1
|
Chen Y, Zhao R, Fan Q, Liu M, Huang Y, Shi G. Enhancing the activation of T cells through anti-CD3/CD28 magnetic beads by adjusting the antibody ratio. IUBMB Life 2024; 76:1175-1185. [PMID: 39046102 DOI: 10.1002/iub.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024]
Abstract
The utilization of anti-CD3/CD28 magnetic beads for T cell expansion in vitro has been investigated for adoptive cell transfer therapy. However, the impact of the CD3/CD28 antibody ratio on T cell differentiation and function remains incompletely elucidated. This study seeks to address this knowledge gap. To begin with, CD3 antibodies with a relatively low avidity for Jurkat cells (Kd = 13.55 nM) and CD28 antibodies with a relatively high avidity (Kd = 5.79 nM) were prepared. Afterwards, anti-CD3/CD28 antibodies with different mass ratios were attached to magnetic beads to examine the impacts of different antibody ratios on T cell capture, and proliferation. The research demonstrated that the most significant expansion of T cells was stimulated by the anti-CD3/CD28 magnetic beads with a mass ratio of 2:1 for CD3 antibodies and CD28 antibodies. Moreover, CD25 and PD1 expression of expanded T cells increased and then decreased, with lower CD25 and PD1 expression in the later stages of expansion indicating that T cells were not depleted. These T cells, which are massively expanded in vitro and have excellent expansion potential, can be infused back into the patient to treat tumor patients. This study shows that altering the ratio of anti-CD3/CD28 antibodies can control the strength of T cell stimulation, thereby leading to the improvement of T cell activation. This discovery can be utilized as a guide for the creation of other T cell stimulation approaches, which is beneficial for the further development of tumor immunotherapy technology.
Collapse
Affiliation(s)
- Yinuo Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Zhao
- Beijing Scipromed Biotech Co., Ltd., Beijing, China
| | - Qi Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengmeng Liu
- Beijing Scipromed Biotech Co., Ltd., Beijing, China
| | | | - Guoqing Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
2
|
Juul-Madsen K, Parbo P, Ismail R, Ovesen PL, Schmidt V, Madsen LS, Thyrsted J, Gierl S, Breum M, Larsen A, Andersen MN, Romero-Ramos M, Holm CK, Andersen GR, Zhao H, Schuck P, Nygaard JV, Sutherland DS, Eskildsen SF, Willnow TE, Brooks DJ, Vorup-Jensen T. Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment. Nat Commun 2024; 15:1224. [PMID: 38336934 PMCID: PMC10858199 DOI: 10.1038/s41467-024-45627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer's Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aβ aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer's Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aβ aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aβ. Hydrodynamic calculations suggest Aβ aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis.
Collapse
Affiliation(s)
- Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Peter Parbo
- Department of Nuclear Medicine, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000, Odense C, Denmark
| | - Rola Ismail
- Department of Nuclear medicine and PET, Vejle Hospital, Beriderbakken 4, DK-7100, Vejle, Denmark
| | - Peter L Ovesen
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lasse S Madsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University and Aarhus University Hospital, Building 1710, Universitetsbyen 3, DK-8200, Aarhus C, Denmark
| | - Jacob Thyrsted
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Sarah Gierl
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Mihaela Breum
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Morten N Andersen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- NEURODIN AU IDEAS Center, Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8200, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Huaying Zhao
- Laboratory of Dynamics and Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, Building 31, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics and Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, Building 31, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jens V Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds vej 10 D, DK-8200, Aarhus C, Denmark
| | - Duncan S Sutherland
- Interdisiciplinary Nanoscience Center, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark
- Center for Cellular Signal Patterns, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark
| | - Simon F Eskildsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University and Aarhus University Hospital, Building 1710, Universitetsbyen 3, DK-8200, Aarhus C, Denmark
| | - Thomas E Willnow
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Brain Sciences, Imperial College London, Burlington Danes, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Institute of Translational and Clinical Research, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
- NEURODIN AU IDEAS Center, Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8200, Aarhus C, Denmark.
- Interdisiciplinary Nanoscience Center, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark.
| |
Collapse
|
3
|
He Z, Zhang J, Liu M, Meng Y. Polyvalent aptamer scaffold coordinating light-responsive oxidase-like nanozyme for sensitive detection of zearalenone. Food Chem 2024; 431:136908. [PMID: 37573743 DOI: 10.1016/j.foodchem.2023.136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
An efficient aptasensor was developed for the colorimetric determination of zearalenone (ZEN) based on polyvalent aptamer scaffold and light-responsive oxidase-like nanozyme. The sensitivity and efficiency of the development method were significantly improved owing to rich aptamers and signal labels (3, 4-dihydroxybenzoic acid, PCA) packed in the scaffold. The scaffold integrated functions of target recognition, surface immobilization and signal transduction. The photoresponsive nanoenzyme of TiO2-PCA was formed by PCA coordinated with Ti (IV) on the surface of TiO2. TiO2-PCA catalyzed dissolved oxygen rather than H2O2 to generate colorimetric signal by stimulating the chromogenic substrate, which made the assay greener and safer. The detection limit of colorimetric mode was 0.0087 ng/mL and the satisfactory recoveries 92.00 %-111.00 % were achieved in spiked food samples. This strategy opens new horizons for sensitive detection of small molecule hazards and promises to be a powerful tool for safeguarding food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jinxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Mei Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710119, China.
| | - Yonghong Meng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710119, China
| |
Collapse
|
4
|
Seiler T, Lennartz A, Klein K, Hommel K, Figueroa Bietti A, Hadrovic I, Kollenda S, Sager J, Beuck C, Chlosta E, Bayer P, Juul-Madsen K, Vorup-Jensen T, Schrader T, Epple M, Knauer SK, Hartmann L. Potentiating Tweezer Affinity to a Protein Interface with Sequence-Defined Macromolecules on Nanoparticles. Biomacromolecules 2023; 24:3666-3679. [PMID: 37507377 DOI: 10.1021/acs.biomac.3c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.
Collapse
Affiliation(s)
- Theresa Seiler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| | - Annika Lennartz
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Katrin Hommel
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Antonio Figueroa Bietti
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Inesa Hadrovic
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Jonas Sager
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Emilia Chlosta
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Shirley K Knauer
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| |
Collapse
|
5
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
6
|
Ferapontov A, Omer M, Baudrexel I, Nielsen JS, Dupont DM, Juul-Madsen K, Steen P, Eklund AS, Thiel S, Vorup-Jensen T, Jungmann R, Kjems J, Degn SE. Antigen footprint governs activation of the B cell receptor. Nat Commun 2023; 14:976. [PMID: 36813795 PMCID: PMC9947222 DOI: 10.1038/s41467-023-36672-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.
Collapse
Affiliation(s)
- Alexey Ferapontov
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | - Marjan Omer
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Isabelle Baudrexel
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jesper Sejrup Nielsen
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel Miotto Dupont
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Philipp Steen
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Alexandra S Eklund
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | | | - Ralf Jungmann
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Jørgen Kjems
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark. .,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
7
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
8
|
Nielsen MA, Juul-Madsen K, Stegmayr J, Gao C, Mehta AY, Greisen SR, Kragstrup TW, Hvid M, Vorup-Jensen T, Cummings RD, Leffler H, Deleuran BW. Galectin-3 Decreases 4-1BBL Bioactivity by Crosslinking Soluble and Membrane Expressed 4-1BB. Front Immunol 2022; 13:915890. [PMID: 35812455 PMCID: PMC9263355 DOI: 10.3389/fimmu.2022.915890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/22/2023] Open
Abstract
4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL’s bioactivity.
Collapse
Affiliation(s)
- Morten Aagaard Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - John Stegmayr
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Akul Y. Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Stinne Ravn Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Hakon Leffler
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Bent Winding Deleuran,
| |
Collapse
|
9
|
Immunoassay for detection of oligomeric proteins. J Immunol Methods 2022; 505:113277. [PMID: 35489403 DOI: 10.1016/j.jim.2022.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022]
Abstract
The mass concentration of specific proteins is often used as a biomarker and play an important part in diagnostics of inflammatory diseases. Monodisperse proteins are robustly measured in immunoassays, but it is considerably more complicated to measure polydisperse oligomeric proteins. The degree of protein oligomerization is critical for functional aspects. For such proteins, information on both the mass concentration as well as the degree of oligomerization is important. Here, a time-resolved immunofluorometric assay (TRIFMA) with sensitivity for protein structure to detect homo-oligomeric and polydisperse proteins is presented. An established TRIFMA for mannan-binding lectin (MBL) was modified by implementing an additional blocking step prior to coating with capture antibodies, leading to a decrease in coating density. Recombinant human MBL was sorted into small, intermediate, and large complexes, using gel permeation chromatography. Small MBL complexes were poorly detectable by TRIFMA with a sparse antibody coating, while larger complexes produced a strong response. From comparison of molecular dimensions, this difference can be related to the size of oligomers. In conclusion, it is possible to design oligomer-size-sensitive immunoassays by regulating the inter-molecular distance of capture antibodies on a scale comparable to the size of the oligomers.
Collapse
|
10
|
Brown JWP, Alford RG, Walsh JC, Spinney RE, Xu SY, Hertel S, Berengut JF, Spenkelink LM, van Oijen AM, Böcking T, Morris RG, Lee LK. Rapid Exchange of Stably Bound Protein and DNA Cargo on a DNA Origami Receptor. ACS NANO 2022; 16:6455-6467. [PMID: 35316035 DOI: 10.1021/acsnano.2c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomolecular complexes can form stable assemblies yet can also rapidly exchange their subunits to adapt to environmental changes. Simultaneously allowing for both stability and rapid exchange expands the functional capacity of biomolecular machines and enables continuous function while navigating a complex molecular world. Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange. The system utilizes a mechanism first outlined in the context of the DNA replisome, known as multisite competitive exchange, and achieves a large separation of time scales between spontaneous subunit dissociation, which requires days, and rapid subunit exchange, which occurs in minutes. In addition, we use the DNA origami receptor to demonstrate stable interactions with rapid exchange of both DNA and protein subunits, thus highlighting the applicability of our approach to arbitrary molecular cargo, an important distinction with canonical toehold exchange between single-stranded DNA. We expect this study to benefit future studies that use DNA origami structures to exploit multivalent interactions for the design and synthesis of a wide range of possible kinetic behaviors.
Collapse
Affiliation(s)
- James W P Brown
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Rokiah G Alford
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - James C Walsh
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Richard E Spinney
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Stephanie Y Xu
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Sophie Hertel
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- School of Chemistry, University of Sydney, Sydney 2006, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Till Böcking
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Richard G Morris
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
11
|
Ogrina A, Skrastina D, Balke I, Kalnciema I, Jansons J, Bachmann MF, Zeltins A. Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for Vaccine Generation. Vaccines (Basel) 2022; 10:vaccines10040485. [PMID: 35455234 PMCID: PMC9030781 DOI: 10.3390/vaccines10040485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 01/15/2023] Open
Abstract
Plant-based virus-like particle (VLP) vaccines have been studied for years, demonstrating their potential as antigen-presenting platforms. In this paper, we describe the development of, and compare between, simple Escherichia coli-based antigen display platforms for the generation of potato virus Y (PVY) VLP-derived vaccines, thus allowing the production of vaccines from a single bacterial cell culture. We constructed four systems with the major cat allergen Fel d 1; namely, direct fusion with plant virus PVY coat protein (CP), mosaic PVY VLPs, and two coexpression variants of conjugates (SpyTag/SpyCatcher) allowing coexpression and conjugation directly in E. coli cells. For control experiments, we included PVY VLPs chemically coupled with Fel d 1. All constructed PVY-Fel d 1 variants were well expressed and soluble, formed PVY-like filamentous particles, and were recognized by monoclonal Fel d 1 antibodies. Our results indicate that all vaccine variants induced high titers of anti-Fel d 1 antibodies in murine models. Mice that were immunized with the chemically coupled Fel d 1 antigen exhibited the highest antibody titers and antibody-antigen interaction specificity, as detected by binding avidity and recognition of native Fel d 1. IgG1 subclass antibodies were found to be the dominant IgG class against PVY-Fel d 1. PVY CP-derived VLPs represent an efficient platform for the comparison of various antigen presentation systems to help evaluate different vaccine designs.
Collapse
Affiliation(s)
- Anete Ogrina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Dace Skrastina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ina Balke
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ieva Kalnciema
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Juris Jansons
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Andris Zeltins
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
- Correspondence:
| |
Collapse
|
12
|
Lima CN, Oliveira WF, Silva PMM, Filho PEC, Juul-Madsen K, Moura P, Vorup-Jensen T, Fontes A. Mannose-binding lectin conjugated to quantum dots as fluorescent nanotools for carbohydrate tracing. Methods Appl Fluoresc 2022; 10. [PMID: 35145049 DOI: 10.1088/2050-6120/ac4e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Quantum dots (QDs) have stood out as nanotools for glycobiology due to their photostability and ability to be combined with lectins. Mannose-binding lectin (MBL) is involved in the innate immune system and plays important roles in the activation of the complement cascade, opsonization, and elimination of apoptotic and microbial cells. Herein, adsorption and covalent coupling strategies were evaluated to conjugate QDs to a recombinant human MBL (rhMBL). The most efficient nanoprobe was selected by evaluating the conjugate ability to labelCandida albicansyeasts by flow cytometry. The QDs-rhMBL conjugate obtained by adsorption at pH 6.0 was the most efficient, labelingca.100% of cells with the highest median fluorescence intensity. The conjugation was also supported by Fourier transform infrared spectroscopy, zeta potential, and size analyses.C. albicanslabeling was calcium-dependent; 12% and <1% of cells were labeled in buffers without calcium and containing EDTA, respectively. The conjugate promoted specific labeling (based on cluster effect) since, after inhibition with mannan, there was a reduction of 80% in cell labeling, which did not occur with methyl-α-D-mannopyranoside monosaccharide. Conjugates maintained colloidal stability, bright fluorescence, and biological activity for at least 8 months. Therefore, QDs-rhMBL conjugates are promising nanotools to elucidate the roles of MBL in biological processes.
Collapse
Affiliation(s)
- Carinna N Lima
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Weslley F Oliveira
- Departament of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paloma M M Silva
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paulo E Cabral Filho
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Kristian Juul-Madsen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Patrícia Moura
- Biological Science Institute, University of Pernambuco, Recife, Pernambuco, Brazil
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
13
|
Al-Ramahi Y, Nyerges A, Margolles Y, Cerdán L, Ferenc G, Pál C, Fernández LÁ, de Lorenzo V. ssDNA recombineering boosts in vivo evolution of nanobodies displayed on bacterial surfaces. Commun Biol 2021; 4:1169. [PMID: 34621006 PMCID: PMC8497518 DOI: 10.1038/s42003-021-02702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
ssDNA recombineering has been exploited to hyperdiversify genomically-encoded nanobodies displayed on the surface of Escherichia coli for originating new binding properties. As a proof-of-principle a nanobody recognizing the antigen TirM from enterohaemorrhagic E. coli (EHEC) was evolved towards the otherwise not recognized TirM antigen from enteropathogenic E. coli (EPEC). To this end, E. coli cells displaying this nanobody fused to the intimin outer membrane-bound domain were subjected to multiple rounds of mutagenic oligonucleotide recombineering targeting the complementarity determining regions (CDRs) of the cognate VHH gene sequence. Binders to the EPEC-TirM were selected upon immunomagnetic capture of bacteria bearing active variants and nanobodies identified with a new ability to strongly bind the new antigen. The results highlight the power of combining evolutionary properties of bacteria in vivo with oligonucleotide synthesis in vitro for the sake of focusing diversification to specific segments of a gene (or protein thereof) of interest.
Collapse
Affiliation(s)
- Yamal Al-Ramahi
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Akos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Lidia Cerdán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Gyorgyi Ferenc
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
14
|
Characterization of DNA-protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proc Natl Acad Sci U S A 2021; 118:2106647118. [PMID: 34301873 DOI: 10.1073/pnas.2106647118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA-protein nanoparticulates in the pathobiology of autoimmune diseases.
Collapse
|
15
|
Jendroszek A, Kjaergaard M. Nanoscale spatial dependence of avidity in an IgG1 antibody. Sci Rep 2021; 11:12663. [PMID: 34135438 PMCID: PMC8209022 DOI: 10.1038/s41598-021-92280-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies are secreted proteins that are crucial to recognition of pathogens by the immune system and are also efficient pharmaceuticals. The affinity and specificity of target recognition can increase remarkably through avidity effects, when the antibody can bind a multivalent antigen through more than one epitope simultaneously. A key goal of antibody engineering is thus to optimize avidity, but little is known about the nanoscale spatial dependence of avidity in antibodies. Here, we develop a set of anti-parallel coiled-coils spanning from 7 to 20 nm and validate their structure using biophysical techniques. We use the coiled-coils to control the spacing between two epitopes, and measure how antigen spacing affects the stability of the bivalent antibody:antigen complex. We find a maximal avidity enhancement at a spacing of 13 nm. In contrast to recent studies, we find the avidity to be relatively insensitive to epitope spacing near the avidity maximum as long as it is within the spatial tolerance of the antibody. We thus only see a ~ twofold variation of avidity in the range from 7 to 20 nm. The coiled-coil systems developed here may prove a useful protein nanocaliper for profiling the spatial tolerance and avidity profile of bispecific antibodies.
Collapse
Affiliation(s)
- Agnieszka Jendroszek
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark. .,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus, Denmark. .,Aarhus Institute of Advanced Studies (AIAS), Aarhus, Denmark. .,The Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| |
Collapse
|
16
|
Jensen RK, Bajic G, Sen M, Springer TA, Vorup-Jensen T, Andersen GR. Complement Receptor 3 Forms a Compact High-Affinity Complex with iC3b. THE JOURNAL OF IMMUNOLOGY 2021; 206:3032-3042. [PMID: 34117107 DOI: 10.4049/jimmunol.2001208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Complement receptor 3 (CR3, also known as Mac-1, integrin αMβ2, or CD11b/CD18) is expressed on a subset of myeloid and certain activated lymphoid cells. CR3 is essential for the phagocytosis of complement-opsonized particles such as pathogens and apoptotic or necrotic cells opsonized with the complement fragment iC3b and, to a lesser extent, C3dg. Although the interaction between the iC3b thioester domain and the ligand binding CR3 αM I-domain is structurally and functionally well characterized, the nature of additional CR3-iC3b interactions required for phagocytosis of complement-opsonized objects remains obscure. In this study, we analyzed the interaction between iC3b and the 150-kDa headpiece fragment of the CR3 ectodomain. Surface plasmon resonance experiments demonstrated a 30 nM affinity of the CR3 headpiece for iC3b compared with 515 nM for the iC3b thioester domain, whereas experiments monitoring binding of iC3b to CR3-expressing cells suggested an affinity of 50 nM for the CR3-iC3b interaction. Small angle x-ray scattering analysis revealed that iC3b adopts an extended but preferred conformation in solution. Upon interaction with CR3, iC3b rearranges to form a compact receptor-ligand complex. Overall, the data suggest that the iC3b-CR3 interaction is of high affinity and relies on minor contacts formed between CR3 and regions outside the iC3b thioester domain. Our results rationalize the more efficient phagocytosis elicited by iC3b than by C3dg and pave the way for the development of specific therapeutics for the treatment of inflammatory and neurodegenerative diseases that do not interfere with the recognition of noncomplement CR3 ligands.
Collapse
Affiliation(s)
- Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Goran Bajic
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
17
|
Meng F, Kwon S, Wang J, Yeo Y. Immunoactive drug carriers in cancer therapy. BIOMATERIALS FOR CANCER THERAPEUTICS 2020:53-94. [DOI: 10.1016/b978-0-08-102983-1.00003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
19
|
Linker Dependence of Avidity in Multivalent Interactions Between Disordered Proteins. J Mol Biol 2019; 431:4784-4795. [DOI: 10.1016/j.jmb.2019.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
|
20
|
Men D, Zhou J, Li W, Wei CH, Chen YY, Zhou K, Zheng Y, Xu K, Zhang ZP, Zhang XE. Self-Assembly of Antigen Proteins into Nanowires Greatly Enhances the Binding Affinity for High-Efficiency Target Capture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41019-41025. [PMID: 30388367 DOI: 10.1021/acsami.8b12511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-efficiency target capture is an essential prerequisite for sensitive immunoassays. However, the current available immunoassay approaches are subject to deficient binding affinities between predator-prey molecules that greatly restrict the target capture efficiency and immunoassay sensitivity. Herein, we present a new strategy through the self-assembly of antigen proteins into nanowires to enhance the binding affinity between an antigen and antibody. Through the genetic fusion of antigen proteins (e.g., HIV p24) with the yeast amyloid protein Sup35 self-assembly domain, specific antigen nanowires (Ag nanowires) were constructed and demonstrated a remarkable enhancement in binding affinity compared with that of the monomeric antigen molecule. The Ag nanowires were further combined with magnetic beads to form a 3D magnetic probe based on a seed-induced self-assembly strategy. Taking advantage of both the strong binding affinity and the rapid magnetic separation and enrichment capacity, the specific 3D magnetic probe achieved a 100-fold improvement in detection sensitivity within a significantly shorter period of 20 min over that of the conventional enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Wei Li
- College of Life Sciences , Hubei University , Wuhan 430062 , China
| | - Cui-Hua Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | | | - Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Ke Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
21
|
Vorup-Jensen T, Jensen RK. Structural Immunology of Complement Receptors 3 and 4. Front Immunol 2018; 9:2716. [PMID: 30534123 PMCID: PMC6275225 DOI: 10.3389/fimmu.2018.02716] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasmus Kjeldsen Jensen
- Department of Molecular Biology and Genetics-Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Støy S, Sandahl TD, Hansen AL, Deleuran B, Vorup-Jensen T, Vilstrup H, Kragstrup TW. Decreased monocyte shedding of the migration inhibitor soluble CD18 in alcoholic hepatitis. Clin Transl Gastroenterol 2018; 9:160. [PMID: 29904132 PMCID: PMC6002386 DOI: 10.1038/s41424-018-0022-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES During alcoholic hepatitis (AH) monocytes traverse the vascular boundaries and massively invade the liver. In principle, tissue extravasation can be limited through shedding of CD18 integrins from leukocytes, including monocytes. The soluble (s) product sCD18 conceals adhesion receptors on the endothelium, which reduces monocyte extravasation. In AH, monocytes are dysfunctional, but whether this involves their self-generated anti-migration is unknown. Our aim was, therefore, to investigate monocyte CD18 dynamics in AH. METHODS We studied 50 AH patients and 20 healthy controls. We measured monocyte expression and conformational activation of CD18, plasma (P)-sCD18, stimulated in vitro CD18 shedding and P-sCD18 in a short-term chronic-binge mouse model. RESULTS AH-derived monocytes had a 30-60% higher expression of active CD18 receptors (p < 0.01), but the sCD18 concentration per monocyte was reduced in vivo by 30% and in vitro by 120% (p < 0.01). Ethanol reduced the in vitro shedding of CD18 in the patients only. TNFα increased sCD18 concentration per monocyte, but less so in the patients (p < 0.04). P-sCD18 per monocyte was inversely related to disease severity. In early alcoholic liver disease, P-sCD18 was decreased in the mouse model. CONCLUSIONS The monocyte CD18 integrins are highly activated in AH and the single monocyte shedding of CD18 was decreased favoring tissue extravasation. Alcohol in itself and altered monocyte responsiveness to TNFα may explain this lowered shedding. TRANSLATIONAL IMPACT The contribution of this mechanism to the excessive monocyte liver infiltration in AH should be further explored as it may serve as a potential therapeutic target to limit liver inflammation.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Kragstrup TW, Juul-Madsen K, Christiansen SH, Zhang X, Krog J, Vorup-Jensen T, Kjaergaard AG. Altered levels of soluble CD18 may associate immune mechanisms with outcome in sepsis. Clin Exp Immunol 2017; 190:258-267. [PMID: 28714582 DOI: 10.1111/cei.13016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/26/2022] Open
Abstract
The pathogenesis of sepsis involves a dual inflammatory response, with a hyperinflammatory phase followed by, or in combination with, a hypoinflammatory phase. The adhesion molecules lymphocyte function-associated antigen (LFA-1) (CD11a/CD18) and macrophage-1 (Mac-1) (CD11b/CD18) support leucocyte adhesion to intercellular adhesion molecules and phagocytosis through complement opsonization, both processes relevant to the immune response during sepsis. Here, we investigate the role of soluble (s)CD18 in sepsis with emphasis on sCD18 as a mechanistic biomarker of immune reactions and outcome of sepsis. sCD18 levels were measured in 15 septic and 15 critically ill non-septic patients. Fifteen healthy volunteers served as controls. CD18 shedding from human mononuclear cells was increased in vitro by several proinflammatory mediators relevant in sepsis. sCD18 inhibited cell adhesion to the complement fragment iC3b, which is a ligand for CD11b/CD18, also known as Mac-1 or complement receptor 3. Serum sCD18 levels in sepsis non-survivors displayed two distinct peaks permitting a partitioning into two groups, namely sCD18 'high' and sCD18 'low', with median levels of sCD18 at 2158 mU/ml [interquartile range (IQR) 2093-2811 mU/ml] and 488 mU/ml (IQR 360-617 mU/ml), respectively, at the day of intensive care unit admission. Serum sCD18 levels partitioned sepsis non-survivors into one group of 'high' sCD18 and low CRP and another group with 'low' sCD18 and high C-reactive protein. Together with the mechanistic data generated in vitro, we suggest the partitioning in sCD18 to reflect a compensatory anti-inflammatory response syndrome and hyperinflammation, respectively, manifested as part of sepsis.
Collapse
Affiliation(s)
- T W Kragstrup
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - K Juul-Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - X Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - J Krog
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.,Department of Anaesthesiology and Intensive Care, Randers Regional Hospital, Randers, Denmark
| | - T Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A G Kjaergaard
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.,Department of Anaesthesiology and Intensive Care, Randers Regional Hospital, Randers, Denmark
| |
Collapse
|
24
|
Pakula MM, Maier TJ, Vorup-Jensen T. Insight on the impacts of free amino acids and their metabolites on the immune system from a perspective of inborn errors of amino acid metabolism. Expert Opin Ther Targets 2017; 21:611-626. [PMID: 28441889 DOI: 10.1080/14728222.2017.1323879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Amino acids (AAs) support a broad range of functions in living organisms, including several that affect the immune system. The functions of the immune system are affected when free AAs are depleted or in excess because of external factors, such as starvation, or because of genetic factors, such as inborn errors of metabolism. Areas covered: In this review, we discuss the current insights into how free AAs affect immune responses. When possible, we make comparisons to known disease states resulting from inborn errors of metabolism, in which changed levels of AAs or AA metabolites provide insight into the impact of AAs on the human immune system in vivo. We also explore the literature describing how changes in AA levels might provide pharmaceutical targets for safe immunomodulatory treatment. Expert opinion: The impact of free AAs on the immune system is a neglected topic in most immunology textbooks. That neglect is undeserved, because free AAs have both direct and indirect effects on the immune system. Consistent choices of pre-clinical models and better strategies for creating formulations are required to gain clinical impact.
Collapse
Affiliation(s)
| | - Thorsten J Maier
- a Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Thomas Vorup-Jensen
- a Department of Biomedicine , Aarhus University , Aarhus , Denmark.,b Center for Neurodegenerative Inflammation Prevention (NEURODIN) , Aarhus University , Aarhus , Denmark.,c Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark.,d The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA) , Aarhus University , Aarhus , Denmark.,e MEMBRANES Research center , Aarhus University , Aarhus , Denmark
| |
Collapse
|
25
|
Okamoto-Uchida Y, Nakamura R, Matsuzawa Y, Soma M, Kawakami H, Ishii-Watabe A, Nishimaki-Mogami T, Teshima R, Saito Y. Different Results of IgE Binding- and Crosslinking-Based Allergy Tests Caused by Allergen Immobilization. Biol Pharm Bull 2016; 39:1662-1666. [PMID: 27725443 DOI: 10.1248/bpb.b16-00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physicochemical nature of allergen molecules differ from the liquid phase to the solid phase. However, conventional allergy tests are based on the detection of immunoglobulin (Ig)E binding to immobilized allergens. We recently developed an in vitro allergy testing method using a luciferase-reporting humanized rat mast cell line to detect IgE crosslinking-induced luciferase expression (EXiLE test). The aim of the present study was to evaluate the effects of antigen immobilization on the results of different in vitro allergy tests using two anti-ovalbumin (OVA) antibodies (Abs), E-C1 and E-G5, with different properties in the OVA-induced allergic reaction. Both Abs showed clear binding to OVA with an enzyme-linked immunosorbent assay and by BIAcore analysis. However, only E-C1 potentiated EXiLE response for the liquid-phase OVA. On the other hand, OVA immobilized on solid-phase induced EXiLE responses in both E-C1 Ab- and E-G5 Ab-sensitized mast cells. Western blotting of OVA indicated that E-C1 Ab binds both to OVA monomers and dimers, unlike E-G5 Ab, which probably binds only to the OVA dimer. These results suggest that antigen immobilization enhanced IgE crosslinking ability through multimerization of allergen molecules in the solid phase, resulting in an increase in false positives in IgE binding-based conventional in vitro allergy tests. These findings shed light on the physicochemical nature of antigens as an important factor for the development and evaluation of in vitro allergy tests and suggest that mast cell activation-based allergy testing with liquid-phase allergens is a promising strategy to evaluate the physiological interactions of IgE and allergens.
Collapse
|
26
|
Chen S, Polen SM, Wang L, Yamasaki M, Hadad CM, Badjić JD. Two-Dimensional Supramolecular Polymers Embodying Large Unilamellar Vesicles in Water. J Am Chem Soc 2016; 138:11312-7. [PMID: 27510921 DOI: 10.1021/jacs.6b06562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shigui Chen
- Department of Chemistry
and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shane M. Polen
- Department of Chemistry
and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Lu Wang
- Department of Chemistry
and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Makoto Yamasaki
- Department of Chemistry
and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M. Hadad
- Department of Chemistry
and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry
and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Jensen MR, Bajic G, Zhang X, Laustsen AK, Koldsø H, Skeby KK, Schiøtt B, Andersen GR, Vorup-Jensen T. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3. J Biol Chem 2016; 291:16963-76. [PMID: 27339893 DOI: 10.1074/jbc.m116.732222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists.
Collapse
Affiliation(s)
| | - Goran Bajic
- Molecular Biology and Genetics, and the Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), and
| | | | | | - Heidi Koldsø
- Chemistry, the Interdisciplinary Nanoscience Center (iNANO), the Center for Insoluble Protein Structures (inSPIN)
| | - Katrine Kirkeby Skeby
- Chemistry, the Interdisciplinary Nanoscience Center (iNANO), the Center for Insoluble Protein Structures (inSPIN)
| | - Birgit Schiøtt
- Chemistry, the Interdisciplinary Nanoscience Center (iNANO), the Center for Insoluble Protein Structures (inSPIN)
| | - Gregers R Andersen
- Molecular Biology and Genetics, and the Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), and
| | - Thomas Vorup-Jensen
- From the Departments of Biomedicine, the Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), and the Interdisciplinary Nanoscience Center (iNANO), the MEMBRANES Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Zhang X, Bajic G, Andersen GR, Christiansen SH, Vorup-Jensen T. The cationic peptide LL-37 binds Mac-1 (CD11b/CD18) with a low dissociation rate and promotes phagocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:471-8. [PMID: 26876535 DOI: 10.1016/j.bbapap.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/16/2022]
Abstract
As a broad-spectrum anti-microbial peptide, LL-37 plays an important role in the innate immune system. A series of previous reports implicates LL-37 as an activator of various cell surface receptor-mediated functions, including chemotaxis in integrin CD11b/CD18 (Mac-1)-expressing cells. However, evidence is scarce concerning the direct binding of LL-37 to these receptors and investigations on the associated binding kinetics is lacking. Mac-1, a member of the β2 integrin family, is mainly expressed in myeloid leukocytes. Its critical functions include phagocytosis of complement-opsonized pathogens. Here, we report on interactions of LL-37 and its fragment FK-13 with the ligand-binding domain of Mac-1, the α-chain I domain. LL-37 bound the I-domain with an affinity comparable to the complement fragment C3d, one of the strongest known ligands for Mac-1. In cell adhesion assays both LL-37 and FK-13 supported binding by Mac-1 expressing cells, however, with LL-37-coupled surfaces supporting stronger cell adhesion than FK-13. Likewise, in phagocytosis assays with primary human monocytes both LL-37 and FK-13 enhanced uptake of particles coupled with these ligands but with a tendency towards a stronger uptake by LL-37.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Goran Bajic
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; MEMBRANES Research Center, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
29
|
Bech R, Jalilian B, Agger R, Iversen L, Erlandsen M, Otkjaer K, Johansen C, Paludan SR, Rosenberg CA, Kragballe K, Vorup-Jensen T. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. MOLECULAR AND CELLULAR THERAPIES 2016; 4:1. [PMID: 26819710 PMCID: PMC4728801 DOI: 10.1186/s40591-016-0046-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023]
Abstract
Background Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. Methods Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. Results Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. Conclusion Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease. Electronic supplementary material The online version of this article (doi:10.1186/s40591-016-0046-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Babak Jalilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Agger
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Erlandsen
- Department of Public Health - Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kristian Otkjaer
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Knud Kragballe
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisiplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, The Bartholin Building (1240), Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Bech R, Jalilian B, Agger R, Iversen L, Erlandsen M, Otkjaer K, Johansen C, Paludan SR, Rosenberg CA, Kragballe K, Vorup-Jensen T. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. MOLECULAR AND CELLULAR THERAPIES 2016; 4:1. [PMID: 26819710 PMCID: PMC4728801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 11/21/2023]
Abstract
BACKGROUND Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. RESULTS Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. CONCLUSION Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease.
Collapse
Affiliation(s)
- Rikke Bech
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Babak Jalilian
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Agger
- />Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Iversen
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Erlandsen
- />Department of Public Health - Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kristian Otkjaer
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Knud Kragballe
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
- />Interdisiplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, The Bartholin Building (1240), Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Li J, Yu F, Chen Y, Oupický D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J Control Release 2015; 219:369-382. [PMID: 26410809 DOI: 10.1016/j.jconrel.2015.09.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
32
|
Kläning E, Christensen B, Bajic G, Hoffmann SV, Jones NC, Callesen MM, Andersen GR, Sørensen ES, Vorup-Jensen T. Multiple low-affinity interactions support binding of human osteopontin to integrin αXβ2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:930-8. [PMID: 25839998 DOI: 10.1016/j.bbapap.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 01/11/2023]
Abstract
Integrin α(X)β(2) (also known as complement receptor 4, p150,95, or CD11c/CD18) is expressed in the cell membrane of myeloid leukocytes. α(X)β(2) has been reported to bind a large number of structurally unrelated ligands, often with a shared molecular character in the presence of polyanionic stretches in poorly folded proteins or glucosaminoglycans. Nevertheless, it is unclear what chemical sources of polyanionicity enable the binding by α(X)β(2). Osteopontin (OPN) is an intrinsically disordered protein, which facilitates phagocytosis via the integrin α(X)β(2). Unlike for other integrins, neither the RGD nor the SVVYGLR motifs account for this binding, and the molecular basis of OPN binding by α(X)β(2) remains uncharacterized. Here, we show that the monovalent interactions between the ligand-binding domain of α(X)β(2) and OPN, its fragments, or caseins are weak, with dissociation constants higher than 10(-5)M but with high apparent stoichiometries. From comparison with cell adhesion studies, the discrimination between α(X)β(2) ligands and non-ligands appears to rely on these apparent stoichiometries in a way, which involves glutamate rather than aspartate side chains. Surprisingly, the extensive, negatively charged phosphorylation of OPN is not contributing to α(X)β(2) binding. Furthermore, synchrotron radiation circular spectroscopy excludes that the phosphorylation affects the general folding of OPN. Taken together, our quantitative analyses reveal a mode of ligand recognition by integrin α(X)β(2), which seem to differ in principles considerably from other OPN receptors.
Collapse
Affiliation(s)
- Eva Kläning
- Dept. of Molecular Biology and Genetics Aarhus University, Aarhus, Denmark; Dept. of Biomedicine, Denmark
| | - Brian Christensen
- Dept. of Molecular Biology and Genetics Aarhus University, Aarhus, Denmark
| | - Goran Bajic
- Dept. of Molecular Biology and Genetics Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- Institute for Storage Ring Facilities Aarhus (ISA), Dept. of Physics and Astronomy & Center for Storage Ring Facilities Aarhus, Denmark
| | - Nykola C Jones
- Institute for Storage Ring Facilities Aarhus (ISA), Dept. of Physics and Astronomy & Center for Storage Ring Facilities Aarhus, Denmark
| | - Morten M Callesen
- Dept. of Molecular Biology and Genetics Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Dept. of Molecular Biology and Genetics Aarhus University, Aarhus, Denmark
| | - Esben S Sørensen
- Dept. of Molecular Biology and Genetics Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus Denmark
| | - Thomas Vorup-Jensen
- Dept. of Biomedicine, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus Denmark; MEMBRANES Research Center, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
33
|
Varner CT, Rosen T, Martin JT, Kane RS. Recent advances in engineering polyvalent biological interactions. Biomacromolecules 2015; 16:43-55. [PMID: 25426695 PMCID: PMC4294584 DOI: 10.1021/bm5014469] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein-ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors.
Collapse
Affiliation(s)
- Chad T. Varner
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tania Rosen
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jacob T. Martin
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ravi S. Kane
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
34
|
Almo SC, Guha C. Considerations for combined immune checkpoint modulation and radiation treatment. Radiat Res 2014; 182:230-8. [PMID: 25003312 DOI: 10.1667/rr13667.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances indicate that new therapeutic strategies for the treatment of malignancies will be realized from combined radiation treatment and immune checkpoint modulation. Numerous biophysical properties must be considered for effective biologic development, including affinity, selectivity, oligomeric state and valency. High-resolution structural characterization contributes to our understanding of these properties and can lead to the realization of proteins with unique in vitro activities and novel in vivo therapeutic functions. In this article we focus on the importance of these factors for new potential biologics and consider these in the context of combination therapies with physical modalities, including radiation therapy. In particular, we examine the consequences of altered avidities and subset-specific ligand density on the rational modification of biological function in the immunoglobulin and tumor necrosis factor superfamilies and for new optimized combination therapies.
Collapse
Affiliation(s)
- Steven C Almo
- a Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
35
|
Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:7-20. [PMID: 24757512 DOI: 10.1177/2051013613480144] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of vaccines containing adjuvants has the potential to enhance antibody and cellular immune responses, broaden protective immunity against heterogeneous pathogen strains, enable antigen dose sparing, and facilitate efficacy in immunocompromised populations. Nevertheless, the structural interplay between antigen and adjuvant components is often not taken into account in the published literature. Interactions between antigen and adjuvant formulations should be well characterized to enable optimum vaccine stability and efficacy. This review focuses on the importance of characterizing antigen-adjuvant interactions by summarizing findings involving widely used adjuvant formulation platforms, such as aluminum salts, emulsions, lipid vesicles, and polymer-based particles. Emphasis is placed on the physicochemical basis of antigen-adjuvant associations and the appropriate analytical tools for their characterization, as well as discussing the effects of these interactions on vaccine potency.
Collapse
|
36
|
Kragstrup TW, Jalilian B, Hvid M, Kjærgaard A, Østgård R, Schiøttz-Christensen B, Jurik AG, Robinson WH, Vorup-Jensen T, Deleuran B. Decreased plasma levels of soluble CD18 link leukocyte infiltration with disease activity in spondyloarthritis. Arthritis Res Ther 2014; 16:R42. [PMID: 24490631 PMCID: PMC3978678 DOI: 10.1186/ar4471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Spondyloarthritis (SpA) comprises a group of diseases often associated with HLA-B27 and characterized by inflammation of the entheses and joints of the axial skeleton. The inflammatory process in SpA is presumably driven by innate immune cells but is still poorly understood. Thus, new tools for monitoring and treating inflammation are needed. The family of CD18 integrins is pivotal in guiding leukocytes to sites of inflammation, and CD18 hypomorphic mice develop a disease resembling SpA. Previously, we demonstrated that altered soluble CD18 (sCD18) complexes in the blood and synovial fluid of patients with arthritis have anti-inflammatory functions. Here, we study the mechanisms for these alterations and their association with SpA disease activity. METHODS Plasma levels of sCD18 in a study population with 84 patients with SpA and matched healthy controls were analyzed with a time-resolved immunoflourometric assay (TRIFMA). Binding of sCD18 to endothelial cells and fibroblast-like synoviocytes (FLSs) was studied with confocal microscopy. Shedding of CD18 from peripheral blood mononuclear cells (PBMCs) was studied with flow cytometry and TRIFMA. RESULTS Plasma levels of sCD18 were decreased in patients with SpA compared with healthy volunteers (P <0.001), and the lowest levels were in the HLA-B27-positive subgroup (P <0.05). In a multiple regression model, the sCD18 levels exhibited an inverse correlation with the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) (P <0.05), the level of morning stiffness (P <0.05), the Bath Ankylosing Spondilitis Metrology Index (P <0.05), the physician global assessment score (P <0.01), and the sacroiliac magnetic resonance imaging activity score (P <0.05). The mechanisms for these changes could be simulated in vitro. First, sCD18 in plasma adhered to inflammation-induced intercellular adhesion molecule 1 (ICAM-1) on endothelial cells and FLS, indicating increased consumption. Second, CD18 shedding from SpA PBMCs correlated inversely with the BASDAI (P <0.05), suggesting insufficient generation. CD18 was shed primarily from intermediate CD14⁺⁺ CD16⁺ monocytes, supporting the view that alterations in innate immunity can regulate the inflammatory processes in SpA. CONCLUSIONS Taken together, the failure of patients with SpA to maintain adequate sCD18 levels may reflect insufficient CD18 shedding from monocytes to counterbalance the capture of sCD18 complexes to inflammation-induced ICAM-1. This could increase the availability of ICAM-1 molecules on the endothelium and in the synovium, facilitating leukocyte migration to the entheses and joints and aggregating disease activity.
Collapse
|
37
|
Abstract
In the cell membrane complement receptor 3 (CR3) consists of one alpha chain (CD11b) and one beta chain (CD18). CR3 participates in many immunological processes, especially those involving cell migration, adhesion, and phagocytosis of complement-opsonized microbes. Recent findings of soluble CR3 in body fluids and in culture supernatant from experiments in vitro point to the involvement of ecto domain shedding as a part of the CR3 biology. To monitor such shedding on a quantitative basis, we have developed time-resolved immunofluorometric assays (TRIFMA) to detect soluble CD11b and CD18 in plasma or serum of either human or murine origin. Compared with most enzyme-linked immunosorbent assays methodologies, TRIFMA possesses prominent advantages, including better dynamic range and reproducibility. These assays may contribute to the understanding of the role of shedding of CR3 and other cell adhesion molecules in human disease and animal models involving inflammation.
Collapse
|
38
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954 DOI: 10.1186/2052-8426-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 01/09/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark ; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ; Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
39
|
Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 2013; 110:16426-31. [PMID: 24065820 DOI: 10.1073/pnas.1311261110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complement receptors (CRs), expressed notably on myeloid and lymphoid cells, play an essential function in the elimination of complement-opsonized pathogens and apoptotic/necrotic cells. In addition, these receptors are crucial for the cross-talk between the innate and adaptive branches of the immune system. CR3 (also known as Mac-1, integrin αMβ2, or CD11b/CD18) is expressed on all macrophages and recognizes iC3b on complement-opsonized objects, enabling their phagocytosis. We demonstrate that the C3d moiety of iC3b harbors the binding site for the CR3 αI domain, and our structure of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b. Based on extensive structural analysis, we suggest that the choice between a ligand glutamate or aspartate for coordination of a receptor metal ion-dependent adhesion site-bound metal ion is governed by the secondary structure of the ligand. Comparison of our structure to the CR2:C3d complex and the in vitro formation of a stable CR3:C3d:CR2 complex suggests a molecular mechanism for the hand-over of CR3-bound immune complexes from macrophages to CR2-presenting cells in lymph nodes.
Collapse
|
40
|
PACHECO PATRICIAM, LE BENJAMIN, WHITE DAVID, SULCHEK TODD. TUNABLE COMPLEMENT ACTIVATION BY PARTICLES WITH VARIABLE SIZE AND Fc DENSITY. NANO LIFE 2013; 3:1341001. [PMID: 24009645 PMCID: PMC3759286 DOI: 10.1142/s1793984413410018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The complement system is an integral innate immune component that is made up of a cascade of enzymatic proteins that, once activated, results in lysis of invading pathogens, opsonization or recruitment of other innate and/or acquired immune responders, or some combination of the three. Due to the importance of the signal amplification and control points present in the cascade, complement is highly sensitive to subtle variations in initiation conditions, including nanoscale changes to molecular spacing. Using Fc-functionalized microparticles and nanoparticles, we find that activation requires a minimum threshold surface concentration of Fc of at least 20% surface coverage. This result indicates that a high surface density Fc is necessary for micro/nanoparticle complement activation through the classical pathway. In addition, the magnitude of the response was dependent on the size of the particle, with larger particles causing decreased activation. We hypothesize that a high density of Fc is needed to efficiently bind and closely appose molecular initiators of the complement cascade, from initiation to terminal complement complex formation. These fundamental studies of the interaction of microparticles and nanoparticles with the immune system suggest design rules for particle size and molecular density that impact immunostimulation through the complement system. Providing a therapeutic agent to modulate the complement response could aid a variety of treatment strategies. Engineered nanoparticles with controlled gaps between molecular activators could lead to new types of immunomodulatory agents.
Collapse
Affiliation(s)
- PATRICIA M. PACHECO
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - BENJAMIN LE
- Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - DAVID WHITE
- United States Department of Agriculture, National Centers for Animal Health, Ames, Iowa 50010, USA
| | - TODD SULCHEK
- George W. Woodruff School of Mechanical Engineering, Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
41
|
Jacquet M, Lacroix M, Ancelet S, Gout E, Gaboriaud C, Thielens NM, Rossi V. Deciphering complement receptor type 1 interactions with recognition proteins of the lectin complement pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3721-31. [PMID: 23460739 DOI: 10.4049/jimmunol.1202451] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor type 1 (CR1) is a membrane receptor expressed on a wide range of cells. It is involved in immune complex clearance, phagocytosis, and complement regulation. Its ectodomain is composed of 30 complement control protein (CCP) modules, organized into four long homologous repeats (A-D). In addition to its main ligands C3b and C4b, CR1 was reported to interact with C1q and mannan-binding lectin (MBL) likely through its C-terminal region (CCP22-30). To decipher the interaction of human CR1 with the recognition proteins of the lectin complement pathway, a recombinant fragment encompassing CCP22-30 was expressed in eukaryotic cells, and its interaction with human MBL and ficolins was investigated using surface plasmon resonance spectroscopy. MBL and L-ficolin were shown to interact with immobilized soluble CR1 and CR1 CCP22-30 with apparent dissociation constants in the nanomolar range, indicative of high affinity. The binding site for CR1 was located at or near the MBL-associated serine protease (MASP) binding site in the collagen stalks of MBL and L-ficolin, as shown by competition experiments with MASP-3. Accordingly, the mutation of an MBL conserved lysine residue essential for MASP binding (K55) abolished binding to soluble CR1 and CCP22-30. The CR1 binding site for MBL/ficolins was mapped to CCP24-25 of long homologous repeat D using deletion mutants. In conclusion, we show that ficolins are new CR1 ligands and propose that MBL/L-ficolin binding involves major ionic interactions between conserved lysine residues of their collagen stalks and surface exposed acidic residues located in CR1 CCP24 and/or CCP25.
Collapse
Affiliation(s)
- Mickaël Jacquet
- Commissariat à l'Energie Atomique, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhao H, Gorshkova II, Fu GL, Schuck P. A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis. Methods 2013; 59:328-35. [PMID: 23270815 PMCID: PMC3840496 DOI: 10.1016/j.ymeth.2012.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/18/2022] Open
Abstract
The application of optical biosensors in the study of macromolecular interactions requires immobilization of one binding partner to the surface. It is often highly desirable that the immobilization is uniform and does not affect the thermodynamic and kinetic binding parameters to soluble ligands. To achieve this goal, a variety of sensor surfaces, coupling strategies and surface chemistries are available. Previously, we have introduced a technique for determining the distribution of affinities and kinetic rate constants from families of binding and dissociation traces acquired at different concentrations of soluble ligand. In the present work, we explore how this affinity distribution analysis can be useful in the assessment and optimization of surface immobilization. With this goal, using an antibody-antigen interaction as a model system, we study the activity, thermodynamic and kinetic binding parameters, and heterogeneity of surface sites produced with different commonly used sensor surfaces, at different total surface densities and with direct immobilization or affinity capture.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Inna I. Gorshkova
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Gregory L. Fu
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| |
Collapse
|
43
|
|
44
|
Jalilian B, Einarsson HB, Vorup-Jensen T. Glatiramer acetate in treatment of multiple sclerosis: a toolbox of random co-polymers for targeting inflammatory mechanisms of both the innate and adaptive immune system? Int J Mol Sci 2012; 13:14579-605. [PMID: 23203082 PMCID: PMC3509598 DOI: 10.3390/ijms131114579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA) is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin α(M)β(2) (also called Mac-1, complement receptor 3, or CD11b/CD18) and perspectives on the GA co-polymers as an influence on the function of the innate immune system.
Collapse
Affiliation(s)
- Babak Jalilian
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| | - Halldór Bjarki Einarsson
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| |
Collapse
|