1
|
Nazir A, Hussain FHN, Raza A. Advancing microbiota therapeutics: the role of synthetic biology in engineering microbial communities for precision medicine. Front Bioeng Biotechnol 2024; 12:1511149. [PMID: 39698189 PMCID: PMC11652149 DOI: 10.3389/fbioe.2024.1511149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Over recent years, studies on microbiota research and synthetic biology have explored novel approaches microbial manipulation for therapeutic purposes. However, fragmented information is available on this aspect with key insights scattered across various disciplines such as molecular biology, genetics, bioengineering, and medicine. This review aims to the transformative potential of synthetic biology in advancing microbiome research and therapies, with significant implications for healthcare, agriculture, and environmental sustainability. By merging computer science, engineering, and biology, synthetic biology allows for precise design and modification of biological systems via cutting edge technologies like CRISPR/Cas9 gene editing, metabolic engineering, and synthetic oligonucleotide synthesis, thus paving the way for targeted treatments such as personalized probiotics and engineered microorganisms. The review will also highlight the vital role of gut microbiota in disorders caused by its dysbiosis and suggesting microbiota-based therapies and innovations such as biosensors for real-time gut health monitoring, non-invasive diagnostic tools, and automated bio foundries for better outcomes. Moreover, challenges including genetic stability, environmental safety, and robust regulatory frameworks will be discussed to understand the importance of ongoing research to ensure safe and effective microbiome interventions.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
2
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Greve JM, Cowan JA. Tackling antimicrobial stewardship through synergy and antimicrobial peptides. RSC Med Chem 2022; 13:511-521. [PMID: 35694695 PMCID: PMC9132191 DOI: 10.1039/d2md00048b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
The unrestricted use of antibiotics has led to rapid development of antibiotic resistance (AR) and renewed calls to address this serious problem. This review summarizes the most common mechanisms of antibiotic action, and in turn antibiotic resistance, as well as pathways to mitigate the harm. Focus is then turned to emerging antibiotic strategies, including antimicrobial peptides (AMPs), with a discussion of their modes of action, biochemical features, and potential challenges for their use as antibiotics. The role of synergy in antimicrobials is also examined, with a focus on the synergy of AMPs and other emerging interactions with synergistic potential.
Collapse
Affiliation(s)
- Jenna M Greve
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA +1 614 292 2703
| | - James A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA +1 614 292 2703
| |
Collapse
|
4
|
Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chem X 2022; 13:100196. [PMID: 35498967 PMCID: PMC9039921 DOI: 10.1016/j.fochx.2021.100196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology improves probiotics therapeutic approaches. Engineering technologies contribute to design probiotics mechanisms of action. Edition of proteolytic systems induce the generation of specific bioactive peptides. Engineered probiotics should be evaluated as therapeutic agents in clinical trials. Therapeutical and technological uses of engineered probiotics are still controversial.
Synthetic biology is employed for the study and design of engineered microbes with new and improved therapeutic functions. The main advantage of synthetic biology is the selective genetic manipulation of living organisms with desirable beneficial effects such as probiotics. Engineering technologies have contributed to the edition of metabolic processes involved in the mechanisms of action of probiotics, such as the generation of bioactive peptides. Hence, current information related to bioactive peptides, produced by different engineering probiotics, with antimicrobial, antiviral, antidiabetic, and antihypertensive activities, as well as their potential use as functional ingredients, is discussed here. Besides, the effectiveness and safety aspects of these bioactive peptides were also described.
Collapse
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Aarón Fernando González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Audry Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| |
Collapse
|
5
|
MacDonald IC, Seamons TR, Emmons JC, Javdan SB, Deans TL. Enhanced regulation of prokaryotic gene expression by a eukaryotic transcriptional activator. Nat Commun 2021; 12:4109. [PMID: 34226549 PMCID: PMC8257575 DOI: 10.1038/s41467-021-24434-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Expanding the genetic toolbox for prokaryotic synthetic biology is a promising strategy for enhancing the dynamic range of gene expression and enabling new engineered applications for research and biomedicine. Here, we reverse the current trend of moving genetic parts from prokaryotes to eukaryotes and demonstrate that the activating eukaryotic transcription factor QF and its corresponding DNA-binding sequence can be moved to E. coli to introduce transcriptional activation, in addition to tight off states. We further demonstrate that the QF transcription factor can be used in genetic devices that respond to low input levels with robust and sustained output signals. Collectively, we show that eukaryotic gene regulator elements are functional in prokaryotes and establish a versatile and broadly applicable approach for constructing genetic circuits with complex functions. These genetic tools hold the potential to improve biotechnology applications for medical science and research. Expanded toolkits for prokaryotic synthetic biology can enhance the dynamic range of gene expression. Here the authors move the eukaryotic transcription factor QF into E. coli and integrate it into genetic devices.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Travis R Seamons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jonathan C Emmons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Shwan B Javdan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Lam CN, Mehta-Kolte MG, Martins-Sorenson N, Eckert B, Lin PH, Chu K, Moghaddasi A, Goldman D, Nguyen H, Chan R, Nukala L, Suko S, Hanson B, Yuan R, Cady KC. A Tail Fiber Engineering Platform for Improved Bacterial Transduction-Based Diagnostic Reagents. ACS Synth Biol 2021; 10:1292-1299. [PMID: 33983709 DOI: 10.1021/acssynbio.1c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial transduction particles were critical to early advances in molecular biology and are currently experiencing a resurgence in interest within the diagnostic and therapeutic fields. The difficulty of developing a robust and specific transduction reagent capable of delivering a genetic payload to the diversity of strains constituting a given bacterial species or genus is a major impediment to their expanded utility as commercial products. While recent advances in engineering the reactivity of these reagents have made them more attractive for product development, considerable improvements are still needed. Here, we demonstrate a synthetic biology platform derived from bacteriophage P1 as a chassis to target transduction reagents against four clinically prevalent species within the Enterobacterales order. Bacteriophage P1 requires only a single receptor binding protein to enable attachment and injection into a target bacterium. By engineering and screening particles displaying a diverse array of chimeric receptor binding proteins, we generated a potential transduction reagent for a future rapid phenotypic carbapenem-resistant Enterobacterales diagnostic assay.
Collapse
Affiliation(s)
- Colin N. Lam
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | | | | | - Barbara Eckert
- Roche Molecular Systems, Pleasanton, California 94588, United States
| | - Patrick H. Lin
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Kristina Chu
- Roche Molecular Systems, Pleasanton, California 94588, United States
| | - Arrash Moghaddasi
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Dylan Goldman
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Hai Nguyen
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Ryan Chan
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Laxmi Nukala
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Shawn Suko
- Roche Molecular Systems, Pleasanton, California 94588, United States
| | - Brett Hanson
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Richard Yuan
- Roche Molecular Systems, Santa Clara, California 95050, United States
| | - Kyle C. Cady
- Roche Molecular Systems, Santa Clara, California 95050, United States
| |
Collapse
|
7
|
Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria? NANOMATERIALS 2021; 11:nano11020312. [PMID: 33530434 PMCID: PMC7911621 DOI: 10.3390/nano11020312] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
In 2017 the World Health Organization (WHO) announced a list of the 12 multidrug-resistant (MDR) families of bacteria that pose the greatest threat to human health, and recommended that new measures should be taken to promote the development of new therapies against these superbugs. Few antibiotics have been developed in the last two decades. Part of this slow progression can be attributed to the surge in the resistance acquired by bacteria, which is holding back pharma companies from taking the risk to invest in new antibiotic entities. With limited antibiotic options and an escalating bacterial resistance there is an urgent need to explore alternative ways of meeting this global challenge. The field of medical nanotechnology has emerged as an innovative and a powerful tool for treating some of the most complicated health conditions. Different inorganic nanomaterials including gold, silver, and others have showed potential antibacterial efficacies. Interestingly, gold nanoparticles (AuNPs) have gained specific attention, due to their biocompatibility, ease of surface functionalization, and their optical properties. In this review, we will focus on the latest research, done in the field of antibacterial gold nanoparticles; by discussing the mechanisms of action, antibacterial efficacies, and future implementations of these innovative antibacterial systems.
Collapse
|
8
|
Jaumaux F, P. Gómez de Cadiñanos L, Gabant P. In the Age of Synthetic Biology, Will Antimicrobial Peptides be the Next Generation of Antibiotics? Antibiotics (Basel) 2020; 9:antibiotics9080484. [PMID: 32781540 PMCID: PMC7460114 DOI: 10.3390/antibiotics9080484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotics have changed human health and revolutionised medical practice since the Second World War. Today, the use of antibiotics is increasingly limited by the rise of antimicrobial-resistant strains. Additionally, broad-spectrum antibiotic activity is not adapted to maintaining a balanced microbiome essential for human health. Targeted antimicrobials could overcome these two drawbacks. Although the rational design of targeted antimicrobial molecules presents a formidable challenge, in nature, targeted genetically encoded killing molecules are used by microbes in their natural ecosystems. The use of a synthetic biology approach allows the harnessing of these natural functions. In this commentary article we illustrate the potential of applying synthetic biology towards bacteriocins to design a new generation of antimicrobials.
Collapse
|
9
|
Safaei M, Mobini GR, Abiri A, Shojaeian A. Synthetic biology in various cellular and molecular fields: applications, limitations, and perspective. Mol Biol Rep 2020; 47:6207-6216. [PMID: 32507922 DOI: 10.1007/s11033-020-05565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023]
Abstract
Synthetic biology breakthroughs have facilitated genetic circuit engineering to program cells through novel biological functions, dynamic gene expressions, as well as logic controls. SynBio can also participate in the rapid development of new treatments required for the human lifestyle. Moreover, these technologies are applied in the development of innovative therapeutic, diagnostic, as well as discovery-related methods within a wide range of cellular and molecular applications. In the present review study, SynBio applications in various cellular and molecular fields such as novel strategies for cancer therapy, biosensing, metabolic engineering, protein engineering, and tissue engineering were highlighted and summarized. The major safety and regulatory concerns about synthetic biology will be the environmental release, legal concerns, and risks of the engineered organisms. The final sections focused on limitations to SynBio.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
10
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Xie Y, Zheng W, Jiang X. Near-Infrared Light-Activated Phototherapy by Gold Nanoclusters for Dispersing Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9041-9049. [PMID: 32011117 DOI: 10.1021/acsami.9b21777] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bacterial biofilm is strongly associated with chronic infections and is difficult to be eradicated, posing serious threats to public health. Development of effective therapeutic strategies to prevent and control hospital-acquired infections via eradication of bacteria shielded by biofilms is challenging. Herein, we developed deoxyribonuclease (DNase)-functionalized gold nanoclusters (AuNCs) (DNase-AuNCs), which are capable of killing Gram-positive and Gram-negative bacteria, especially dispersing the surrounding biofilms. The DNase can break down the extracellular polymeric substance matrix to expose the defenseless bacteria to photothermal therapy (PTT) and photodynamic therapy (PDT) by DNase-AuNCs under 808 nm laser irradiation. The combination of enzymolysis, PDT, and PTT can effectively remove biofilms with a dispersion rate of up to 80% and kill ∼90% of the shielded bacteria. DNase-AuNCs exhibit an outstanding therapeutic effect in treating bacterial biofilm-coated orthodontic devices (Invisalign aligners), suggesting their potential applications in medical devices.
Collapse
Affiliation(s)
- Yangzhouyun Xie
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| |
Collapse
|
12
|
Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. Bacteriocins From LAB and Other Alternative Approaches for the Control of Clostridium and Clostridiodes Related Gastrointestinal Colitis. Front Bioeng Biotechnol 2020; 8:581778. [PMID: 33042979 PMCID: PMC7517946 DOI: 10.3389/fbioe.2020.581778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is considered as a promising target for future non-conventional therapeutic treatment of inflammatory and infectious diseases. The search for appropriate safe and beneficial (lactic acid bacterial and other) putative probiotic strains and/or their antimicrobial metabolites represents a challenging approach for combating several problematic and emerging infections. The process of selecting suitable strains, especially of lactic acid bacteria (LAB) with superior properties, has been accelerated and intensified during the past two decades, also thanks to recent developments in lab techniques. Currently, special focus is on the potential of antimicrobial metabolites produced by some LAB strains and their application as active therapeutic agents. The vision is to develop a scientific basis for 'biotherapeutics' as alternative to conventional approaches in both human and veterinary medicine. Consequently, innovative and promising applications of LAB to the therapeutic practice are presently emerging. An overview of the existing literature indicates that some antimicrobial metabolites such as bacteriocins, widely produced by different bacterial species including LAB, are promising biotherapeutic agents for controlling infections caused by potential pathogens, such as Clostridium and Clostridiodes. Non-conventional, safe and well designed therapeutic treatments may contribute to the improvement of gut dysbiotic conditions. Thereby gut homeostasis can be restored and inflammatory conditions such as gastrointestinal colitis ameliorated. Combining the knowledge on the production, characterization and application of bacteriocins from probiotic LAB, together with their antibacterial properties, appears to be a promising and novel approach in biotherapy. In this overview, different scenarios for the control of Clostridium spp. by application of bacteriocins as therapeutic agents, also in synergistic combination with antibiotics, will be discussed.
Collapse
Affiliation(s)
- Svetoslav D. Todorov
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
| | - Hye-Ji Kang
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
- HEM Inc., Handong Global University, Pohang, South Korea
| | - Iskra V. Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Wilhelm H. Holzapfel
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
- HEM Inc., Handong Global University, Pohang, South Korea
- *Correspondence: Wilhelm H. Holzapfel,
| |
Collapse
|
13
|
|
14
|
Ho DK, Nichols BLB, Edgar KJ, Murgia X, Loretz B, Lehr CM. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. Eur J Pharm Biopharm 2019; 144:110-124. [PMID: 31493510 DOI: 10.1016/j.ejpb.2019.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
Abstract
Inhalation therapy has been reported as the most effective treatment for respiratory bacterial infections due to the increasing relevance of drug bioavailability. Drug delivery systems (DDS) have the capacity to overcome pulmonary biological barriers limiting the bioavailability of inhaled anti-infectives. This is important to eradicate bacterial infections and to prevent the development of bacterial resistance. Despite substantial efforts in the field, the current state-of-the-art often fails to achieve those goals, and we still observe increasing bacterial resistance. We give a brief insight on benefits and challenges in pulmonary delivery of anti-infectives. In the context of drug delivery development for pulmonary infections, particularly focusing on Pseudomonas aeruginosa (PA) infections, this mini review will critically discuss the main requirements, as well as the recent strategies of drug delivery system synthesis and preparation. Finally, interaction of DDS with crucial pulmonary biological barriers will be of great importance for the success of future applications of the developed DDS.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany
| | - Brittany L B Nichols
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Cai X, Zheng W, Li Z. High-Throughput Screening Strategies for the Development of Anti-Virulence Inhibitors Against Staphylococcus aureus. Curr Med Chem 2019; 26:2297-2312. [PMID: 29165063 DOI: 10.2174/0929867324666171121102829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/09/2016] [Accepted: 01/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND The increasing threats of antibiotic resistance urge the need for developing new approaches to combat bacterial infections including those caused by Staphylococcus aureus (S. aureus). Unlike conventional antibiotics that aim to kill bacteria or inhibit their growth, targeting bacterial virulence may be a promising alternative approach, which imposes less selective pressure for antibiotic resistance in future generations. OBJECTIVE Our goal is to provide a systematic review about developing high-throughput screening (HTS) strategies for the identification of inhibitors targeting virulence of S. aureus. We also describe an overview of virulence regulatory pathways for potential antivirulence targets. METHODS We focus on five potential targets or target families, including agr quorum sensing system, SarA/MgrA protein family, sortase A, Clp protease and eukaryotic-like Ser/Thr phosphatase (Stp1). For each target, we introduce its role in virulence regulation, summarize the HTS approaches that are used to identify novel anti-virulence inhibitors, and discuss the advantages and disadvantages of these strategies. CONCLUSION The discovery of anti-virulence inhibitors via HTS underlines the promising potential of anti-virulence therapy for S. aureus. The development of HTS strategies can facilitate the identification of novel anti-virulence inhibitors for combating S. aureus infection, and may also advance our understanding on virulence regulation in S. aureus.
Collapse
Affiliation(s)
- Xiaodan Cai
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Weihao Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres. Nat Microbiol 2019; 4:1645-1653. [DOI: 10.1038/s41564-019-0477-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
|
17
|
Geraldi A, Giri-Rachman EA. Synthetic biology-based portable in vitro diagnostic platforms. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Almando Geraldi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia
| | - Ernawati Arifin Giri-Rachman
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia
| |
Collapse
|
18
|
Advances in engineered trans-acting regulatory RNAs and their application in bacterial genome engineering. J Ind Microbiol Biotechnol 2019; 46:819-830. [PMID: 30887255 DOI: 10.1007/s10295-019-02160-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Small noncoding RNAs, a large class of ancient posttranscriptional regulators, are increasingly recognized and utilized as key modulators of gene expression in a broad range of microorganisms. Owing to their small molecular size and the central role of Watson-Crick base pairing in defining their interactions, structure and function, numerous diverse types of trans-acting RNA regulators that are functional at the DNA, mRNA and protein levels have been experimentally characterized. It has become increasingly clear that most small RNAs play critical regulatory roles in many processes and are, therefore, considered to be powerful tools for genetic engineering and synthetic biology. The trans-acting regulatory RNAs accelerate this ability to establish potential framework for genetic engineering and genome-scale engineering, which allows RNA structure characterization, easier to design and model compared to DNA or protein-based systems. In this review, we summarize recent advances in engineered trans-acting regulatory RNAs that are used in bacterial genome-scale engineering and in novel cellular capabilities as well as their implementation in wide range of biotechnological, biological and medical applications.
Collapse
|
19
|
Stephanie MC, Santiago JV. Genetically Engineered Probiotics and Therapies Applications. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The idea of using probiotics for health benefits in the human body is still biased since there is skepticism and since it is quite a new field of research. However, recent experiments are trying to debate that given the naturality of their consumption and the successful results from in vitro tests in combination with other therapies. Food scientists are eager to take advantage of the known beneficial properties of probiotics by using engineering technologies in order to enhance them. Using CRISPR systems present in lactobacilli aids in strain identification, while offering information on phylogeny and ecological interactions. Also, the use of genetic engineering tools could also allow the use of plasmid vaccines to prevent antibiotic resistance and the development of synthetic probiotics as microbial treatments.
Collapse
Affiliation(s)
| | - Jijón V. Santiago
- School of Biological Sciences and Engineering, YachayTech, Urcuquí. Ecuador
| |
Collapse
|
20
|
Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol 2019; 27:323-338. [PMID: 30683453 DOI: 10.1016/j.tim.2018.12.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
As more antibiotics are rendered ineffective by drug-resistant bacteria, focus must be shifted towards alternative therapies for treating infections. Although several alternatives already exist in nature, the challenge is to implement them in clinical use. Advancements within biotechnology, genetic engineering, and synthetic chemistry have opened up new avenues towards the search for therapies that can substitute for antibiotics. This review provides an introduction to the various promising approaches that have been adopted in this regard. Whilst the use of bacteriophages and antibodies has been partly implemented, other promising strategies, such as probiotics, lysins, and antimicrobial peptides, are in various stages of development. Propitious concepts such as genetically modified phages, antibacterial oligonucleotides, and CRISPR-Cas9 are also discussed.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Rahaf Issa
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.
| |
Collapse
|
21
|
De Mol ML, Snoeck N, De Maeseneire SL, Soetaert WK. Hidden antibiotics: Where to uncover? Biotechnol Adv 2018; 36:2201-2218. [DOI: 10.1016/j.biotechadv.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023]
|
22
|
Keloth A, Anderson O, Risbridger D, Paterson L. Single Cell Isolation Using Optical Tweezers. MICROMACHINES 2018; 9:mi9090434. [PMID: 30424367 PMCID: PMC6187562 DOI: 10.3390/mi9090434] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
Optical tweezers offer a non-contact method for selecting single cells and translocating them from one microenvironment to another. We have characterized the optical tweezing of yeast S. cerevisiae and can manipulate single cells at 0.41 ± 0.06 mm/s using a 26.8 ± 0.1 mW from a 785 nm diode laser. We have fabricated and tested three cell isolation devices; a micropipette, a PDMS chip and a laser machined fused silica chip and we have isolated yeast, single bacteria and cyanobacteria cells. The most effective isolation was achieved in PDMS chips, where single yeast cells were grown and observed for 18 h without contamination. The duration of budding in S. cerevisiae was not affected by the laser parameters used, but the time from tweezing until the first budding event began increased with increasing laser energy (laser power × time). Yeast cells tweezed using 25.0 ± 0.1 mW for 1 min were viable after isolation. We have constructed a micro-consortium of yeast cells, and a co-culture of yeast and bacteria, using optical tweezers in combination with the PDMS network of channels and isolation chambers, which may impact on both industrial biotechnology and understanding pathogen dynamics.
Collapse
Affiliation(s)
- Anusha Keloth
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| | - Owen Anderson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| | - Donald Risbridger
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| | - Lynn Paterson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
23
|
Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci OA 2018; 4:FSO290. [PMID: 29682325 PMCID: PMC5905577 DOI: 10.4155/fsoa-2017-0109] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of antibiotics by Sir Alexander Fleming they have been used throughout medicine and play a vital role in combating microorganisms. However, with their vast use, development of resistance has become more prevalent and their use is currently under threat. Antibiotic resistance poses a global threat to human and animal health, with many bacterial species having developed some form of resistance and in some cases within a year of first exposure to antimicrobial agents. This review aims to examine some of the mechanisms behind resistance. Additionally, re-engineering organisms, re-sensitizing bacteria to antibiotics and gene-editing techniques such as the clustered regularly interspaced short palindromic repeats-Cas9 system are providing novel approaches to combat bacterial resistance. To that extent, we have reviewed some of these novel and innovative technologies. In 1928, penicillin was discovered, changing the field of modern medicine as it provided an opportunity to treat microbial infections. Since then, microorganisms such as bacteria have evolved and now have the ability to resist a wide variety of agents that might otherwise prevent their growth. By 2050, it is estimated that around 10 million lives each year will be lost due to these bacteria. This article provides an insight into how bacteria resist antibiotics and potential new methods of treating these organisms.
Collapse
|
24
|
Rogers GL, Cannon PM. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematol Oncol Clin North Am 2017; 31:883-895. [PMID: 28895854 DOI: 10.1016/j.hoc.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in gene therapy technologies, particularly in gene editing, are suggesting new avenues for the treatment of human immunodeficiency virus and other infectious diseases. This article outlines recent developments in antiviral gene therapies, including those based on the disruption of entry receptors or that target viral genomes using targeted nucleases, such as the CRISPR/Cas9 system. In addition, new ways to express circulating antiviral factors, such as antibodies, and approaches to harness and engineer the immune system to provide an antiviral effect that is not naturally achieved are described.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA.
| |
Collapse
|
25
|
Certain LK, Way JC, Pezone MJ, Collins JJ. Using Engineered Bacteria to Characterize Infection Dynamics and Antibiotic Effects In Vivo. Cell Host Microbe 2017; 22:263-268.e4. [PMID: 28867388 DOI: 10.1016/j.chom.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/17/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022]
Abstract
Synthetic biology has focused on engineering microbes to synthesize useful products or to serve as living diagnostics and therapeutics. Here we utilize a host-derived Escherichia coli strain engineered with a genetic toggle switch as a research tool to examine in vivo replicative states in a mouse model of chronic infection, and to compare in vivo and in vitro bacterial behavior. In contrast to the effect of antibiotics in vitro, we find that the fraction of actively dividing bacteria remains relatively high throughout the course of a chronic infection in vivo and increases in response to antibiotics. Moreover, the presence of non-dividing bacteria in vivo does not necessarily lead to an antibiotic-tolerant infection, in contrast to expectations from in vitro experiments. These results demonstrate the utility of engineered bacteria for querying pathogen behavior in vivo, and the importance of validating in vitro studies of antibiotic effects with in vivo models.
Collapse
Affiliation(s)
- Laura K Certain
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Matthew J Pezone
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Higashikuni Y, Chen WC, Lu TK. Advancing therapeutic applications of synthetic gene circuits. Curr Opin Biotechnol 2017; 47:133-141. [PMID: 28750201 DOI: 10.1016/j.copbio.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023]
Abstract
Synthetic biology aims to introduce new sense-and-respond capabilities into living cells, which would enable novel therapeutic strategies. The development of regulatory elements, molecular computing devices, and effector screening technologies has enabled researchers to design synthetic gene circuits in many organisms, including mammalian cells. Engineered gene networks, such as closed-loop circuits or Boolean logic gate circuits, can be used to program cells to perform specific functions with spatiotemporal control and restoration of homeostasis in response to the extracellular environment and intracellular signaling. In addition, genetically modified microbes can be designed as local delivery of therapeutic molecules. In this review, we will discuss recent advances in therapeutic applications of synthetic gene circuits, as well as challenges and future opportunities for biomedicine.
Collapse
Affiliation(s)
- Yasutomi Higashikuni
- Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA
| | - William Cw Chen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timothy K Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA.
| |
Collapse
|
27
|
Jayaraman P, Holowko MB, Yeoh JW, Lim S, Poh CL. Repurposing a Two-Component System-Based Biosensor for the Killing of Vibrio cholerae. ACS Synth Biol 2017; 6:1403-1415. [PMID: 28441472 DOI: 10.1021/acssynbio.7b00058] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New strategies to control cholera are urgently needed. This study develops an in vitro proof-of-concept sense-and-kill system in a wild-type Escherichia coli strain to target the causative pathogen Vibrio cholerae using a synthetic biology approach. Our engineered E. coli specifically detects V. cholerae via its quorum-sensing molecule CAI-1 and responds by expressing the lysis protein YebF-Art-085, thereby self-lysing to release the killing protein Art-085 to kill V. cholerae. For this report, we individually characterized YebF-Art-085 and Art-085 expression and their activities when coupled to our previously developed V. cholerae biosensing circuit. We show that, in the presence of V. cholerae supernatant, the final integrated sense-and-kill system in our engineered E. coli can effectively inhibit the growth of V. cholerae cells. This work represents the first step toward a novel probiotic treatment modality that could potentially prevent and treat cholera in the future.
Collapse
Affiliation(s)
- Premkumar Jayaraman
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, Singapore
| | - Maciej B. Holowko
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Jing Wui Yeoh
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, Singapore
| | - Sierin Lim
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Chueh Loo Poh
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
28
|
Yadav R, Kumar V, Baweja M, Shukla P. Gene editing and genetic engineering approaches for advanced probiotics: A review. Crit Rev Food Sci Nutr 2017; 58:1735-1746. [PMID: 28071925 DOI: 10.1080/10408398.2016.1274877] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The applications of probiotics are significant and thus resulted in need of genome analysis of probiotic strains. Various omics methods and systems biology approaches enables us to understand and optimize the metabolic processes. These techniques have increased the researcher's attention towards gut microbiome and provided a new source for the revelation of uncharacterized biosynthetic pathways which enables novel metabolic engineering approaches. In recent years, the broad and quantitative analysis of modified strains relies on systems biology tools such as in silico design which are commonly used methods for improving strain performance. The genetic manipulation of probiotic microorganisms is crucial for defining their role in intestinal microbiota and exploring their beneficial properties. This review describes an overview of gene editing and systems biology approaches, highlighting the advent of omics methods which allows the study of new routes for studying probiotic bacteria. We have also summarized gene editing tools like TALEN, ZFNs and CRISPR-Cas that edits or cleave the specific target DNA. Furthermore, in this review an overview of proposed design of advanced customized probiotic is also hypothesized to improvise the probiotics.
Collapse
Affiliation(s)
- Ruby Yadav
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| | - Vishal Kumar
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| | - Mehak Baweja
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| | - Pratyoosh Shukla
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
29
|
Zhao X, Shen M, Jiang X, Shen W, Zhong Q, Yang Y, Tan Y, Agnello M, He X, Hu F, Le S. Transcriptomic and Metabolomics Profiling of Phage-Host Interactions between Phage PaP1 and Pseudomonas aeruginosa. Front Microbiol 2017; 8:548. [PMID: 28421049 PMCID: PMC5377924 DOI: 10.3389/fmicb.2017.00548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
The basic biology of bacteriophage–host interactions has attracted increasing attention due to a renewed interest in the therapeutic potential of bacteriophages. In addition, knowledge of the host pathways inhibited by phage may provide clues to novel drug targets. However, the effect of phage on bacterial gene expression and metabolism is still poorly understood. In this study, we tracked phage–host interactions by combining transcriptomic and metabolomic analyses in Pseudomonas aeruginosa infected with a lytic bacteriophage, PaP1. Compared with the uninfected host, 7.1% (399/5655) of the genes of the phage-infected host were differentially expressed genes (DEGs); of those, 354 DEGs were downregulated at the late infection phase. Many of the downregulated DEGs were found in amino acid and energy metabolism pathways. Using metabolomics approach, we then analyzed the changes in metabolite levels in the PaP1-infected host compared to un-infected controls. Thymidine was significantly increased in the host after PaP1 infection, results that were further supported by increased expression of a PaP1-encoded thymidylate synthase gene. Furthermore, the intracellular betaine concentration was drastically reduced, whereas choline increased, presumably due to downregulation of the choline–glycine betaine pathway. Interestingly, the choline–glycine betaine pathway is a potential antimicrobial target; previous studies have shown that betB inhibition results in the depletion of betaine and the accumulation of betaine aldehyde, the combination of which is toxic to P. aeruginosa. These results present a detailed description of an example of phage-directed metabolism in P. aeruginosa. Both phage-encoded auxiliary metabolic genes and phage-directed host gene expression may contribute to the metabolic changes observed in the host.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, China.,Department of Bioinformatics, Third Military Medical UniversityChongqing, China
| | - Mengyu Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xingyu Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical UniversityChongqing, China
| | - Wei Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Clinical Laboratory, Daping Hospital, Third Military Medical UniversityChongqing, China
| | - Yuhui Yang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Melissa Agnello
- School of Dentistry, University of California, Los Angeles, Los AngelesCA, USA
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, Los AngelesCA, USA
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S. Rapid generation of hypomorphic mutations. Nat Commun 2017; 8:14112. [PMID: 28106166 PMCID: PMC5263891 DOI: 10.1038/ncomms14112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation. Adding consecutive adenosine nucleotides, so-called polyA tracks, to the gene coding sequence of interest will decrease translation elongation efficiency, and in all tested cell cultures and model organisms, this decreases mRNA stability and protein expression. We show that protein expression is adjustable independent of promoter strength and can be further modulated by changing sequence features of the polyA tracks. These characteristics make this method highly predictable and tractable for generation of programmable allelic series with a range of expression levels.
Collapse
Affiliation(s)
- Laura L. Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Joyce J. Chung
- Department of Biology, Washington University, St Louis, Missouri 63105, USA
| | - Preetam Jankirama
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A5B7
- Science and Technology Branch, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V4T3
| | - Kathryn M. Keefer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Igor Kolotilin
- Scattered Gold Biotechnology Inc. 14 Denali Terrace, London, Ontario, Canada N5X 3W2
| | - Slavica Pavlovic-Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Douglas L. Chalker
- Department of Biology, Washington University, St Louis, Missouri 63105, USA
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A5B7
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Rima Menassa
- Science and Technology Branch, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V4T3
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
- The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - James B. Skeath
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
31
|
Deans TL, Grainger DW, Fussenegger M. Synthetic Biology: Innovative approaches for pharmaceutics and drug delivery. Adv Drug Deliv Rev 2016; 105:1-2. [PMID: 27653994 DOI: 10.1016/j.addr.2016.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|