, Horimasu Y, Masuda T, Nakashima T, Senoo T, Iwamoto H, Fujitaka K, Okamoto H, Kohno N. Histological Quantification of Gene Silencing by Intratracheal Administration of Dry Powdered Small-Interfering RNA/Chitosan Complexes in the Murine Lung. Pharm Res 2015; 32:3877-85. [DOI: 10.1007/s11095-015-1747-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
29
|
|
30
|
Cho W, Kim MS, Jung MS, Park J, Cha KH, Kim JS, Park HJ, Alhalaweh A, Velaga SP, Hwang SJ. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes. Int J Pharm 2015; 478:288-296. [DOI: 10.1016/j.ijpharm.2014.11.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/03/2014] [Accepted: 11/22/2014] [Indexed: 11/29/2022]
|
31
|
Nuchuchua O, Every HA, Hofland GW, Jiskoot W. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations. Eur J Pharm Biopharm 2014; 88:919-30. [PMID: 25262979 DOI: 10.1016/j.ejpb.2014.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
Abstract
In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations.
Collapse
Affiliation(s)
- O Nuchuchua
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - H A Every
- FeyeCon Development & Implementation B.V., Weesp, The Netherlands
| | - G W Hofland
- FeyeCon Development & Implementation B.V., Weesp, The Netherlands
| | - W Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands.
| |
Collapse
|
32
|
Walters RH, Bhatnagar B, Tchessalov S, Izutsu KI, Tsumoto K, Ohtake S. Next Generation Drying Technologies for Pharmaceutical Applications. J Pharm Sci 2014; 103:2673-2695. [DOI: 10.1002/jps.23998] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 02/05/2023]
|
33
|
Jesson G, Brisander M, Andersson P, Demirbüker M, Derand H, Lennernäs H, Malmsten M. Carbon dioxide-mediated generation of hybrid nanoparticles for improved bioavailability of protein kinase inhibitors. Pharm Res 2014; 31:694-705. [PMID: 23990314 PMCID: PMC3931930 DOI: 10.1007/s11095-013-1191-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/09/2013] [Indexed: 11/01/2022]
Abstract
PURPOSE A versatile methodology is demonstrated for improving dissolution kinetics, gastrointestinal (GI) absorption, and bioavailability of protein kinase inhibitors (PKIs). METHODS The approach is based on nanoparticle precipitation by sub- or supercritical CO2 together with a matrix-forming polymer, incorporating surfactants either during or after nanoparticle formation. Notably, striking synergistic effects between hybrid PKI/polymer nanoparticles and surfactant added after particle formation is investigated. RESULTS The hybrid nanoparticles, consisting of amorphous PKI embedded in a polymer matrix (also after 12 months), display dramatically increased release rate of nilotinib in both simulated gastric fluid and simulated intestinal fluid, particularly when surfactants are present on the hybrid nanoparticle surface. Similar results indicated flexibility of the approach regarding polymer identity, drug load, and choice of surfactant. The translation of the increased dissolution rate found in vitro into improved GI absorption and bioavalilability in vivo was demonstrated for male beagle dogs, where a 730% increase in the AUC0-24h was observed compared to the benchmark formulation. Finally, the generality of the formulation approach taken was demonstrated for a range of PKIs. CONCLUSIONS Hybrid nanoparticles combined with surfactant represent a promising approach for improving PKI dissolution rate, providing increased GI absorption and bioavailability following oral administration.
Collapse
Affiliation(s)
- Gérald Jesson
- />XSpray Microparticles AB, Fogdevreten 2B, 171 65 Solna, Sweden
| | - Magnus Brisander
- />XSpray Microparticles AB, Fogdevreten 2B, 171 65 Solna, Sweden
| | - Per Andersson
- />XSpray Microparticles AB, Fogdevreten 2B, 171 65 Solna, Sweden
| | | | - Helene Derand
- />XSpray Microparticles AB, Fogdevreten 2B, 171 65 Solna, Sweden
| | - Hans Lennernäs
- />Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Martin Malmsten
- />Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
34
|
Yang Y, Yang Z, Ren Y, Mei X. Effects of formulation and operating variables on Zanamivir dry powder inhalation characteristics and aerosolization performance. Drug Deliv 2014; 21:480-6. [DOI: 10.3109/10717544.2014.883113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
|
36
|
Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer. Int J Pharm 2013; 454:174-82. [DOI: 10.1016/j.ijpharm.2013.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
|
37
|
Kawakami K, Hasegawa Y, Deguchi K, Ohki S, Shimizu T, Yoshihashi Y, Yonemochi E, Terada K. Competition of Thermodynamic and Dynamic Factors During Formation of Multicomponent Particles via Spray Drying. J Pharm Sci 2013; 102:518-29. [DOI: 10.1002/jps.23378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/03/2012] [Accepted: 10/24/2012] [Indexed: 01/10/2023]
|
38
|
Niwa T, Mizutani D, Danjo K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem Pharm Bull (Tokyo) 2012; 60:870-6. [PMID: 22790820 DOI: 10.1248/cpb.c12-00208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Particles of poorly water-soluble drugs were prepared to develop a dry powder inhaler (DPI). Spray freeze-drying (SFD) technique using a four-fluid nozzle (4N), which has been developed by authors, was applied in this research. Ciclosporin and mannitol were used as a poorly water-soluble model drug and a dissolution-enhanced carrier, respectively. The organic solution of ciclosporin and aqueous solution of mannitol were separately and simultaneously atomized through the 4N, and the two solutions were collided with each other at the tip of the nozzle edge. The spray mists were immediately frozen in liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier. tert-Butyl alcohol (t-BuOH) was used as the organic spray solvent due to its relatively high freezing point. The resultant composite particles with varying drug content were characterized depending on their morphological and physicochemical properties. The particles contained amorphous ciclosporin and δ-crystalline mannitol. The characteristic porous structure of SFD particles potentially contributed to their good aerodynamic performance. A series of particles with a similar size distribution and different drug content revealed that the incorporation of mannitol successfully improved the cohesive behavior of ciclosporin, leading to enhanced aerosol dispersion. The dissolution test method using low-volume medium was newly established to simulate the release process from particles deposited on the surface of the bronchus and pulmonary mucosa. The composite with hydrophilic mannitol dramatically improved the in vitro dissolution behavior of ciclosporin in combination with the porous structure of SFD particles.
Collapse
Affiliation(s)
- Toshiyuki Niwa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, Yagotoyama, Tempaku-ku, Nagoya, Japan.
| | | | | |
Collapse
|
39
|
Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res 2012; 30:325-41. [PMID: 23054093 DOI: 10.1007/s11095-012-0891-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 12/27/2022]
Abstract
Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most 'professional' antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.
Collapse
Affiliation(s)
- Nitesh K Kunda
- Formulation and Drug Delivery Research School of Pharmacy and Biomolecular Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | | | | | | | | |
Collapse
|
40
|
Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 2012; 18:22-38. [DOI: 10.3109/10837450.2012.726998] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Rodrigues MA, Figueiredo L, Padrela L, Cadete A, Tiago J, Matos HA, Azevedo EGD, Florindo HF, Gonçalves LM, Almeida AJ. Development of a novel mucosal vaccine against strangles by supercritical enhanced atomization spray-drying of Streptococcus equi extracts and evaluation in a mouse model. Eur J Pharm Biopharm 2012; 82:392-400. [DOI: 10.1016/j.ejpb.2012.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 01/19/2023]
|
42
|
Bakhbakhi Y, Asif M, Chafidz A, Ajbar A. Formation of biodegradable polymeric fine particles by supercritical antisolvent precipitation process. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Jiang L, Tang Y, Zhang H, Lu X, Chen X, Zhu J. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®). J Aerosol Med Pulm Drug Deliv 2012; 25:265-79. [PMID: 22280548 DOI: 10.1089/jamp.2011.0908] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The performance of dry powder aerosol delivery systems depends not only on the powder formulation but also on the dry powder inhalers (DPIs). Effects of turbulence, grid, mouthpiece, inlet size, air flow, and capsule on the DPIs performance have been investigated previously. Considering powder dispersion in DPIs is a time-dependent process, the powder residence time in DPIs is supposed to have a great impact on DPIs efficiency. This study sought to investigate the effect of powder residence time on the performance of a commercial DPI Aerolizer(®). METHODS A standard Aerolizer(®) (SD) and five modified devices (MD1, MD2, MD3, MD4, and MD5) were employed for this research. Computational fluid dynamics analysis was used to calculate the flow field and the powder residence time in these devices. Recombinant human interleukin-2 inhalation powders and a twin impinger were used for the deposition experiment. RESULTS The powder mean residence time in the secondary atomization zone of the devices was increased from 0 ms for SD to 0.33, 0.96, 1.42, 1.76, and 2.14 ms for MD1, MD2, MD3, MD4, and MD5, respectively. At a flow rate of 60 L/min, with an increase in the powder residence time in these devices, a significant gradual and increasing trend in the powder respirable fraction was observed from 29.1%± 1.1% (MD1) to 32.6% ± 2.2% (MD2), 37.1% ± 1.1% (MD3), and 43.7% ± 2.1% (MD4). There was no significant difference in the powder respirable fraction between SD and MD1 or between MD4 and MD5. CONCLUSIONS Within a certain range, increasing the powder residence time could improve the performance of Aerolizer(®) by increasing the powder-air interaction time (the main reason) and increasing the powder-device compaction (the secondary reason). Combination of high turbulence level and sufficient powder residence time could further improve the device performance.
Collapse
Affiliation(s)
- Liqun Jiang
- Department of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO(2) flow rate, and the liquid phase flow rate on particle size and its distribution.
Collapse
Affiliation(s)
- Mahshid Kalani
- Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor Darul Ehsan, Malaysia.
| | | |
Collapse
|
45
|
Zhang J, Wu L, Chan HK, Watanabe W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 2011; 63:441-55. [PMID: 21118707 DOI: 10.1016/j.addr.2010.11.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/17/2010] [Accepted: 11/21/2010] [Indexed: 12/17/2022]
Abstract
Nanoparticles bring many benefits to pulmonary drug delivery applications, especially for systemic delivery and drugs with poor solubility. They have recently been explored in pressurized metered dose inhaler, nebulizer, and dry powder inhaler applications, mostly in polymeric forms. This article presents a review of processes that have been used to generate pure (non polymeric) drug nanoparticles, methods for characterizing the particles/formulations, their in-vitro and in-vivo performances, and the fate of inhaled nanoparticles.
Collapse
|
46
|
Okamoto H, Shiraki K, Yasuda R, Danjo K, Watanabe Y. Chitosan–interferon-β gene complex powder for inhalation treatment of lung metastasis in mice. J Control Release 2011; 150:187-95. [DOI: 10.1016/j.jconrel.2010.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/23/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
47
|
Paiva A, Vidinha P, Angelova M, Rebocho S, Barreiros S, Brunner G. Biocatalytic separation of (R, S)-1-phenylethanol enantiomers and fractionation of reaction products with supercritical carbon dioxide. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2010.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Hira D, Okuda T, Kito D, Ishizeki K, Okada T, Okamoto H. Inhalation performance of physically mixed dry powders evaluated with a simple simulator for human inspiratory flow patterns. Pharm Res 2010; 27:2131-40. [PMID: 20628789 DOI: 10.1007/s11095-010-0215-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To construct a simple simulator reproducing human inspiratory flow patterns and use it to evaluate the inhalation performance of active ingredient particle-carrier particle systems (physically mixed dry powders). METHODS Inspiratory flow patterns were collected and analyzed using a flow recorder. The simulator was constructed using an airtight container, a valve, and a connecting tube. Several of the patterns reproduced by the simulator were compared with those recorded. In addition, the influence of inspiratory flow on the inhalation performance of physically mixed dry powders composed of salbutamol sulfate (SS) and coarse lactose monohydrate was investigated using a twin-stage liquid impinger (TSLI) equipped with the simulator. RESULTS Human inspiratory flow patterns could be characterized by three parameters: inspiratory flow volume (area under the flow rate-time curve (AUC)), flow increase rate (FIR), and peak flow rate (PFR). The patterns could be reproduced using the simulator. Testing with the simulator in vitro revealed that PFR, but not FIR or AUC, greatly affected the inhalation performance of physically mixed dry powders. CONCLUSIONS The simulator is simple to construct and can schematically reproduce human inspiratory flow patterns. Testing with a TSLI and the simulator is useful to evaluate dry powder formulations for clinical application.
Collapse
Affiliation(s)
- Daiki Hira
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku-ku, Nagoya 468-8503, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Optimized pulmonary gene transfection in mice by spray–freeze dried powder inhalation. J Control Release 2010; 144:221-6. [DOI: 10.1016/j.jconrel.2010.02.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/15/2010] [Accepted: 02/12/2010] [Indexed: 02/01/2023]
|
50
|
Adami R, Osséo LS, Reverchon E. Micronization of lysozyme by supercritical assisted atomization. Biotechnol Bioeng 2009; 104:1162-70. [DOI: 10.1002/bit.22470] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|