1
|
Zhao J, Zhao J, Zhang X, Ling G, Zhang P. DNAzyme@MOF breaking pH limitation for the detection of dopamine in the interstitial fluid. Biosens Bioelectron 2025; 279:117367. [PMID: 40097322 DOI: 10.1016/j.bios.2025.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
The level of dopamine (DA) in the human body has a certain correlation with neurological diseases. However, most detection methods of DA are complex and expensive. In this study, laccase-like DNAzyme@MOF with improved pH stability was successfully prepared. DNAzyme@MOF could catalyze the chromogenic substrate to change the color of the solution for the detection of DA in ISF. The addition of DNAzyme made DNAzyme@MOF possess higher stability and enzyme-like activity. The operation process was simple, rapid, and intuitive. In addition, the in vivo DA content in skin interstitial fluid (ISF) was analyzed by an off-line method. The swelling hydrogel microneedles (MNs) were prepared to extract skin ISF. DA in skin ISF was recovered and detected by laccase-like DNAzyme@MOF. This study realized the minimally invasive detection of DA. The proposed detection method of biomarkers in ISF based on DNAzyme@MOF would provide a new dimension towards the future development for the detection of other biomarkers in ISF.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jinnan Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaoyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
2
|
Balde A, Kim SK, Nazeer RA. A review on microneedle patch as a delivery system for proteins/peptides and their applications in transdermal inflammation suppression. Int J Biol Macromol 2025; 307:141963. [PMID: 40086558 DOI: 10.1016/j.ijbiomac.2025.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Transdermal delivery is one of the most recent modes of administration studied due to several shortfalls observed for intra-venous, and oral drug administrations. Among, microneedle-based transdermal delivery is the popular choice due to non-invasive procedure and minimal toxicological effects. Microneedle devices consist of micron scaled needle patch entrapped with the target specific drug molecules. Due to body's immune response and occasional pathogen attack, various inflammatory diseases are developed such as psoriasis, dermatitis, rashes, rheumatoid arthritis, gouty arthritis, and fibrosis. These inflammatory conditions can be treated by microneedle assisted transdermal delivery. Moreover, for localized suppression of pain and inflammation, various therapeutic peptides and proteins have been investigated. Although, these therapeutic agents can show reduced activity and undergo enzymatic degradation when administered orally or intra-venously. Hence, a microneedle-based delivery system can be used as an effective way to localize these peptides/proteins and reduce the inflammation. Herein, this review includes various microneedle fabrication methods for enhancing drug delivery for suppression of inflammation. Moreover, recent development in microneedle devices of peptide and protein delivery applications are discoursed. At last, future scope and challenges endured for preparing an efficient microneedle patch for peptide and protein delivery are also elaborated.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
3
|
Liu G, Lu Y, Zhang F, Liu Q. Electronically powered drug delivery devices: considerations and challenges. Expert Opin Drug Deliv 2022; 19:1636-1649. [PMID: 36305080 DOI: 10.1080/17425247.2022.2141709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Electronically powered drug delivery devices enable a controlled drug release route for a more convenient and painless way with reduced side effects. The current advances in microfabrication and microelectronics have facilitated miniaturization and intelligence with the integration of sensors and wireless communication modules. These devices have become an essential component of commercialized on-demand drug delivery. AREAS COVERED This review aims to provide a concise overview of current progress in electronically powered drug devices, focusing on delivery strategies, manufacturing techniques, and control circuit design with specific examples. EXPERT OPINION The application of electronically powered drug delivery systems is now considered a feasible therapeutic approach with improved drug release efficiency and increased patient comfort. It is anticipated that these technologies will gradually fulfill clinical needs and resolve commercialization challenges in the future. This review discusses the current advances in electronic drug delivery devices, especially focusing on designing strategies to achieve an effective drug release, as well as the perspectives and challenges for future applications in clinical therapy.
Collapse
Affiliation(s)
- Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
4
|
Dolete G, Chircov C, Motelica L, Ficai D, Oprea OC, Gheorghe M, Ficai A, Andronescu E. Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3598. [PMID: 36296787 PMCID: PMC9607447 DOI: 10.3390/nano12203598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). Magnetic alginate films were fabricated in three steps: the co-precipitation of iron salts in an alkaline environment to obtain magnetite nanoparticles (Fe3O4), the mixing of the obtained nanoparticles with a sodium alginate solution containing glycerol as a plasticizer and folic acid as an active substance, and finally the casting of the final solution in a Petri dish followed by cross-linking with calcium chloride solution. Magnetite nanoparticles were incorporated in the alginate matrix because of the well-established biocompatibility of both materials, a property that would make the film convenient for implantable BioMEMS devices. The obtained film was analyzed in terms of its magnetic, structural, and morphological properties. To demonstrate the hypothesis that the magnetic field can be used to trigger drug release from the films, we studied the release profile in an aqueous medium (pH = 8) using a NdFeB magnet as a triggering factor.
Collapse
Affiliation(s)
- Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Marin Gheorghe
- SC NANOMEMS SRL, George Coșbuc 9, 505400 Râșnov, Romania
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
5
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
6
|
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J Pharm Sci 2022; 17:70-86. [PMID: 35261645 PMCID: PMC8888142 DOI: 10.1016/j.ajps.2021.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Parenteral sustained release drug formulations, acting as preferable platforms for long-term exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.
Collapse
Affiliation(s)
- Li Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int J Pharm 2021; 597:120301. [PMID: 33540018 DOI: 10.1016/j.ijpharm.2021.120301] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology shows excellent potential in controlled drug delivery, which has got rising attention from investigators and clinics. MNs can pierce through the stratum corneum layer of the skin into the epidermis, evading interaction with nerve fibers. MN patches have been fabricated using various types of materials and application processes. Recently, three-dimensional (3D) printing gives the prototyping and manufacturing methods the flexibility to produce the MN patches in a one-step manner with high levels of shape complexity and duplicability. This review aims to go through the last successes in 3D printed MN-based patches. In this regard, after the evaluation of various types of MNs and fabrication techniques, we will study different 3D printing approaches applied for MN patch fabrication. We further highlight the state of the art of the long-acting MNs and related progress with a specific look at what should come within the scope of upcoming researches.
Collapse
Affiliation(s)
- Nafiseh Elahpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
9
|
Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release 2020; 325:163-175. [PMID: 32629134 DOI: 10.1016/j.jconrel.2020.06.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Polymeric microneedles (MNs) have been leveraged as a novel transdermal drug delivery platform for effective drug permeation, which were widely used in the treatment of various diseases. However, issues including limited loading capacity of hydrophobic drugs, uncontrollable drug release rates, and monotonic therapeutic strategy hamper the further application of polymeric MNs. As a recent emerging research topic, drawing inspiration from the ways that nanomedicine integrated with MNs have opened new avenues for disease therapy. In this review, we examined the recent studies employing nanoparticles (NPs)-encapsulated polymeric MNs (NPs@MNs) for transdermal delivery of various therapeutic cargos, particularly focused on the application of NPs@MNs for diabetes therapy, infectious disease therapy, cancer therapy, and other dermatological disease therapy. We also provided an overview of the clinical potential and future translation of NPs@MNs.
Collapse
|
10
|
del Río-Sancho S, Castro-López V, Alonso MJ. Enhancing cutaneous delivery with laser technology: Almost there, but not yet. J Control Release 2019; 315:150-165. [DOI: 10.1016/j.jconrel.2019.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
|
11
|
Zhuang J, Wu DM, Xu H, Huang Y, Liu Y, Sun JY. Edge Effect in Hot Embossing and its Influence on Global Pattern Replication of Polymer-Based Microneedles. INT POLYM PROC 2019. [DOI: 10.3139/217.3726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Hot embossing was used to fabricate a microneedle array on poly(methyl methacrylate) (PMMA) substrates. Both experimental and numerical researches were carried out to investigate the whole formation process. The results showed that the edge effect would significantly influence the replication rate of final products. An optimization design of convex flow barrier was proposed to improve the replication efficiency and structure uniformity. Furthermore, optimum parameters of the flow barrier were found to be 2 mm in length and 0.2 mm in height. Reasonable high molding temperature and force were conducive to reduce the filling time and increase the average height of microneedles.
Collapse
Affiliation(s)
- J. Zhuang
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| | - D.-M. Wu
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
- State Key Laboratory of Organic-Inorganic Composites , Beijing , PRC
| | - H. Xu
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| | - Y. Huang
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| | - Y. Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing , PRC
| | - J.-Y. Sun
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| |
Collapse
|
12
|
Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. Int J Biol Macromol 2018; 119:1090-1097. [DOI: 10.1016/j.ijbiomac.2018.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
|
13
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
14
|
|
15
|
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128:132-147. [PMID: 29117510 DOI: 10.1016/j.addr.2017.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Novel drug delivery systems based on microtechnology have advanced tremendously, but yet face some technological and societal hurdles to fully achieve their potential. The novel drug delivery systems aim to deliver drugs in a spatiotemporal- and dosage-controlled manner with a goal to address the unmet medical needs from oral delivery and hypodermic injection. The unmet needs include effective delivery of new types of drug candidates that are otherwise insoluble and unstable, targeted delivery to areas protected by barriers (e.g. brain and posterior eye segment), localized delivery of potent drugs, and improved patient compliance. After scrutinizing the design considerations and challenges associated with delivery to areas that cannot be efficiently targeted through standard drug delivery (e.g. brain, posterior eye segment, and gastrointestinal tract), this review provides a summary of recent advances that addressed these challenges and summarizes yet unresolved problems in each target area. The opportunities for innovation in devising the novel drug delivery systems are still high; with integration of advanced microtechnology, advanced fabrication of biomaterials, and biotechnology, the novel drug delivery is poised to be a promising alternative to the oral administration and hypodermic injection for a large spectrum of drug candidates.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
16
|
Abstract
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Collapse
Affiliation(s)
- Derfogail Delcassian
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Anaesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,c Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Asha K Patel
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Division of Cancer and Stem Cells, School of Medicine, and Division of Advanced Materials and Healthcare Technologies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Abel B Cortinas
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Robert Langer
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,f Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , MA , USA.,g Media Lab , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
17
|
Efficient Transdermal Delivery of Alendronate, a Nitrogen-Containing Bisphosphonate, Using Tip-Loaded Self-Dissolving Microneedle Arrays for the Treatment of Osteoporosis. Pharmaceutics 2017; 9:pharmaceutics9030029. [PMID: 28817072 PMCID: PMC5620570 DOI: 10.3390/pharmaceutics9030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022] Open
Abstract
To improve the transdermal bioavailability and safety of alendronate (ALN), a nitrogen-containing bisphosphonate, we developed self-dissolving microneedle arrays (MNs), in which ALN is loaded only at the tip portion of micron-scale needles by a dip-coating method (ALN(TIP)–MN). We observed micron-scale pores in rat skin just after application of ALN(TIP)–MN, indicating that transdermal pathways for ALN were created by MN. ALN was rapidly released from the tip of MNs as observed in an in vitro release study. The tip portions of MNs completely dissolved in the rat skin within 5 min after application in vivo. After application of ALN(TIP)–MN in mice, the plasma concentration of ALN rapidly increased, and the bioavailability of ALN was approximately 96%. In addition, the decrease in growth plate was effectively suppressed by this efficient delivery of ALN in a rat model of osteoporosis. Furthermore, no skin irritation was observed after application of ALN(TIP)–MN and subcutaneous injection of ALN, while mild skin irritation was induced by whole-ALN-loaded MN (ALN–MN)—in which ALN is contained in the whole of the micron-scale needles fabricated from hyaluronic acid—and intradermal injection of ALN. These findings indicate that ALN(TIP)–MN is a promising transdermal formulation for the treatment of osteoporosis without skin irritation.
Collapse
|
18
|
Dutta K, Das B, Mondal D, Adhikari A, Rana D, Kumar Chattopadhyay A, Banerjee R, Mishra R, Chattopadhyay D. An ex situ approach to fabricating nanosilica reinforced polyacrylamide grafted guar gum nanocomposites as an efficient biomaterial for transdermal drug delivery application. NEW J CHEM 2017. [DOI: 10.1039/c7nj01713h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel biocompatible TDDS based on nano-silica reinforced polyacrylamide grafted guar-gum nanocomposite.
Collapse
Affiliation(s)
- Koushik Dutta
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Beauty Das
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Dipankar Mondal
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Arpita Adhikari
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- Industrial Membrane Research Institute
- University of Ottawa
- 161 Louis Pasteur St
- Ottawa
| | - Atis Kumar Chattopadhyay
- Faculty Council For PG & UG Studies in Science
- Jadavpur University, 188 Raja S. C. Mallick Road
- Kolkata
- India
| | - Rajdeb Banerjee
- Department of Physiology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Roshnara Mishra
- Department of Physiology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| |
Collapse
|
19
|
Sanjay ST, Dou M, Fu G, Xu F, Li X. Controlled Drug Delivery Using Microdevices. Curr Pharm Biotechnol 2016; 17:772-87. [PMID: 26813304 PMCID: PMC5135015 DOI: 10.2174/1389201017666160127110440] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - XiuJun Li
- Department of Chemistry, Faculty of University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA.
| |
Collapse
|
20
|
Dudani JS, Buss CG, Akana RT, Kwong GA, Bhatia SN. Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2919-2928. [PMID: 29706854 PMCID: PMC5914179 DOI: 10.1002/adfm.201505142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Postoperative infection and thromboembolism represent significant sources of morbidity and mortality but cannot be easily tracked after hospital discharge. Therefore, a molecular test that could be performed at home would significantly impact disease management. Our lab has previously developed intravenously delivered 'synthetic biomarkers' that respond to dysregulated proteases to produce a urinary signal. These assays, however, have been limited to chronic diseases or acute diseases initiated at the time of diagnostic administration. Here, we formulate a subcutaneously administered sustained release system by using small PEG scaffolds (<10 nm) to promote diffusion into the bloodstream over a day. We demonstrate the utility of a thrombin sensor to identify thrombosis and an MMP sensor to measure inflammation. Finally, we developed a companion paper ELISA using printed wax barriers with nanomolar sensitivity for urinary reporters for point-of-care detection. Our approach for subcutaneous delivery of nanosensors combined with urinary paper analysis may enable facile monitoring of at-risk patients.
Collapse
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Colin G. Buss
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Reid T.K. Akana
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gabriel A. Kwong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
21
|
Giri A, Bhunia T, Pal A, Goswami L, Bandyopadhyay A. In-situ synthesis of polyacrylate grafted carboxymethyl guargum–carbon nanotube membranes for potential application in controlled drug delivery. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Parhi R, Suresh P. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model. J Adv Res 2015; 7:539-50. [PMID: 27222758 DOI: 10.1016/j.jare.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022] Open
Abstract
The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm(2)/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Institute of Pharmacy, GITAM University, Gandhi Nagar Campus, Rushikunda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Padilam Suresh
- Institute of Pharmacy and Technology, Salipur 754202, Cuttack, Odisha, India
| |
Collapse
|
23
|
Micro- and nano-fabricated implantable drug-delivery systems: current state and future perspectives. Ther Deliv 2015; 5:1167-70. [PMID: 25491666 DOI: 10.4155/tde.14.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Cobo A, Sheybani R, Meng E. MEMS: Enabled Drug Delivery Systems. Adv Healthc Mater 2015; 4:969-82. [PMID: 25703045 DOI: 10.1002/adhm.201400772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/01/2015] [Indexed: 12/25/2022]
Abstract
Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed.
Collapse
Affiliation(s)
- Angelica Cobo
- Department of Biomedical Engineering; Viterbi School of Engineering; University of Southern California; 1042 Downey Way DRB-140 Los Angeles CA 90089-1111 USA
| | - Roya Sheybani
- Department of Biomedical Engineering; Viterbi School of Engineering; University of Southern California; 1042 Downey Way DRB-140 Los Angeles CA 90089-1111 USA
| | - Ellis Meng
- Department of Biomedical Engineering; Viterbi School of Engineering; University of Southern California; 1042 Downey Way DRB-140 Los Angeles CA 90089-1111 USA
- Department of Electrical Engineering; Viterbi School of Engineering; University of Southern California; 3651 Watt Way VHE-602 Los Angeles CA 90089-0241 USA
| |
Collapse
|
25
|
Parhi R, Suresh P, Patnaik S. Formulation optimization of PVA/HPMC cryogel of Diltiazem HCl using 3-level factorial design and evaluation for ex vivo permeation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0179-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Rao YF, Chen W, Liang XG, Huang YZ, Miao J, Liu L, Lou Y, Zhang XG, Wang B, Tang RK, Chen Z, Lu XY. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:239-247. [PMID: 24925046 DOI: 10.1002/smll.201400775] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/24/2014] [Indexed: 06/03/2023]
Abstract
The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI-SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI-SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g(-1) . They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI-SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer.
Collapse
Affiliation(s)
- Yue-feng Rao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China; Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Simulation and Experimental Validation of the Hot Embossing Process of Poly(lactic- co-glycolic acid) Microstructures. INT J POLYM SCI 2015. [DOI: 10.1155/2015/520512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The microstructures were fabricated by hot embossing method using biodegradable material PLGA poly(lactic-co-glycolic acid), to serve as the drug carriers in the drug delivery system. The embossing process was studied in a combination of simulations and experiments. Firstly, the viscoelastic model of PLGA was built after testing the material properties. Secondly, the hot embossing process was simulated by ABAQUS finite element software. The deformation rules of PLGA during hot embossing were then achieved. The pressures inside the PLGA materials were different at various places during hot embossing, which lead to the differences of the filling speeds. As a result, the inner structures were easier to get formed than the outer structures. And the fluidity of PGLA would increase with the raising temperature, which however caused serious material overflow. Finally the hot embossing experiments were presented to verify the simulation results. Agreed with the filling rules of the simulation, enough duration was necessary to let the outer corners of the microstructures be formed completely. Moreover the trapped air in the grooves was compressed into small bubbles at the corners. It was also found that the material overflow could be prevented in the use of nonisothermal hot embossing method.
Collapse
|
28
|
Abstract
Chronic nonhealing wounds are a major source of morbidity and mortality in bed-ridden and diabetic patients. Monitoring of physical and chemical parameters important in wound healing and remodeling process can be of immense benefit for optimum management of such lesions. Low-cost flexible polymeric and paper-based substrates are attractive platforms for fabrication of such sensors. In this review, we discuss recent advances in flexible physiochemical sensors for chronic wound monitoring. After a brief introduction to wound healing process and commercial wound dressings, we describe various flexible biocompatible substrates that can be used as the base platform for integration of wound monitoring sensors. We will then discuss several fabrication methods that can be utilized to integrate physical and chemical sensors onto such substrates. Finally, we will present physical and chemical sensors developed for monitoring wound microenvironment and outline future development venues.
Collapse
|
29
|
Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 2014; 185:130-8. [DOI: 10.1016/j.jconrel.2014.04.052] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022]
|
30
|
Sarkar G, Saha NR, Roy I, Bhattacharyya A, Bose M, Mishra R, Rana D, Bhattacharjee D, Chattopadhyay D. Taro corms mucilage/HPMC based transdermal patch: An efficient device for delivery of diltiazem hydrochloride. Int J Biol Macromol 2014; 66:158-65. [DOI: 10.1016/j.ijbiomac.2014.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
31
|
Mills P. Topical drug delivery and nanotechnology. Vet J 2013; 197:519-20. [DOI: 10.1016/j.tvjl.2013.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
|