1
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
2
|
Jin J, Kusamori K, Tanifuji T, Yamagata Y, Itakura S, Nishikawa M. Biocompatible DNA hydrogel composed of minimized Takumi-shaped DNA nanostructure exhibits sustained retention after in vivo administration. J Control Release 2025; 377:704-715. [PMID: 39586497 DOI: 10.1016/j.jconrel.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Our previous studies showed that DNA hydrogels containing unmethylated CpG motifs effectively induced antigen-specific immune responses when combined with the appropriate antigens. A potential drawback of existing DNA hydrogels for further applications is the need for many oligodeoxynucleotide (ODN) types. Therefore, in this study, we attempted to optimize and minimize the nanostructured DNA units for DNA hydrogels to reduce the preparation cost, design difficulty, and possible risk of sequence-dependent off-target effects, and prepare DNA hydrogels with sustained retention ability. A Takumi-shaped unit with a stem and four flanking cohesive parts was constructed using one type of ODN with a palindromic sequence. A DNA hydrogel was prepared by mixing two Takumi-shaped units with complementary cohesive parts. The required length of the cohesive part was first examined using ODNs with 14 or 18 bases of stem length. Electrophoresis, melting temperature measurements, and viscoelastic analysis showed that the properties of the cohesive part determined the hydrogel properties. ODNs with a cohesive part consisting of GC-rich 5'-ccgcaagacg-3' efficiently formed a hydrogel with sustained retention in mice after administration. Several ODNs with optimized cohesive sequences and different stem lengths and sequences were designed. Analyses showed that a stem of 10 bases or longer was required for efficient hydrogel formation, and ODNs with a 12-base stem part exhibited the most prolonged retention after subcutaneous injection into mice. Thus, the present study demonstrated the requirements of minimal DNA units for preparing DNA hydrogels with sustained retention ability.
Collapse
Affiliation(s)
- Jian Jin
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takumi Tanifuji
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoshifumi Yamagata
- Anton Paar Japan K.K., Riverside Sumida 1st Fl, 1-19-9 Tsutsumi-dori, Sumida-ku, Tokyo 131-0034, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
3
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Rashidi S, Bagherpour G, Abbasi‐Malati Z, Khosrowshahi ND, Chegeni SA, Roozbahani G, Lotfimehr H, Sokullu E, Rahbarghazi R. Endothelial progenitor cells for fabrication of engineered vascular units and angiogenesis induction. Cell Prolif 2024; 57:e13716. [PMID: 39051852 PMCID: PMC11503262 DOI: 10.1111/cpr.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The promotion of vascularization and angiogenesis in the grafts is a crucial phenomenon in the healing process and tissue engineering. It has been shown that stem cells, especially endothelial progenitor cells (EPCs), can stimulate blood vessel formation inside the engineered hydrogels after being transplanted into the target sites. The incorporation of EPCs into the hydrogel can last the retention time, long-term survival, on-target delivery effects, migration and differentiation into mature endothelial cells. Despite these advantages, further modifications are mandatory to increase the dynamic growth and angiogenesis potential of EPCs in in vitro and in vivo conditions. Chemical modifications of distinct composites with distinct physical properties can yield better regenerative potential and angiogenesis during several pathologies. Here, we aimed to collect recent findings related to the application of EPCs in engineered vascular grafts and/or hydrogels for improving vascularization in the grafts. Data from the present article can help us in the application of EPCs as valid cell sources in the tissue engineering of several ischemic tissues.
Collapse
Affiliation(s)
- Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
| | - Ghasem Bagherpour
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical SciencesZanjanIran
| | - Zahra Abbasi‐Malati
- Student Research CenterTabriz University of Medical SciencesTabrizIran
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Sara Aghakhani Chegeni
- Department of Clinical Biochemistry and Laboratory MedicineTabriz University of Medical SciencesTabrizIran
| | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| | - Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbulTurkey
- Biophysics DepartmentKoç University School of MedicineIstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Martins RS, Weber J, Drake L, Latif MJ, Poulikidis K, Razi SS, Luo J, Bhora FY. Improved Composite Hydrogel for Bioengineered Tracheal Graft Demonstrates Effective Early Angiogenesis. J Clin Med 2024; 13:5148. [PMID: 39274364 PMCID: PMC11396371 DOI: 10.3390/jcm13175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Collagen-agarose hydrogel blends currently used in tracheal graft bioengineering contain relatively high concentrations of collagen to withstand mechanical stresses associated with native trachea function (e.g., breathing). Unfortunately, the high collagen content restricts effective cell infiltration into the hydrogel. In this study, we created an improved hydrogel blend with lower concentrations of collagen (<5 mg/mL) and characterized its capacity for fibroblast invasion and angiogenesis. Methods: Four collagen-agarose hydrogel blends were created: 1 mg/mL type 1 collagen (T1C) and 0.25% agarose, 1 mg/mL T1C and 0.125% agarose, 2 mg/mL T1C and 0.25% agarose, and 2 mg/mL T1C and 0.125% agarose. The hydrogel surface was seeded with fibroblasts, while both endothelial cells and fibroblasts (3:1 ratio) were mixed within the hydrogel matrix. We assessed early angiogenesis by observing fibroblast migration and endothelial cell morphology (elongation and branching) at 7 days. In addition, we performed immunostaining for alpha-smooth muscle actin (aSMA) and explored the gene expression of various angiogenic markers (including vascular endothelial growth factor; VEGF). Results: Gels with lower agarose concentrations (0.125%) with 1 or 2 mg/mL T1C were more effective in allowing early attachment and migration of surface-applied fibroblasts compared to gels with higher (0.25%) agarose concentrations. The low-agarose gels also allowed cells to quickly adopt a spread morphology and self-assemble into elongated structures indicative of early angiogenesis, while demonstrating positive immunostaining for aSMA and increased gene expression of VEGF by day 7. Conclusions: Hydrogel blends with collagen and low agarose concentrations may be effective in allowing early cellular infiltration and angiogenesis, making such gels a suitable cell substrate for use in the development of composite bioengineered tracheal grafts. The collagen-agarose hydrogel blend is meant to be cast around a three-dimensional (3D) printed polycaprolactone support structure and wrapped in porcine small intestine submucosa ECM to create an off-the-shelf bioengineered tracheal implant.
Collapse
Affiliation(s)
- Russell Seth Martins
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| | - Joanna Weber
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| | - Lauren Drake
- Department of Surgery, Nuvance Health, Danbury, CT 06810, USA
| | - M Jawad Latif
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| | - Kostantinos Poulikidis
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| | - Syed Shahzad Razi
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| | - Jeffrey Luo
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| | - Faiz Y Bhora
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA
| |
Collapse
|
6
|
Chen S, Xiong Y, Yang F, Hu Y, Feng J, Zhou F, Liu Z, Liu H, Liu X, Zhao J, Zhang Z, Chen L. Approaches to scarless burn wound healing: application of 3D printed skin substitutes with dual properties of anti-infection and balancing wound hydration levels. EBioMedicine 2024; 106:105258. [PMID: 39068733 PMCID: PMC11332815 DOI: 10.1016/j.ebiom.2024.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Severe burn wounds face two primary challenges: dysregulated cellular impairment functions following infection and an unbalanced wound hydration microenvironment leading to excessive inflammation and collagen deposition. These results in hypertrophic scar contraction, causing significant deformity and disability in survivors. METHODS A three-dimensional (3D) printed double-layer hydrogel (DLH) was designed and fabricated to address the problem of scar formation after burn injury. DLH was developed using methacrylated silk fibroin (SFMA) and gelatin methacryloyl (GelMA) for the upper layer, and GelMA and hyaluronic acid methacryloyl (HAMA) for the lower layer. To combat infection, copper-epigallocatechin gallate (Cu-EGCG) was incorporated into the lower layer bioink, collectively referred to as DLS. To balance wound hydration levels, HaCaT cells were additionally encapsulated in the upper layer, designed as DLS/c. FINDINGS DLH demonstrated suitable porosity, appropriate mechanical properties, and excellent biocompatibility. DLS exhibited potent antimicrobial properties, exerted anti-inflammatory effects by regulating macrophage polarisation, and may enhance angiogenesis through the HIF-1α/VEGF pathway. In the DLS/c group, animal studies showed significant improvements in epidermal formation, barrier function, and epidermal hydration, accompanied by reduced inflammation. In addition, Masson's trichrome and Sirius red staining revealed that the structure and ratio of dermal collagen in DLS/c resembled that of normal skin, indicating considerable potential for scarless wound healing. INTERPRETATION This biomimetic matrix shows promise in addressing the challenges of burn wounds and aiming for scarless repair, with benefits such as anti-infection, epidermal hydration, biological induction, and optimised topological properties. FUNDING Shown in Acknowledgements.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Yang
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanke Hu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghao Feng
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Fei Zhou
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhonghua Liu
- South China Agricultural University, Guangzhou 510642, China
| | - Hengdeng Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaogang Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingling Zhao
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Zhang Y, Cao X, Zhang J, Zhang G, Zhu M, Yan H, Li Y. A novel injectable sericin hydrogel with strong fluorescence for tracing. Int J Biol Macromol 2024; 258:129000. [PMID: 38158070 DOI: 10.1016/j.ijbiomac.2023.129000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Hydrogel systems with strong fluorescence, as convenient tracers or bio-probes, have attracted much attention in biomedical engineering. Currently, most hydrogels endowed fluorescent properties due to modifying additional fluorophores. However, these fluorophores owing to photobleaching and toxicity limit the practical applications of hydrogels. Herein, we prepared a novel self-luminescence hydrogel through double crosslinking glutaraldehyde and hydrogen peroxide/horseradish peroxidase (H2O2/HRP) with sericin protein. The double cross-linked sericin hydrogel exhibits strong green and red intrinsic fluorescence which can be excited over a wide range of wavelengths. Moreover, this hydrogel with strong intrinsic fluorescence could penetrate thick pigskin tissue, which has potential application in implantable bio-tracer areas. In addition to the above unique properties, this sericin hydrogel possesses two types of micropore structures with high porosity, swelling properties, pH-responsive degradability, super elasticity, injectability, viscosity, and excellent biocompatibility. The investigation could significantly expand the scope of protein hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China; Zhenjiang Zhongnong Biotechnology Co., LTD, Zhenjiang, Jiangsu 212121, China.
| | - Xinyu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jingya Zhang
- Zhenjiang High School of Jiangsu Province, Zhenjiang, Jiangsu 212017, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Hui Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Yurong Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
8
|
Jakob Y, Kern J, Gvaramia D, Fisch P, Magritz R, Reutter S, Rotter N. Suitability of Ex Vivo-Expanded Microtic Perichondrocytes for Auricular Reconstruction. Cells 2024; 13:141. [PMID: 38247833 PMCID: PMC10814984 DOI: 10.3390/cells13020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Tissue engineering (TE) techniques offer solutions for tissue regeneration but require large quantities of cells. For microtia patients, TE methods represent a unique opportunity for therapies with low donor-site morbidity and reliance on the surgeon's individual expertise. Microtia-derived chondrocytes and perichondrocytes are considered a valuable cell source for autologous reconstruction of the pinna. The aim of this study was to investigate the suitability of perichondrocytes from microtia patients for autologous reconstruction in comparison to healthy perichondrocytes and microtia chondrocytes. Perichondrocytes were isolated via two different methods: explant culture and enzymatic digestion. The isolated cells were analyzed in vitro for their chondrogenic cell properties. We examined migration activity, colony-forming ability, expression of mesenchymal stem cell markers, and gene expression profile. We found that microtic perichondrocytes exhibit similar chondrogenic properties compared to chondrocytes in vitro. We investigated the behavior in three-dimensional cell cultures (spheroids and scaffold-based 3D cell cultures) and assessed the expression of cartilage-specific proteins via immunohistochemistry, e.g., collagen II, which was detected in all samples. Our results show that perichondrocytes from microtia patients are comparable to healthy perichondrocytes and chondrocytes in terms of chondrogenic cell properties and could therefore be a promising cell source for auricular reconstruction.
Collapse
Affiliation(s)
- Yvonne Jakob
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Johann Kern
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - David Gvaramia
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Philipp Fisch
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland;
| | - Ralph Magritz
- Clinic for Otorhinolaryngology, Oberhavel-Kliniken GmbH, Klinik Henningsdorf, Marwitzer Strasse 91, D-16761 Henningsdorf, Germany;
| | - Sven Reutter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| |
Collapse
|
9
|
Wang F, Zhang W, Qiao Y, Shi D, Hu L, Cheng J, Wu J, Zhao L, Li D, Shi W, Xie L, Zhou Q. ECM-Like Adhesive Hydrogel for the Regeneration of Large Corneal Stromal Defects. Adv Healthc Mater 2023; 12:e2300192. [PMID: 37097884 DOI: 10.1002/adhm.202300192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Indexed: 04/26/2023]
Abstract
The repair of large-diameter corneal stroma defects is a major clinical problem. Although some studies have attempted to use hydrogels to repair corneal damage, most of these hydrogels can only be used for focal stromal defects that are ≤3.5 mm in diameter due to poor hydrogel adhesion. Here, a photocurable adhesive hydrogel that mimics the extracellular matrix (ECM) with regard to composition for repairing 6 mm-diameter corneal stromal defects in rabbits is investigated. This ECM-like adhesive can be rapidly cured after light exposure, with high light transmittance and good mechanical properties. More importantly, this hydrogel maintains the viability and adhesion of cornea-derived cells and promotes their migration in vitro in 2D and 3D culture environments. Proteomics analysis confirms that the hydrogel promotes cell proliferation and ECM synthesis. Furthermore, in rabbit corneal stromal defect repair experiments, it is proven by histological and proteomic analysis that this hydrogel can effectively promote corneal stroma repair, reduce scar formation, and increase corneal stromal-neural regeneration at the six months follow-up. This work demonstrates the great application of ECM-like adhesive hydrogels for the regeneration of large-diameter corneal defects.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lizhi Hu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Jingyi Wu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Long Zhao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Donfang Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| |
Collapse
|
10
|
Lee S, Choi G, Yang YJ, Joo KI, Cha HJ. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ. Carbohydr Polym 2023; 313:120895. [PMID: 37182936 DOI: 10.1016/j.carbpol.2023.120895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kye Il Joo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
11
|
Liu Y, Zhang W, Hu C, Zheng C, Zhang F, Yang L, Li Z, Wang Y. A composite hydrogel improves the survival and differentiation of human iPSC-derived neural stem cells after ischemic stroke. COMPOSITES PART B: ENGINEERING 2023; 259:110711. [DOI: 10.1016/j.compositesb.2023.110711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Bono N, Saroglia G, Marcuzzo S, Giagnorio E, Lauria G, Rosini E, De Nardo L, Athanassiou A, Candiani G, Perotto G. Silk fibroin microgels as a platform for cell microencapsulation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:3. [PMID: 36586059 PMCID: PMC9805413 DOI: 10.1007/s10856-022-06706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.
Collapse
Affiliation(s)
- Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy.
| | - Giulio Saroglia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133, Milan, Italy
| | - Elena Rosini
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | | | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
14
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
15
|
Xu X, Feng Q, Ma X, Deng Y, Zhang K, Ooi HS, Yang B, Zhang ZY, Feng B, Bian L. Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture. Biomaterials 2022; 289:121802. [PMID: 36152514 DOI: 10.1016/j.biomaterials.2022.121802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Long-term maintenance of embryonic stem cells (ESCs) in the undifferentiated state is still challenging. Compared with traditional 2D culture methods, 3D culture in biomaterials such as hydrogels is expected to better support the long-term self-renewal of ESCs by emulating the biophysical and biochemical properties of the extracellular matrix (ECM). Although prior studies showed that soft and degradable hydrogels favor the 3D growth of ESCs, few studies have examined the impact of the structural dynamics of the hydrogel matrix on ESC behaviors. Herein, we report a gelatin-based structurally dynamic hydrogel (GelCD hydrogel) that emulates the intrinsic structural dynamics of the ECM. Compared with covalently crosslinked gelatin hydrogels (GelMA hydrogels) with similar stiffness and biodegradability, GelCD hydrogels significantly promote the clonal expansion and viability of encapsulated mouse ESCs (mESCs) independent of MMP-mediated hydrogel degradation. Furthermore, GelCD hydrogels better maintain the pluripotency of encapsulated mESCs than do traditional 2D culture methods that use MEF feeder cells or medium supplementation with GSK3β and MEK 1/2 inhibitors (2i). When cultured in GelCD hydrogels for an extended period (over 2 months) with cell passaging every 7 days, mESCs preserve their normal morphology and maintain their pluripotency and full differentiation capability. Our findings highlight the critical role of the structural dynamics of the hydrogel matrix in accommodating the volume expansion that occurs during clonal ESC growth, and we believe that our dynamic hydrogels represent a valuable tool to support the long-term 3D culture of ESCs.
Collapse
Affiliation(s)
- Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing, 400044, China
| | - Xun Ma
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong SAR, 999077, China; School of Biomedical Sciences, Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine (iTERM), CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China
| | - Hon Son Ooi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, China.
| | - Bo Feng
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong SAR, 999077, China; School of Biomedical Sciences, Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine (iTERM), CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
17
|
Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel) 2022; 14:polym14153135. [PMID: 35956650 PMCID: PMC9371176 DOI: 10.3390/polym14153135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings. Presented on the commercial market, hydrogel wound dressings are not found among proposals for specific cases and have a number of disadvantages—toxicity, allergenicity, and mechanical instability. Bilayer dressings are attracting great attention, which can be combined with multifunctional properties, high criteria for an ideal wound dressing (antimicrobial properties, adhesion and hemostasis, anti-inflammatory and antioxidant effects), drug delivery, self-healing, stimulus manifestation, and conductivity, depending on the preparation and purpose. In addition, advances in stem cell biology and biomaterials have enabled the design of hydrogel materials for skin tissue engineering. To improve the heterogeneity of the cell environment, it is possible to use two-layer functional gradient hydrogels. This review summarizes the methods and application advantages of bilayer dressings in wound treatment and skin tissue regeneration. Bilayered hydrogels based on natural as well as synthetic polymers are presented. The results of the in vitro and in vivo experiments and drug release are also discussed.
Collapse
|
18
|
Dmitriyeva M, Suleimenov T, Yessenbayev D, Turebayev D, Urazova S, Izimbergenov M, Kozhakhmetov S, Omarov T, Toleubayev M. Topical Polydeoxyribonucleotide Loaded in Hydrogel Formulation for Wound Healing in Diabetic Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with diabetes mellitus experience delayed wound healing because of the uncontrolled glucose level leads to impaired cell proliferative function, poor circulation, decreased production and repair of new blood vessels. Polydeoxyribonucleotide (PDRN) is used in wound healing as a substance that stimulates tissue repair. A hydrogel is a reticular substance generally used as a dressing formulation to accelerate wound healing, and also used as a bio-applicable scaffold or vehicle. The aim of study is to investigate the effects of PDRN loaded in hydrogel on wound healing, in combination and separately, in an animal diabetic wound model.
Methods: We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of male diabetic rats. A total of 36 wounds, were classified into 3 groups: a control group, a hydrogel-only group, a PDRN loaded in hydrogel combined-treatment group. All rats were assessed for changes in wound size and photographed on scheduled dates. The skin specimen sample of diabetic rat wound model were observed on 3, 7, 14 and 21 days after skin injury to measure tissue remodeling through histological evaluation of fibroblasts proliferation, and collagen production, also the number of blood vessels was measured in all specimens.
Results: Differences in the decrease and change in wound size in the PDRN loaded in hydrogel group were more significant than those in the control and hydrogel single-treatment groups. Analysis of the fibroblasts proliferation, collagen production and number of blood vessels through histological examination showed a pattern of increase over time that occurred in PDRN loaded in hydrogel combined-treatment group.
Conclusion: This experiment demonstrated improved wound healing using a PDRN loaded in hydrogel combined treatment compared to either two groups, resulting in a decrease in diabetic wound size and a shortening of the healing period
Collapse
|
19
|
Moody CT, Brown AE, Massaro NP, Patel AS, Agarwalla PA, Simpson AM, Brown AC, Zheng H, Pierce JG, Brudno Y. Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture. Acta Biomater 2022; 138:208-217. [PMID: 34728426 PMCID: PMC8738153 DOI: 10.1016/j.actbio.2021.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023]
Abstract
Alginate hydrogels are gaining traction for use in drug delivery, regenerative medicine, and as tissue engineered scaffolds due to their physiological gelation conditions, high tissue biocompatibility, and wide chemical versatility. Traditionally, alginate is decorated at the carboxyl group to carry drug payloads, peptides, or proteins. While low degrees of substitution do not cause noticeable mechanical changes, high degrees of substitution can cause significant losses to alginate properties including complete loss of calcium cross-linking. While most modifications used to decorate alginate deplete the carboxyl groups, we propose that alginate modifications that replenish the carboxyl groups could overcome the loss in gel integrity and mechanics. In this report, we demonstrate that restoring carboxyl groups during functionalization maintains calcium cross-links as well as hydrogel shear-thinning and self-healing properties. In addition, we demonstrate that alginate hydrogels modified to a high degree with azide modifications that restore the carboxyl groups have improved tissue retention at intramuscular injection sites and capture blood-circulating cyclooctynes better than alginate hydrogels modified with azide modifications that deplete the carboxyl groups. Taken together, alginate modifications that restore carboxyl groups could significantly improve alginate hydrogel mechanics for clinical applications. STATEMENT OF SIGNIFICANCE: Chemical modification of hydrogels provides a powerful tool to regulate cellular adhesion, immune response, and biocompatibility with local tissues. Alginate, due to its biocompatibility and easy chemical modification, is being explored for tissue engineering and drug delivery. Unfortunately, modifying alginate to a high degree of substitution consumes carboxyl group, which are necessary for ionic gelation, leading to poor hydrogel crosslinking. We introduce alginate modifications that restore the alginate's carboxyl groups. We demonstrate that modifications that reintroduce carboxyl groups restore gelation and improve gel mechanics and tissue retention. In addition to contributing to a basic science understanding of hydrogel properties, we anticipate our approach will be useful to create tissue engineered scaffolds and drug delivery platforms.
Collapse
Affiliation(s)
- C T Moody
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - A E Brown
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America
| | - N P Massaro
- Department of Chemistry, North Carolina State University, Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - A S Patel
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC United States of America
| | - P A Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - A M Simpson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America
| | - A C Brown
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - H Zheng
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC United States of America
| | - J G Pierce
- Department of Chemistry, North Carolina State University, Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - Y Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Department of Chemistry, North Carolina State University, Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC United States.
| |
Collapse
|
20
|
Identification of Key Genes Associated with Endothelial Cell Dysfunction in Atherosclerosis Using Multiple Bioinformatics Tools. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5544276. [PMID: 35059464 PMCID: PMC8764276 DOI: 10.1155/2022/5544276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 12/07/2022]
Abstract
Atherosclerosis is the most notable cardiovascular disease, the latter being the main cause of death globally. Endothelial cell dysfunction plays a major role in the pathogenesis of atherosclerosis. However, it is currently unclear which genes are involved between endothelial cell dysfunction and atherosclerosis. This study was aimed at identifying these genes. Based on the GSE83500 dataset, the quantification of endothelial cell function was conducted using single-sample gene set enrichment analysis; the coexpression modules were conducted using weighted correlation network analysis. After building module-trait relationships, tan and yellow modules were regarded as hub modules. 10 hub genes from each hub module were identified by the protein-protein interaction network analysis. The key genes (RAB5A, CTTN, ITGB1, and MMP9) were obtained by comparing the expression differences of the hub gene between atherosclerotic and normal groups from the GSE28829 and GSE43292 datasets, respectively. ROC analysis showed the diagnostic value of key genes. Moreover, the differential expression of key genes in normal and atherosclerotic aortic walls was verified. In vitro, we establish a model of ox-LDL-injured endothelial cells and transfect RAB5A overexpression and shRNA plasmids. The results showed that overexpression of RAB5A ameliorates the proliferation and migration function of ox-LDL-injured endothelial cells, including the ability of tubule formation. It was speculated that the interferon response, Notch signaling pathways, etc. were involved in this function of RAB5A by using gene set variation analysis. With the multiple bioinformatics analysis methods, we detected that yellow and tan modules are related to the abnormal proliferation and migration of endothelial cells associated with atherosclerosis. RAB5A, CTTN, ITGB1, and MMP9 can be used as potential targets for therapy and diagnostic markers. In vitro, overexpression of RAB5A can ameliorate the proliferation and migration function of ox-LDL-injured endothelial cells, and the possible molecules involved in this process were speculated.
Collapse
|
21
|
Poly (l-lactic acid) membrane crosslinked with Genipin for guided bone regeneration. Int J Biol Macromol 2021; 191:1228-1239. [PMID: 34619279 DOI: 10.1016/j.ijbiomac.2021.09.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
In this study, we chemically modified poly(L-lactic acid) (PLLA) with functional amine groups and fabricated a PLLA membrane crosslinked with genipin as a biomembrane for inducing guided bone regeneration (GBR). The mechanical strength of the PLLA-amine membrane was improved by crosslinking with genipin compared to pure PLLA membrane. The surface of the PLLA-amine membrane crosslinked with genipin had many more uniform pores. Attachment and proliferation of MC3T3-E1 cells were increased and improved on the PLLA-amine membrane crosslinked with genipin. In an in vitro osteogenesis study, MC3T3-E1 cells on the PLLA membrane showed higher alkaline phosphatase (ALP) activity and calcification ability evaluated by alizarin red S staining than those on the pure PLLA membrane. When a skull defect hole of a rat was covered with the PLLA-amine membrane crosslinked with genipin, vigorous new bone regeneration determined by computed tomography at 8 weeks post operation was superior to that when the skull defect was covered with the pure PLLA membrane. Taken together, these results demonstrate that the PLLA-amine membrane crosslinked with genipin has a promising therapeutic application to GBR as a barrier membrane for covering the defect site.
Collapse
|
22
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
23
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
25
|
Samiei M, Fathi M, Barar J, Fathi N, Amiryaghoubi N, Omidi Y. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Stowers RS. Advances in Extracellular Matrix-Mimetic Hydrogels to Guide Stem Cell Fate. Cells Tissues Organs 2021; 211:703-720. [PMID: 34082418 DOI: 10.1159/000514851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 01/25/2023] Open
Abstract
In the fields of regenerative medicine and tissue engineering, stem cells offer vast potential for treating or replacing diseased and damaged tissue. Much progress has been made in understanding stem cell biology, yielding protocols for directing stem cell differentiation toward the cell type of interest for a specific application. One particularly interesting and powerful signaling cue is the extracellular matrix (ECM) surrounding stem cells, a network of biopolymers that, along with cells, makes up what we define as a tissue. The composition, structure, biochemical features, and mechanical properties of the ECM are varied in different tissues and developmental stages, and serve to instruct stem cells toward a specific lineage. By understanding and recapitulating some of these ECM signaling cues through engineered ECM-mimicking hydrogels, stem cell fate can be directed in vitro. In this review, we will summarize recent advances in material systems to guide stem cell fate, highlighting innovative methods to capture ECM functionalities and how these material systems can be used to provide basic insight into stem cell biology or make progress toward therapeutic objectives.
Collapse
Affiliation(s)
- Ryan S Stowers
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
27
|
de la Portilla F, Dios-Barbeito S, Maestre-Sánchez MV, Vázquez-Monchul JM, García-Cabrera AM, Ramallo I, Reyes-Díaz ML. Feasibility and safety of calcium alginate hydrogel sealant for the treatment of cryptoglandular fistula-in-ano: phase I/IIa clinical trial. Colorectal Dis 2021; 23:1499-1506. [PMID: 33655675 DOI: 10.1111/codi.15608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
AIM Complex perianal fistulas pose a challenge to the surgeon since the fistulous tract must be eliminated without impairing continence. Although without strong scientific evidence, some bibliography has demonstrated the efficacy of some sealants in the treatment of anal fistulas. We aimed to assess the feasibility and safety of calcium alginate hydrogel injections into the fistulous tract as treatment for trans-sphincteric cryptoglandular fistulas. METHODS A prospective, single-centre, case series of this novel technique was conducted in a level 3 Spanish hospital, including patients diagnosed with trans-sphincteric perianal fistulas and treated with a calcium alginate hydrogel sealant. A strict follow-up was performed by an independent surgeon at 1, 3, 6 and 12 months. The main outcome measures were feasibility, safety (number of adverse events) and efficacy of the treatment. RESULTS Twenty patients were treated. The treatment was performed for all patients. Seven adverse events related to the injection product or the surgical procedure were identified. After a 12-month follow-up, 12 patients were completely cured and eight were not cured, with a greater response in the first 6 months. These findings were confirmed by endoanal ultrasound, with a Cohen's kappa concordance rate of 0.89. No statistically significant differences were observed in pain measured using the visual analogue scale, faecal incontinence measured using the Wexner scoring system, and quality of life analysed by the SF-36 Health Survey. CONCLUSION The treatment was feasible, safe and with discrete satisfactory healing results. It also demonstrated an acceptable safety profile, without worsening of faecal incontinence, quality of life and pain following treatment.
Collapse
Affiliation(s)
- Fernando de la Portilla
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain.,Department of Surgery, University of Seville, Avda Manuel Siurot s/n, Sevilla, España, 41013, Spain
| | - Sandra Dios-Barbeito
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain
| | - María Victoria Maestre-Sánchez
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain
| | - Jorge Manuel Vázquez-Monchul
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain.,Department of Surgery, University of Seville, Avda Manuel Siurot s/n, Sevilla, España, 41013, Spain
| | - Ana María García-Cabrera
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain
| | - Irene Ramallo
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain
| | - María Luisa Reyes-Díaz
- Colorectal Surgery Unit, Department of General and Digestive Surgery, 'Virgen del Rocío' University Hospital, Seville, Spain
| |
Collapse
|
28
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
29
|
Sharma V, Dash SK, Manhas A, Radhakrishnan J, Jagavelu K, Verma RS. Injectable hydrogel for co-delivery of 5-azacytidine in zein protein nanoparticles with stem cells for cardiac function restoration. Int J Pharm 2021; 603:120673. [PMID: 33964338 DOI: 10.1016/j.ijpharm.2021.120673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Heart failure is major cause of mortality associated with mostly Myocardial infarction (MI). Transplanting mesenchymal stem cells (MSC) have exhibited potential role in myocardial regeneration. Secretion of immune-modulatory cytokines and various growth factors after transplantation plays significant role in remodelling process of MI region. However, low retention, higher shear stress during administration and rejection at host infarct environment hinders therapeutic efficacy. Myocardial regeneration demands for accurate spatio-temporal delivery of MSCs with supportive vascular network that leads to improvement of cardiac function. In this study, injectable alginate based microporous hydrogel has been used to deliver 5-Azacytidine (5-Aza) in zein protein nanoparticle with MSCs for attenuating adverse cardiac remodelling after MI. Zein nanoparticles loaded with 5-Aza were prepared by liquid-liquid dispersion, and it was found that 35% of drug was released in 7 days supported with mathematical modelling. The presence of 5-Aza and zein in developed hydrogel supported in vitro MSC proliferation, migration and angiogenesis. Significant increased expression of cardiac specific markers, GATA4, MEF2C, MLC, SERCA and NKX2.5 was observed in vitro. 5-Aza loaded protein nanoparticle with MSCs encapsulated hydrogels in rat MI model also exhibited substantial improvement of functional cardiac parameters such as cardiac output and ejection fraction. Histopathological analysis showed reduced fibrosis, attenuated infarct expansion and cardiac tissue restoration and angiogenesis. In brief, we developed nanocarrier-hydrogel system a promising strategy for co-delivering 5-Aza as cardiac differentiation cue with MSCs to achieve higher cell retention and enhanced improvement in myocardial regeneration after MI.
Collapse
Affiliation(s)
- Vineeta Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - Sanat Kumar Dash
- Heat Transfer and Thermal Power, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - Amit Manhas
- PCS-202, Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Janani Radhakrishnan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - Kumaravelu Jagavelu
- PCS-202, Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India.
| |
Collapse
|
30
|
Carvalho EO, Ribeiro C, Correia DM, Botelho G, Lanceros-Mendez S. Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2421. [PMID: 33287454 PMCID: PMC7761810 DOI: 10.3390/nano10122421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022]
Abstract
Scaffolds play an essential role in the success of tissue engineering approaches. Their intrinsic properties are known to influence cellular processes such as adhesion, proliferation and differentiation. Hydrogel-based matrices are attractive scaffolds due to their high-water content resembling the native extracellular matrix. In addition, polymer-based magnetoelectric materials have demonstrated suitable bioactivity, allowing to provide magnetically and mechanically activated biophysical electrical stimuli capable of improving cellular processes. The present work reports on a responsive scaffold based on poly (L-lactic acid) (PLLA) microspheres and magnetic microsphere nanocomposites composed of PLLA and magnetostrictive cobalt ferrites (CoFe2O4), combined with a hydrogel matrix, which mimics the tissue's hydrated environment and acts as a support matrix. For cell proliferation evaluation, two different cell culture conditions (2D and 3D matrices) and two different strategies, static and dynamic culture, were applied in order to evaluate the influence of extracellular matrix-like confinement and the magnetoelectric/magneto-mechanical effect on cellular behavior. MC3T3-E1 proliferation rate is increased under dynamic conditions, indicating the potential use of hydrogel matrices with remotely stimulated magnetostrictive biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Estela O. Carvalho
- Centre of Physics, University of Minho, 4710-057 Braga, Portugal; (E.O.C.); (D.M.C.)
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, 4710-057 Braga, Portugal; (E.O.C.); (D.M.C.)
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Daniela M. Correia
- Centre of Physics, University of Minho, 4710-057 Braga, Portugal; (E.O.C.); (D.M.C.)
- Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Gabriela Botelho
- Centro de Química, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
31
|
Xiao W, Zhang J, Qu X, Chen K, Gao H, He J, Ma T, Li B, Liao X. Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:128. [PMID: 33247786 DOI: 10.1007/s10856-020-06466-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Due to their excellent mechanical strength and biocompatibility, silk fibroin(SF) hydrogels can serve as ideal scaffolds. However, their slow rate of natural degradation limits the space available for cell proliferation, which hinders their application. In this study, litchi-like calcium carbonate@hydroxyapatite (CaCO3@HA) porous microspheres loaded with proteases from Streptomyces griseus (XIV) were used as drug carriers to regulate the biodegradation rate of SF hydrogels. The results showed that litchi-like CaCO3@HA microspheres with different phase compositions could be prepared by changing the hydrothermal reaction time. The CaCO3@HA microspheres controlled the release of Ca ions, which was beneficial for the osteogenic differentiation of mesenchymal stem cells (MSCs). The adsorption and release of protease XIV from the CaCO3@HA microcarriers indicated that the loading and release amount can be controlled with the initial drug concentration. The weight loss test and SEM observation showed that the degradation of the fibroin hydrogel could be controlled by altering the amount of protease XIV-loaded CaCO3@HA microspheres. A three-dimensional (3D) cell encapsulation experiment proved that incorporation of the SF hydrogel with protease XIV-loaded microspheres promoted cell dispersal and spreading, suggesting that the controlled release of protease XIV can regulate hydrogel degradation. SF hydrogels incorporated with protease XIV-loaded microspheres are suitable for cell growth and proliferation and are expected to serve as excellent bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jing Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaohang Qu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ke Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Haiming Gao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jisu He
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Ma
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
32
|
Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020; 258:120287. [DOI: 10.1016/j.biomaterials.2020.120287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
33
|
Min Q, Yu X, Liu J, Zhang Y, Wan Y, Wu J. Controlled Delivery of Insulin-like Growth Factor-1 from Bioactive Glass-Incorporated Alginate-Poloxamer/Silk Fibroin Hydrogels. Pharmaceutics 2020; 12:pharmaceutics12060574. [PMID: 32575684 PMCID: PMC7355909 DOI: 10.3390/pharmaceutics12060574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Thermosensitive alginate–poloxamer (ALG–POL) copolymer with an optimal POL content was synthesized, and it was used to combine with silk fibroin (SF) for building ALG–POL/SF hydrogels with dual network structure. Mesoporous bioactive glass (BG) nanoparticles (NPs) with a high level of mesoporosity and large pore size were prepared and they were employed as a vehicle for loading insulin-like growth factor-1 (IGF-1). IGF-1-loaded BG NPs were embedded into ALG–POL/SF hydrogels to achieve the controlled delivery of IGF-1. The resulting IGF-1-loaded BG/ALG–POL/SF gels were found to be injectable with their sol-gel transition near physiological temperature and pH. Rheological measurements showed that BG/ALG–POL/SF gels had their elastic modulus higher than 5kPa with large ratio of elastic modulus to viscous modulus, indicative of their mechanically strong features. The dry BG/ALG–POL/SF gels were seen to be highly porous with well-interconnected pore characteristics. The gels loaded with varied amounts of IGF-1 showed abilities to administer IGF-1 release in approximately linear manners for a few weeks while effectively preserving the bioactivity of encapsulated IGF-1. Results suggest that such constructed BG/ALG–POL/SF gels can function as a promising injectable biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Q.M.); (Y.Z.)
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Y.); (J.L.)
| | - Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Y.); (J.L.)
| | - Yuchen Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Q.M.); (Y.Z.)
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Y.); (J.L.)
- Correspondence: (Y.W.); (J.W.)
| | - Jiliang Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Q.M.); (Y.Z.)
- Correspondence: (Y.W.); (J.W.)
| |
Collapse
|
34
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [PMID: 31480996 DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
35
|
Faruq O, Sayed S, Kim B, Im S, Lee B. A biphasic calcium phosphate ceramic scaffold loaded with oxidized cellulose nanofiber–gelatin hydrogel with immobilized simvastatin drug for osteogenic differentiation. J Biomed Mater Res B Appl Biomater 2020; 108:1229-1238. [DOI: 10.1002/jbm.b.34471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Omar Faruq
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Shithima Sayed
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Boram Kim
- Institute of Tissue Regeneration, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Soo‐Bin Im
- Department of Neurosurgery, College of MedicineSoonchunhyang University, Bucheon Hospital Bucheon South Korea
| | - Byong‐Taek Lee
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
- Institute of Tissue Regeneration, College of MedicineSoonchunhyang University Cheonan South Korea
| |
Collapse
|
36
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|
37
|
Jiang J, Liu A, Chen C, Tang J, Fan H, Sun J, Fan H. An efficient two-step preparation of photocrosslinked gelatin microspheres as cell carriers to support MC3T3-E1 cells osteogenic performance. Colloids Surf B Biointerfaces 2020; 188:110798. [DOI: 10.1016/j.colsurfb.2020.110798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
38
|
Cao Y, Lee BH, Irvine SA, Wong YS, Bianco Peled H, Venkatraman S. Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype. Polymers (Basel) 2020; 12:polym12030670. [PMID: 32192137 PMCID: PMC7183321 DOI: 10.3390/polym12030670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The capacity of a biomaterial to innately modulate cell behavior while meeting the mechanical property requirements of the implant is a much sought-after goal within bioengineering. Here we covalently incorporate soluble elastin into a gelatin–poly (ethylene glycol) (PEG) hydrogel for three-dimensional (3D) cell encapsulation to achieve these properties. The inclusion of elastin into a previously optimized gelatin–PEG hydrogel was then evaluated for effects on entrapped fibroblasts, with the aim to assess the hydrogel as an extracellular matrix (ECM)-mimicking 3D microenvironment for cellular guidance. Soluble elastin was incorporated both physically and covalently into novel gelatin/elastin hybrid PEG hydrogels with the aim to harness the cellular interactivity and mechanical tunability of both elastin and gelatin. This design allowed us to assess the benefits of elastin-containing hydrogels in guiding fibroblast activity for evaluation as a potential dermal replacement. It was found that a gelatin–PEG hydrogel with covalently conjugated elastin, supported neonatal fibroblast viability, promoted their proliferation from 7.3% to 13.5% and guided their behavior. The expression of collagen alpha-1(COL1A1) and elastin in gelatin/elastin hybrid gels increased 16-fold and 6-fold compared to control sample at day 9, respectively. Moreover, cells can be loaded into the hydrogel precursor solution, deposited, and the matrix cross-linked without affecting the incorporated cells adversely, thus enabling a potential injectable system for dermal wound healing.
Collapse
Affiliation(s)
- Ye Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
- The Inter-Departmental Program for Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Bae Hoon Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Scott Alexander Irvine
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Havazelet Bianco Peled
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (H.B.P.); (S.V.)
| | - Subramanian Venkatraman
- Subramanian Venkatraman, Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Correspondence: (H.B.P.); (S.V.)
| |
Collapse
|
39
|
Huang L, Abdalla AM, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int J Mol Sci 2020; 21:E1895. [PMID: 32164316 PMCID: PMC7084715 DOI: 10.3390/ijms21051895] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of three-dimensional (3D) cell culture has been proposed to maintain cellular morphology and function as in vivo. Among different approaches for 3D cell culture, microcarrier technology provides a promising tool for cell adhesion, proliferation, and cellular interactions in 3D space mimicking the in vivo microenvironment. In particular, microcarriers based on biopolymers have been widely investigated because of their superior biocompatibility and biodegradability. Moreover, through bottom-up assembly, microcarriers have opened a bright door for fabricating engineered tissues, which is one of the cutting-edge topics in tissue engineering and regeneration medicine. This review takes an in-depth look into the recent advancements of microcarriers based on biopolymers-especially polysaccharides such as chitosan, chitin, cellulose, hyaluronic acid, alginate, and laminarin-for 3D cell culture and the fabrication of engineered tissues based on them. The current limitations and potential strategies were also discussed to shed some light on future directions.
Collapse
Affiliation(s)
- Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China;
| | - Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| |
Collapse
|
40
|
Xin S, Gregory CA, Alge DL. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels. Acta Biomater 2020; 101:227-236. [PMID: 31711899 PMCID: PMC6960331 DOI: 10.1016/j.actbio.2019.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Microporous annealed particle (MAP) hydrogels are promising materials for delivering therapeutic cells. It has previously been shown that spreading and mechanosensing activation of human mesenchymal stem cells (hMSCs) incorporated in these materials can be modulated by tuning the modulus of the microgel particle building blocks. However, the effects of degradability and functionalization with different integrin-binding peptides on cellular responses has not been explored. In this work, RGDS functionalized and enzymatically degradable poly(ethylene glycol) (PEG) microgels were annealed into MAP hydrogels via thiol-ene click chemistry and photopolymerization. During cell-mediated degradation, the microgel surfaces were remodeled to wrinkles or ridges, but the scaffold integrity was maintained. Moreover, cell spreading, proliferation, and secretion of extracellular matrix proteins were significantly enhanced in faster matrix metalloproteinase degrading (KCGPQGIWGQCK) MAP hydrogels compared to non-degradable controls after 8 days of culture. We subsequently evaluated paracrine activity by hMSCs seeded in the MAP hydrogels functionalized with either RGDS or c(RRETAWA), which is specific for α5β1 integrins, and evaluated the interplay between degradability and integrin-mediated signaling. Importantly, c(RRETAWA) functionalization upregulated secretion of bone morphogenetic protein-2 overall and on a per cell basis, but this effect was critically dependent on microgel degradability. In contrast, RGDS functionalization led to higher overall vascular endothelial growth factor secretion in degradable scaffolds due to the high cell number. These results demonstrate that integrin-binding peptides can modulate hMSC behavior in PEG-based MAP hydrogels, but the results strongly depend on the susceptibility of the microgel building blocks to cell-mediated matrix remodeling. This relationship should be considered in future studies aiming to further develop these materials for stem cell delivery and tissue engineering applications. STATEMENT OF SIGNIFICANCE: Microporous annealed particle (MAP) hydrogels are attracting increasing interest for tissue repair and regeneration and have shown superior results compared to conventional hydrogels in multiple applications. Here, we studied the impact of MAP hydrogel degradability and functionalization with different integrin-binding peptides on human mesenchymal stem cells (hMSCs) that were incorporated during particle annealing. Degradability was found to improve cell growth, spreading, and extracellular matrix production regardless of the integrin-binding peptide. Moreover, in degradable MAP hydrogels the integrin-binding peptide c(RRETAWA) was found to increase osteogenic protein expression by hMSCs compared to RGDS-functionalized MAP hydrogels. These results have important implications for the development of a MAP hydrogel-based hMSC delivery system for bone tissue engineering.
Collapse
Affiliation(s)
- Shangjing Xin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine Texas A&M Health Science Center, College Station, TX, 77807 USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA.
| |
Collapse
|
41
|
Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. NATURE REVIEWS. MATERIALS 2020; 5:20-43. [PMID: 34123409 PMCID: PMC8191408 DOI: 10.1038/s41578-019-0148-6] [Citation(s) in RCA: 610] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 05/13/2023]
Abstract
Hydrogel microparticles (HMPs) are promising for biomedical applications, ranging from the therapeutic delivery of cells and drugs to the production of scaffolds for tissue repair and bioinks for 3D printing. Biologics (cells and drugs) can be encapsulated into HMPs of predefined shapes and sizes using a variety of fabrication techniques (batch emulsion, microfluidics, lithography, electrohydrodynamic (EHD) spraying and mechanical fragmentation). HMPs can be formulated in suspensions to deliver therapeutics, as aggregates of particles (granular hydrogels) to form microporous scaffolds that promote cell infiltration or embedded within a bulk hydrogel to obtain multiscale behaviours. HMP suspensions and granular hydrogels can be injected for minimally invasive delivery of biologics, and they exhibit modular properties when comprised of mixtures of distinct HMP populations. In this Review, we discuss the fabrication techniques that are available for fabricating HMPs, as well as the multiscale behaviours of HMP systems and their functional properties, highlighting their advantages over traditional bulk hydrogels. Furthermore, we discuss applications of HMPs in the fields of cell delivery, drug delivery, scaffold design and biofabrication.
Collapse
Affiliation(s)
- Andrew C. Daly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally: Andrew C. Daly, Lindsay Riley
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- These authors contributed equally: Andrew C. Daly, Lindsay Riley
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Departments of Dermatology and Neurology, Duke University, Durham, NC, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Grijalvo S, Nieto‐Díaz M, Maza RM, Eritja R, Díaz DD. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnol J 2019; 14:e1900275. [DOI: 10.1002/biot.201900275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - Manuel Nieto‐Díaz
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - David Díaz Díaz
- Institut für Organische ChemieUniversität Regensburg, Universitätsstr. 31 93053 Regensburg Germany
- Institute of Natural Products and Abrobiology of the CSIC Avda. Astrofísico Francisco Sánchez 3 E‐3826 La Laguna Tenerife Spain
| |
Collapse
|
43
|
Thakar H, Sebastian SM, Mandal S, Pople A, Agarwal G, Srivastava A. Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:6320-6341. [DOI: 10.1021/acsbiomaterials.9b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
A facile approach for engineering tissue constructs with vessel-like channels by cell-laden hydrogel fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:370-379. [DOI: 10.1016/j.msec.2019.03.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
|
45
|
Fan C, Ling Y, Deng W, Xue J, Sun P, Wang DA. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. ACTA ACUST UNITED AC 2019; 14:055006. [PMID: 31269472 DOI: 10.1088/1748-605x/ab2efd] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hydrogel scaffold is a popular cell delivery vehicle in tissue engineering and regenerative medicine due to its capability to encapsulate cells as well as its modifiable properties. However, the inherent submicron- or nano-sized polymer networks of conventional hydrogel will produce spatial constraints on cellular activities of encapsulated cells. In this study, we endeavor to develop an innovative cell encapsulatable cryogel (CECG) platform with interconnected macro-pores, by combining cell cryopreservation technique with cryogel preparation process. The hyaluronan (HA) CECG constructs are fabricated under the freezing conditions via UV photo-crosslinking of the HA methacrylate (HA-MA) that are dissolved in the 'freezing solvent', namely the phosphate buffered saline supplemented with dimethyl sulphoxide and fetal bovine serum. Two model cell types, chondrocytes and human mesenchymal stem cells (hMSCs), can be uniformly three-dimensionally encapsulated into HA CECG constructs with high cell viability, respectively. The macro-porous structures, generated from phase separation under freezing, endow HA CECG constructs with higher permeability and more living space for cell growth. The chondrocytes encapsulated in HA CECG possess enhanced proliferation and extracellular matrix secretion than those in conventional HA hydrogels. In addition, the HA-Gel CECG constructs, fabricated with HA-MA and gelatin methacrylate precursors, provide cell-adhesive interfaces to facilitate hMSCs attachment and proliferation. The results of this work may lay the foundation for us to explore the applications of the CECG-based scaffolds in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Changjiang Fan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Eswaramoorthy SD, Ramakrishna S, Rath SN. Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med 2019; 13:908-924. [PMID: 30866145 DOI: 10.1002/term.2839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
In spite of being a new field, three-dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, NUS Nanoscience & Nanotechnology Initiative, Singapore
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| |
Collapse
|
47
|
Liu S, Jin M, Chen Y, Teng L, Qi D, Ren L. Air‐In‐Water Emulsion Solely Stabilized by Gelatin Methacryloyl and Templating for Macroporous Nanocomposite Hydrogels. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sa Liu
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Provinceand Innovation Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| | - Min Jin
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Yunhua Chen
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Provinceand Innovation Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| | - Lijing Teng
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| | - Dawei Qi
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Li Ren
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Provinceand Innovation Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| |
Collapse
|
48
|
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res 2019; 115:488-500. [PMID: 30657875 PMCID: PMC6383054 DOI: 10.1093/cvr/cvz010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
- University of Pisa, Pisa University Hospital, Pisa, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Muscle Research Center Erlangen, MURCE
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Francesco Fernandez-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Jean-Sebastien Hulot
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- Paris Cardiovascular Research Center (PARCC), INSERM UMRS 970, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, South Africa
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institutes, Sackler Faculty of Medicine, Tel-Aviv University and Sheba Medical Center, Tel-Hashomer, Israel
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 970, Paris, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, INSERM, CNRS, Université d’Angers, Service de Cardiologie, CHU Angers, Angers, France
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT, The Arctic University of Norway, Norway
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX Utrecht, the Netherlands
| |
Collapse
|
49
|
Tsai CC, Hong YJ, Lee RJ, Cheng NC, Yu J. Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel. J Mater Chem B 2019; 7:1064-1075. [DOI: 10.1039/c8tb02835d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Standardized human adipose-derived stem cell spheroids can be harvested abundantly and the differentiation capability of cell spheroids performed well in the enzyme-crosslinked gelatin hydrogel.
Collapse
Affiliation(s)
- Ching-Cheng Tsai
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 10617
- Taiwan
| | - Yu-Jun Hong
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 10617
- Taiwan
| | - Randall J. Lee
- Department Medicine
- University of California San Francisco
- San Francisco
- USA
| | - Nai-Chen Cheng
- Department of Surgery
- National Taiwan University Hospital
- Taipei City 10048
- Republic of China
| | - Jiashing Yu
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 10617
- Taiwan
| |
Collapse
|
50
|
Chen C, Wang J, Hao R, Wang Z, Hou Z, Zhao Y, Zong C, Xu H. Transglutaminase-Triggered Gelation and Functionalization of Designed Self-Assembling Peptides for Guiding Cell Migration. ACS APPLIED BIO MATERIALS 2018; 1:2110-2119. [PMID: 34996272 DOI: 10.1021/acsabm.8b00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jingxin Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Ruirui Hao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zheng Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhe Hou
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cheng Zong
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|