1
|
Duan W, Xu K, Gao Y, Huang S, Xia X, Liu X, Pan S, Jiao C, Cheng W, Guo Y, Zhao J, Shen JW. Bimetallic Plasmonic Nanozyme-Based Microneedle for Synergistic Ferroptosis Therapy of Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04203. [PMID: 40387609 DOI: 10.1002/advs.202504203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Melanoma is the most common malignant skin tumor, characterized by complexity, invasiveness, and heterogeneity. Conventional therapies often yield poor outcomes, posing significant clinical challenges. Here, a microneedle (MN) patch that integrates nanozyme and traditional Chinese medicine (TCM) for ferroptosis pathway-dependent combined therapy of melanoma is designed. To amplify therapeutic activity, a novel Au@MoS2 bimetallic plasmonic nanozyme (BPNzyme) is prepared through a simple aqueous synthesis strategy involving a two-step process. Owing to the synergy between heterostructures, this rationally designed BPNzyme exhibits significantly enhanced therapeutic characteristics, including near-infrared (NIR) photothermal effect, peroxidase-like activity, and glutathione peroxidase-like property, which can effectively reshape the tumor microenvironment and disrupt the redox homeostasis. Under the combined action of the TCM β-elemene (β-ELE) and NIR light, further enhancement of oxidative damage, lipid peroxidation, and glutathione peroxidase 4 expression downregulation are observed for skin tumor cells, validating the synergistic amplification of ferroptosis. Moreover, the transdermal delivery of BPNzyme and β-ELE using the soluble hyaluronic acid MN patch effectively achieves 99.8% tumor growth suppression without significant systemic toxicity in vivo. These findings highlight the potential of the rationally designed BPNzyme-based MN system as a promising innovative strategy for non-invasive, efficient, and safe combination therapy of melanoma.
Collapse
Affiliation(s)
- Wei Duan
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438, P. R. China
| | - Keying Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yue Gao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Sheng Huang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xueqian Xia
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xiang Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shuangxue Pan
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Chunpeng Jiao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Weijian Cheng
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yong Guo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jia-Wei Shen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Hussain Y, You BG, Huang L, Liu X, Dormocara A, Shah KA, Ali T, Cao QR, Lee BJ, Elbehairi SEI, Iqbal H, Cui JH. Dissolving microneedles for melanoma: Most recent updates, challenges, and future perspectives. Int J Pharm 2025; 673:125382. [PMID: 39988214 DOI: 10.1016/j.ijpharm.2025.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Skin cancer is one among the common types of cancers, affecting millions of individual globally. The conventional anticancer therapy such as chemotherapy results in worst systemic and local side effects as well as inhibit the growth of healthy cells around the tumor cells. Dissolving microneedles (DMNs) is a groundbreaking technology with less invasive and more targeted features. Physically, these tiny dissolving needles deliver the anticancer payloads drug to the tumor site after its direct application on the skin surface. Specifically, the DMNs release the anticancer drug cargoes into the cancerous cell sparing the healthy cells around the tumor, thus has provided a significant contribution in the landscape of traditional skin cancer therapy. This targeted therapeutic approach of dissolving microneedles shows a significant therapeutic outcome in decreasing the growth of cancer cells in pre-clinical studies. Dissolving microneedles (DMNs) have demonstrated effectiveness in the targeted delivery of drugs, genes, and vaccines specifically at the site of skin tumors. This method mimics the localized release of adjuvants and immunomodulators, leading to significant humoral and cellular immune responses that are beneficial for skin cancer therapy. In this review, the current trends and potential roles of dissolving microneedles in delivering therapeutic agents focused on treating skin melanoma have been highlighted, drawing insights from recent literature. This emphasizes the promising applications of DMNs in enhancing treatment outcomes for skin cancer patients. Lastly, future perspectives were identified for improving the therapeutic potential and translation of DMNs into clinic.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ben-Gang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linyu Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoyin Liu
- School of Radiation Medicine and Protection of Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Janani G, Girigoswami A, Deepika B, Udayakumar S, Mercy DJ, Girigoswami K. Dual Mechanism of Amphiroa anceps: Antiangiogenic and Anticancer Effects in Skin Cancer. Chem Biodivers 2025:e202500626. [PMID: 40106265 DOI: 10.1002/cbdv.202500626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Skin cancer is diagnosed usually at the last stage and the available conventional treatments are costly and have various side-effects. It is therefore necessary to design a biocompatible alternative treatment approach. In our present study, the liposomal formulation of marine red algae Amphiroa anceps is investigated for its anticancer activity against skin cancer. The aqueous extract (HA) and the liposomal formulated aqueous extract (NHA) of A. anceps are characterized using Raman spectroscopy, high-performance liquid chromatography (HPLC) and scanning electron microscopy (SEM). SEM reveals the size of NHA to be around 150-230 nm. In HPLC, two prominent peaks at the retention time of 5.233 min and 5.775 min are observed. NHA exhibits anticancer activity in skin cancer cells (A375) dose-dependently, and the cell viability 100 µg/mL is 16% ± 2%. The in vitro biocompatibility assays using fibroblast cell viability and haemolysis assay, show that the NHA is safe and highly biocompatible. A step forward, the Chorioallantoic Membrane Assay assay reveals HA and NHA have anti-angiogenesis activity. Our study elucidates that NHA induces anticancer activity by cell necrosis and reducing new blood vessel formation, and can be a safe and promising therapeutic agent for cancer management.
Collapse
Affiliation(s)
- Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Chennai, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Chennai, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Chennai, India
| | - Devadass Jessy Mercy
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Chennai, India
| | - Koyeli Girigoswami
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Dwivedi R, Bala R, Singh S, Sindhu RK. Catechins in cancer therapy: integrating traditional and complementary approaches. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0472. [PMID: 39976450 DOI: 10.1515/jcim-2024-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Catechin is a group of bioactive flavonoids found in various plant sources such as tea, cocoa, and fruits. Recent studies have suggested that catechins has significant potential in preventing and treating cancer. Catechin exhibits a variety of biological activities that may contribute to its anticancer effects, including antioxidant, anti-inflammatory, and pro-apoptotic properties. Studies have demonstrated that catechin can inhibit cancer cell proliferation, induce cell cycle arrest, and promote apoptosis across multiple cancer types, including skin, breast, lung, liver, prostate, and colon cancers. Furthermore, catechin has shown the ability to inhibit angiogenesis, a critical process for tumor growth and metastasis, by restricting new blood vessel formation. Catechin's impact on cancer extends beyond its direct effects on cancer cells. It modulates various signaling pathways involved in cancer progression, such as those associated with cell survival, inflammation, and metastasis. Despite these promising findings, additional research is needed to clarify the precise mechanisms of catechin's anticancer action, optimal dosing strategies, and long-term safety in cancer prevention and treatment. This review will explore the current research landscape on tea polyphenols, particularly catechin, and their potential role in cancer prevention and therapy.
Collapse
Affiliation(s)
- Renu Dwivedi
- School of Pharmaceutical Sciences, Bahra University, Solan, Himachal Pradesh, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajni Bala
- University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, Punjab, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rakesh K Sindhu
- Sharda School of Pharmacy, 193167 Sharda University , Greater Noida, UP, India
| |
Collapse
|
5
|
Viegas JSR, Araujo JS, Leite MN, Praça FG, Ciampo JOD, Espreáfico EM, Frade MAC, Bentley MVLB. Bcl-2 knockdown by multifunctional lipid nanoparticle and its influence in apoptosis pathway regarding cutaneous melanoma: in vitro and ex vivo studies. Drug Deliv Transl Res 2025; 15:753-768. [PMID: 39222192 DOI: 10.1007/s13346-024-01692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional therapies have emerged as innovative strategies in cancer treatment. In this research article, we proposed a nanostructured lipid carrier (NLC) designed for the topical treatment of cutaneous melanoma, which simultaneously delivers 5-FU and Bcl-2 siRNA. The characterized nanoparticles exhibited a diameter of 259 ± 9 nm and a polydispersion index of 0.2, indicating a uniform size distribution. The NLCs were primarily localized in the epidermis, effectively minimizing the systemic release of 5-FU across skin layers. The ex vivo skin model revealed the formation of a protective lipid film, decreasing the desquamation process of the stratum corneum which can be associated to an effect of increasing permeation. In vitro assays demonstrated that A375 melanoma cells exhibited a higher sensitivity to the treatment compared to non-cancerous cells, reflecting the expected difference in their metabolic rates. The uptake of NLC by A375 cells reached approximately 90% within 4 h. The efficacy of Bcl-2 knockdown was thoroughly assessed using ELISA, Western blot, and qRT-PCR analyses, revealing a significant knockdown and synergistic action of the NLC formulation containing 5-FU and Bcl-2 siRNA (at low concentration --100 pM). Notably, the silencing of Bcl-2 mRNA also impacted other members of the Bcl-2 protein family, including Mcl-1, Bcl-xl, BAX, and BAK. The observed modulation of these proteins strongly indicated the activation of the apoptosis pathway, suggesting a successful inhibition of melanoma growth and prevention of its in vitro spread.
Collapse
Affiliation(s)
- Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jackeline Souza Araujo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcel Nani Leite
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose Orestes Del Ciampo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza Maria Espreáfico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
6
|
Chaudhary K, Rajora A. Elevating Therapeutic Penetration: Innovations in Drug Delivery for Enhanced Permeation and Skin Cancer Management. Crit Rev Ther Drug Carrier Syst 2025; 42:1-34. [PMID: 39819462 DOI: 10.1615/critrevtherdrugcarriersyst.2024047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations. This comprehensive review seeks to shed light on the potential of nanotechnology as a promising avenue for efficacious cancer treatment, with a particular emphasis on skin cancer. Additionally, it underscores the transdermal approach as a viable strategy for addressing various types of cancer. This work also explores into the delivery of peptides and proteins along with in-depth explanations of different delivery systems currently under investigation for localized skin cancer treatment. Furthermore, the review discusses the formidable challenges that must be surmounted before these innovations can find their way into clinical practice, offering a roadmap for future research and therapeutic development.
Collapse
Affiliation(s)
- Kajal Chaudhary
- Ram-Eesh Institute of Pharmacy, Knowledge Park I, Greater Noida, Uttar Pradesh 201306, India
| | | |
Collapse
|
7
|
Kumar L, Rana R, Komal K, Aggarwal V, Kumar S, Choudhary N, Fathima H A, Lakhanpal S. Exploring the Therapeutic Potential of Vesicular Nanocarrier Systems for Elimination of Skin Cancer. Curr Med Chem 2025; 32:258-285. [PMID: 39962707 DOI: 10.2174/0109298673297695240328074724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 05/09/2025]
Abstract
BACKGROUND Skin cancer, a common malignancy worldwide, has increased incidence and mortality. Thus, it is a public health issue and a significant illness burden, which increases treatment costs. Chemotherapy and surgery are used to treat skin cancer. However, conventional skin cancer treatments have several limitations, demanding the development of innovative, safe, and effective methods. To overcome these limitations of conventional topical dosage forms, many nanocarriers have been developed and tested for the targeted delivery of anticancer drugs. OBJECTIVE The main objective of the present review was to discuss the utility of various vesicular nanocarrier systems to deliver anticancer drugs following topical administration to treat skin cancer. METHODS For this review article, we scoured the scholarly literature using Science Direct, Google Scholar, and PubMed. DISCUSSION The vesicular drug delivery system has been intensively explored and developed as an alternative to conventional skin cancer drug delivery systems, especially for melanoma. They improve the penetration of anticancer drugs via the skin, reaching the cancer area with enough and killing cancer cells. Vesicles minimize skin irritation and drug degradation. This improves therapy efficacy and reduces systemic toxicity. CONCLUSION Utilizing the vesicular drug delivery system shows promise in treating skin cancer. Therefore, further research and inquiries are necessary to explore the therapeutic potential of these substances in treating skin cancer, intending to develop a personalized, efficient, and secure therapy approach for patients with this condition.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab, 144401, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Komal Komal
- Department of Pharmacology, Chandigarh College of Pharmacy, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| | - Vikas Aggarwal
- Senior Pharmacovigilance Specialist, Continuum India LLP, 3rd Floor, Tower F DLF Building, Chandigarh Technology Park, Chandigarh, 160101, India
| | - Sumit Kumar
- Department of Pharmaceutical Chemistry, Gautam College of Pharmacy, District-Hamirpur, H.P. 177001, India
| | - Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara, Punjab, 144401, India
| | - Aafreen Fathima H
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
8
|
Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm Sin B 2024; 14:5161-5180. [PMID: 39807331 PMCID: PMC11725105 DOI: 10.1016/j.apsb.2024.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/16/2025] Open
Abstract
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally, the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeoning market traction of cosmetic MN formulations. The review summarizes the scientific and commercial challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics, biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It emphasizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obstacles and fully realize MNs' potential in treating skin diseases and improving patient welfare.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
9
|
Xu P, Meng F, Wan J, Zhu H, Fang S, Wang H. Hybrid Homodimeric Prodrug Nanoassemblies for Low-Toxicity and Synergistic Chemophotodynamic Therapy of Melanoma. Biomater Res 2024; 28:0101. [PMID: 39492977 PMCID: PMC11529783 DOI: 10.34133/bmr.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Synergistically active nanoparticles hold great promise for facilitating multimodal cancer therapy. However, strategies for their feasible manufacture and optimizing their formulations remain lacking. Herein, we developed hybrid homodimeric prodrug nanotherapeutics with tumor-restricted drug activation and chemophotodynamic pharmacology by leveraging the supramolecular nanoassembly of small molecules. The covalent dimerization of cytotoxic taxane chemotherapy via reactive oxygen species (ROS)-activated linker yielded a homodimeric prodrug, which was further coassembled with a ROS-generating dimeric photosensitizer. The nanoassemblies were readily refined in an amphiphilic PEGylation matrix for particle surface cloaking and in vivo intravenous injection. The nanoassemblies were optimized with favorable stability and combinatorial synergism to kill cancer cells. Upon near-infrared laser irradiation, the neighboring dimer photosensitizer generated ROS, subsequently triggering bond cleavage to facilitate drug activation, which in turn produced synergistic chemophotodynamic effects against cancer. In a preclinical model of melanoma, the intravenous administration of PEGylated nanoassemblies followed by near-infrared tumor irradiation led to significant tumor regression. Furthermore, animals treated with this efficient, photo-activatable nanotherapy exhibited low systemic toxicity even at high doses. This study describes a simple and cost-effective approach to integrate multimodal therapies by creating self-assembling small-molecule prodrugs for designing a combinatorial therapeutic nanosystem. We consider that this new paradigm holds substantial potential for advancing clinical translation.
Collapse
Affiliation(s)
- Peirong Xu
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
- Department of Chemical Engineering,
Zhejiang University, Hangzhou 310027, Zhejiang Province, P. R. China
| | - Fanchao Meng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Jianqin Wan
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Hengyan Zhu
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Shijiang Fang
- Department of Chemical Engineering,
Zhejiang University, Hangzhou 310027, Zhejiang Province, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, Shandong Province, P. R. China
| |
Collapse
|
10
|
Arghidash F, Javid-Naderi MJ, Gheybi F, Gholamhosseinian H, Kesharwani P, Sahebkar A. Exploring the multifaceted effects of silymarin on melanoma: Focusing on the role of lipid-based nanocarriers. J Drug Deliv Sci Technol 2024; 99:105950. [DOI: 10.1016/j.jddst.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
12
|
Bigham A, Islami N, Khosravi A, Zarepour A, Iravani S, Zarrabi A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311903. [PMID: 38453672 DOI: 10.1002/smll.202311903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Negar Islami
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
13
|
Balakrishnan P, Gopi S. Revolutionizing transdermal drug delivery: unveiling the potential of cubosomes and ethosomes. J Mater Chem B 2024; 12:4335-4360. [PMID: 38619889 DOI: 10.1039/d3tb02927a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The area of drug delivery systems has witnessed significant advancements in recent years, with a particular focus on improving efficacy, stability, and patient compliance. Transdermal drug delivery offers numerous benefits compared to conventional methods of drug administration through the skin. It helps in avoiding gastric irritation, hepatic first-pass metabolism, and gastric degradation of the drug. It bypasses the gastrointestinal tract, eliminating the risk of first-pass metabolism and allowing drugs to be administered without being affected by pH, enzymes, or intestinal bacteria. Additionally, it allows for sustained release of the drug, is noninvasive, and enhances patient adherence to the treatment regimen. The transdermal drug delivery system (TDDS) can serve as an alternative route for drug administration in individuals who cannot tolerate oral medications, experience nausea, or are unconscious. When compared to intravenous, hypodermic, and other parenteral routes, TDDS stands out due to its ability to eliminate pain, reduce the risk of infection, and prevent disease transmission associated with needle reuse. Consequently, the overall patient compliance is significantly improved with the utilization of TDDS. Among the noteworthy developments are cubosomes and ethosomes, two distinct yet promising carriers that have garnered attention for their unique properties. In conclusion, this review synthesizes the current knowledge on cubosomes and ethosomes, shedding light on their individual strengths and potential synergies. The exploration of their application in various therapeutic areas underscores their versatility and establishes them as key players in the evolving landscape of drug delivery systems.
Collapse
Affiliation(s)
- Preetha Balakrishnan
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| | - Sreerag Gopi
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| |
Collapse
|
14
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
15
|
Jin Z, Al Amili M, Guo S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024; 12:417. [PMID: 38398021 PMCID: PMC10886702 DOI: 10.3390/biomedicines12020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In clinical practice, drug therapy for cancer is still limited by its inefficiency and high toxicity. For precision therapy, various drug delivery systems, including polymeric micelles self-assembled from amphiphilic polymeric materials, have been developed to achieve tumor-targeting drug delivery. Considering the characteristics of the pathophysiological environment at the drug target site, the design, synthesis, or modification of environmentally responsive polymeric materials has become a crucial strategy for drug-targeted delivery. In comparison to the normal physiological environment, tumors possess a unique microenvironment, characterized by a low pH, high reactive oxygen species concentration, hypoxia, and distinct enzyme systems, providing various stimuli for the environmentally responsive design of polymeric micelles. Polymeric micelles with tumor microenvironment (TME)-responsive characteristics have shown significant improvement in precision therapy for cancer treatment. This review mainly outlines the most promising strategies available for exploiting the tumor microenvironment to construct internal stimulus-responsive drug delivery micelles that target tumors and achieve enhanced antitumor efficacy. In addition, the prospects of TME-responsive polymeric micelles for gene therapy and immunotherapy, the most popular current cancer treatments, are also discussed. TME-responsive drug delivery via polymeric micelles will be an efficient and robust approach for developing clinical cancer therapies in the future.
Collapse
Affiliation(s)
- Zhu Jin
- Correspondence: (Z.J.); (S.G.)
| | | | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
16
|
Adamus-Grabicka AA, Hikisz P, Sikora J. Nanotechnology as a Promising Method in the Treatment of Skin Cancer. Int J Mol Sci 2024; 25:2165. [PMID: 38396841 PMCID: PMC10889690 DOI: 10.3390/ijms25042165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of skin cancer continues to grow. There are an estimated 1.5 million new cases each year, of which nearly 350,000 are melanoma, which is often fatal. Treatment is challenging and often ineffective, with conventional chemotherapy playing a limited role in this context. These disadvantages can be overcome by the use of nanoparticles and may allow for the early detection and monitoring of neoplastic changes and determining the effectiveness of treatment. This article briefly reviews the present understanding of the characteristics of skin cancers, their epidemiology, and risk factors. It also outlines the possibilities of using nanotechnology, especially nanoparticles, for the transport of medicinal substances. Research over the previous decade on carriers of active substances indicates that drugs can be delivered more accurately to the tumor site, resulting in higher therapeutic efficacy. The article describes the application of liposomes, carbon nanotubes, metal nanoparticles, and polymer nanoparticles in existing therapies. It discusses the challenges encountered in nanoparticle therapy and the possibilities of improving their performance. Undoubtedly, the use of nanoparticles is a promising method that can help in the fight against skin cancer.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
17
|
Vishwas S, Paul SD, Singh D. An Insight on Skin Cancer About Different Targets With Update on Clinical Trials and Investigational Drugs. Curr Drug Deliv 2024; 21:852-869. [PMID: 37496132 DOI: 10.2174/1567201820666230726150642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 07/28/2023]
Abstract
Cancer is a diverse disease caused by transcriptional changes involving genetic and epigenetic features that influence a huge variety of genes and proteins. Skin cancer is a potentially fatal disease that affects equally men and women globally and is characterized by many molecular changes. Despite the availability of various improved approaches for detecting and treating skin cancer, it continues to be the leading cause of death throughout society. This review highlights a general overview of skin cancer, with an emphasis on epidemiology, types, risk factors, pathological and targeted facets, biomarkers and molecular markers, immunotherapy, and clinical updates of investigational drugs associated with skin cancer. The skin cancer challenges are acknowledged throughout this study, and the potential application of novel biomarkers of skin cancer formation, progression, metastasis, and prognosis is explored. Although the mechanism of skin carcinogenesis is currently poorly understood, multiple articles have shown that genetic and molecular changes are involved. Furthermore, several skin cancer risk factors are now recognized, allowing for efficient skin cancer prevention. There have been considerable improvements in the field of targeted treatment, and future research into additional targets will expand patients' therapeutic choices. In comparison to earlier articles on the same issue, this review focused on molecular and genetic factors and examined various skin cancer-related factors in depth.
Collapse
Affiliation(s)
- Suraj Vishwas
- Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
- Sanskar City College of Pharmacy, Rajnandgaon, Bhilai (C.G.) India
| | - Swarnali Das Paul
- Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai (C.G.) India
| | - Deepika Singh
- Shri Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
| |
Collapse
|
18
|
Kim S, Day CM, Song Y, Holmes A, Garg S. Innovative Topical Patches for Non-Melanoma Skin Cancer: Current Challenges and Key Formulation Considerations. Pharmaceutics 2023; 15:2577. [PMID: 38004557 PMCID: PMC10674480 DOI: 10.3390/pharmaceutics15112577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most prevalent malignancy worldwide, with approximately 6.3 million new cases worldwide in 2019. One of the key management strategies for NMSC is a topical treatment usually utilised for localised and early-stage disease owing to its non-invasive nature. However, the efficacy of topical agents is often hindered by poor drug penetration and patient adherence. Therefore, various research groups have employed advanced drug delivery systems, including topical patches to overcome the problem of conventional topical treatments. This review begins with an overview of NMSC as well as the current landscape of topical treatments for NMSC, specifically focusing on the emerging technology of topical patches. A detailed discussion of their potential to overcome the limitations of existing therapies will then follow. Most importantly, to the best of our knowledge, this work unprecedentedly combines and discusses all the current advancements in innovative topical patches for the treatment of NMSC. In addition to this, the authors present our insights into the key considerations and emerging trends in the construction of these advanced topical patches. This review is meant for researchers and clinicians to consider utilising advanced topical patch systems in research and clinical trials toward localised interventions of NMSC.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.K.); (C.M.D.); (Y.S.); (A.H.)
| |
Collapse
|
19
|
Chandra J, Hasan N, Nasir N, Wahab S, Thanikachalam PV, Sahebkar A, Ahmad FJ, Kesharwani P. Nanotechnology-empowered strategies in treatment of skin cancer. ENVIRONMENTAL RESEARCH 2023; 235:116649. [PMID: 37451568 DOI: 10.1016/j.envres.2023.116649] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In current scenario skin cancer is a serious condition that has a significant impact on world health. Skin cancer is divided into two categories: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Because of its significant psychosocial effects and need for significant investment in new technology and therapies, skin cancer is an illness of global health relevance. From the patient's perspective chemotherapy considered to be the most acceptable form of treatment. However, significant negatives of chemotherapy such as severe toxicities and drug resistance pose serious challenges to the treatment. The field of nanomedicine holds significant promise for enhancing the specificity of targeting neoplastic cells through the facilitation of targeted drug delivery to tumour cells. The integration of multiple therapeutic modalities to selectively address cancer-promoting or cell-maintaining pathways constitutes a fundamental aspect of cancer treatment. The use of mono-therapy remains prevalent in the treatment of various types of cancer, it is widely acknowledged in the academic community that this conventional approach is generally considered to be less efficacious compared to the combination treatment strategy. The employment of combination therapy in cancer treatment has become increasingly widespread due to its ability to produce synergistic anticancer effects, mitigate toxicity associated with drugs, and inhibit multi-drug resistance by means of diverse mechanisms. Nanotechnology based combination therapy represents a promising avenue for the development of efficacious therapies for skin cancer within the context of this endeavour. The objective of this article is to provide a description of distinct challenges for efficient delivery of drugs via skin. This article also provides a summary of the various nanotechnology based combinatorial therapy available for skin cancer with their recent advances. This review also focuses on current status of clinical trials of such therapies.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
20
|
El-Habashy SE, El-Kamel AH, Mehanna RA, Abdel-Bary A, Heikal L. Engineering tanshinone-loaded, levan-biofunctionalized polycaprolactone nanofibers for treatment of skin cancer. Int J Pharm 2023; 645:123397. [PMID: 37690657 DOI: 10.1016/j.ijpharm.2023.123397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Skin cancer is a challenging condition of the highest prevalence rate among other types of cancer. Thus, advancement of local therapeutic approaches for skin cancer is highly needed. Recently, the use of phytotherapeutics, like tanshinone IIA (Tan), as anticancer agents has become promising. In this work, we engineered Tan-loaded polycaprolactone nanofibers, biofunctionalized with levan and egg-lecithin (Tan@Lev/EL/PCL-NF) for local skin cancer therapy. Novel Tan@Lev/EL/PCL-NF were prepared using w/o-emulsion electrospinning, employing a 23-factorial design. Composite NF exhibited nanofiber diameter (365.56 ± 46.25 nm), favorable surface-hydrophilicity and tensile strength. Tan@Lev/EL/PCL-NF could achieve favorably controlled-release (100% in 5 days) and Tan skin-deposition (50%). In vitro anticancer studies verified prominent cytotoxicity of Tan@Lev/EL/PCL-NF on squamous-cell-carcinoma cell-line (SCC), with optimum cytocompatibility on fibroblasts. Tan@Lev/EL/PCL-NF exerted high apoptotic activity with evident nuclear fragmentation, G2/M-mitosis cell-cycle-arrest and antimigratory efficacy. In vivo antitumor activity was established in mice, confirming pronounced inhibition of tumor-growth (224.25 ± 46.89%) and relative tumor weight (1.25 ± 0.18%) for Tan@Lev/EL/PCL-NF compared to other groups. Tan@Lev/EL/PCL-NF afforded tumor-biomarker inhibition, upregulation of caspase-3 and knockdown of BAX and MKi67. Efficient anticancer potential was further confirmed by histomorphometric analysis. Our findings highlight the promising anticancer functionality of composite Tan@Lev/EL/PCL-NF, as efficient local skin cancer phytotherapy.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ahmed Abdel-Bary
- Department of Dermatology, Andrology, Venerology and Dermatopathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
21
|
Reolon JB, Saccol CP, Osmari BF, de Oliveira DB, Prado VC, Cabral FL, da Rosa LS, Rechia GC, Leal DBR, Cruz L. Karaya/Gellan-Gum-Based Bilayer Films Containing 3,3'-Diindolylmethane-Loaded Nanocapsules: A Promising Alternative to Melanoma Topical Treatment. Pharmaceutics 2023; 15:2234. [PMID: 37765203 PMCID: PMC10538082 DOI: 10.3390/pharmaceutics15092234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to incorporate nanocapsules containing 3,3'-diindolylmethane (DIM) with antitumor activity into a bilayer film of karaya and gellan gums for use in topical melanoma therapy. Nanocarriers and films were prepared by interfacial deposition of the preformed polymer and solvent casting methods, respectively. Incorporating DIM into nanocapsules increased its antitumor potential against human melanoma cells (A-375) (IC50 > 24.00 µg/mL free DIM × 2.89 µg/mL nanocapsules). The films were transparent, hydrophilic (θ < 90°), had homogeneous thickness and weight, and had a DIM content of 106 µg/cm2. Radical ABTS+ scavenger assay showed that the DIM films presented promising antioxidant action. Remarkably, the films showed selective bioadhesive potential on the karaya gum side. Considering the mechanical analyses, the nanotechnology-based films presented appropriate behavior for cutaneous application and controlled DIM release profile, which could increase the residence time on the application site. Furthermore, the nanofilms were found to increase the permeation of DIM into the epidermis, where melanoma develops. Lastly, the films were non-hemolytic (hemolysis test) and non-irritant (HET-CAM assay). In summary, the combination of karaya and gellan gum in bilayer films that contain nanoencapsulated DIM has demonstrated potential in the topical treatment of melanoma and could serve as a viable option for administering DIM for cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Jéssica Brandão Reolon
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Bárbara Felin Osmari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Daiane Britto de Oliveira
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Vinicius Costa Prado
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria 97105-9000, RS, Brazil; (F.L.C.); (D.B.R.L.)
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil;
| | | | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria 97105-9000, RS, Brazil; (F.L.C.); (D.B.R.L.)
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| |
Collapse
|
22
|
Tang S, Li R, Luo T, Huang T, Lu X, Wu X, Dong Y, Wu C, Xu K, Wang Y. Preparation of Gd-doped AuNBP@mSiO 2 nanocomposites for the MR imaging, drug delivery and chemo-photothermal synergistic killing of breast cancer cells. RSC Adv 2023; 13:23976-23983. [PMID: 37577100 PMCID: PMC10413050 DOI: 10.1039/d3ra03753c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Under near-infrared (NIR) light, gold nanobipyramids (AuNBPs) exhibit a high photothermal conversion rate and photothermal stability, making them ideal mediators for photothermal therapy (PTT). In this study, highly purified AuNBPs are prepared, followed by coating their surfaces with mesoporous silica (mSiO2). The obtained AuNBP@mSiO2 nanocomplex exhibits an ellipsoidal shape with a relatively large specific surface, pore diameter and pore volume. To achieve MRI guided chemo-photothermal therapy of breast cancer cells, the nanocomplex is further coupled with the MRI contrast agent Gd-DTTA and the chemotherapeutic drug doxorubicin (DOX). The results indicated that under NIR light irradiation, AuNBPs exhibited promising PTT effects, while the cumulative release rate of DOX was significantly enhanced to 81.40%. Moreover, the chemo-photothermal therapy approach effectively eradicated 4T1 breast cancer cells. This work successfully confirms that chemo-photothermal synergistic therapy is an effective tumor treatment strategy and demonstrates the potential application of AuNBP@mSiO2 as a nano-drug delivery platform. Additionally, it introduces new ideas for the integrated study of breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shiyi Tang
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Ruohan Li
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu 221002 China
| | - Tao Luo
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Tianhao Huang
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Xiaotong Lu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Xinyao Wu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Yulin Dong
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu 221002 China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu 221002 China
| |
Collapse
|
23
|
Bhattacharya S, Sharma S. Dacarbazine-encapsulated solid lipid nanoparticles for skin cancer: physical characterization, stability, in-vivo activity, histopathology, and immunohistochemistry. Front Oncol 2023; 13:1102269. [PMID: 37152046 PMCID: PMC10160449 DOI: 10.3389/fonc.2023.1102269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background This study examined the use of solid lipid nanoparticles (SLNs) to administer Dacarbazine (DTIC) to skin melanoma cells with minimal adverse effects. Melanoma is a tricky skin cancer to cure, and standard chemotherapy has many negative effects. Encapsulating DTIC in SLNs may allow the drug to target melanoma cells without harming healthy cells. The study developed and tested DTIC-loaded SLNs for skin melanoma treatment. Methods This study encapsulated Dacarbazine (DTIC) in solid lipid nanoparticles (SLNs). SLNs with reversed micelles were produced utilizing specified ratios of the surfactant Kolliphor® P188 and phosphatidylcholine. To track SLN drug localisation, gold nanoparticles were conjugated to the DTIC. Nanoparticle size and form were examined using DLS and TEM. These approaches ensured SLNs had the correct size and shape for drug delivery. Significant findings In the study, various parameters of the developed solid lipid nanoparticles (SLNs) were evaluated, including particle size, zeta potential, polydispersity index (PDI), entrapment efficacy, and cumulative drug permeation. The values for these parameters varied across the different formulations, with particle size ranging from 146 ± 4.71 nm to 715 ± 7.36 nm, zeta potential from -12.45 ± 2.78 mV to -30.78 ± 2.83 mV, PDI from 0.17 ± 0.013 to 0.51 ± 0.023, entrapment efficacy from 37.78 ± 2.78% to 87.45 ± 4.78%, and cumulative drug permeation from 117 ± 4.77 μg/cm2 to 275 ± 5.67 μg/cm2. To determine the optimal anti-cancer formulation, the DTIC-SLNs-8 nanoparticles were mixed with an optimized concentration of Gellan gum (0.01% w/v) and applied to DMBA-induced skin tumors in rats for six weeks, twice daily. Histopathology demonstrated that DTIC-SLNs-8-treated rats had less keratosis, inflammatory responses, and angiogenesis than free DTIC-treated rats. The development of SLNs may be a promising approach for melanoma treatment due to their improved drug retention over the skin. The optimised anti-cancer formulation DTIC-SLNs-8 showed improved efficacy with minimal side effects as compared to free DTIC.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Hajipur, Bihar, India
| |
Collapse
|
24
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
25
|
Prajapat VM, Mahajan S, Paul PG, Aalhate M, Mehandole A, Madan J, Dua K, Chellappan DK, Singh SK, Singh PK. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
26
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
27
|
Shinde P, Page A, Bhattacharya S. Ethosomes and their monotonous effects on Skin cancer disruption. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1087413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Skin cancer is one of the most prominent diseases, affecting all continents worldwide, and has shown a significant rise in mortality and prevalence. Conventional therapy, including chemotherapy and surgery, has a few drawbacks. The ethosomal systems would be thoroughly reviewed in this compilation, and they would be classified based on constituents: classical ethosomes, binary ethosomes, and transethosomes. Ethosomes systems are model lipid vesicular carriers with a substantial portion of ethanol. The impacts of ethosomal system components, preparation techniques, and their major roles in selecting the final characteristics of these nanocarriers are comprehensively reviewed in this chapter. The special techniques for ethosomes, including the cold approach, hot approach, injection method, mechanical dispersion method, and conventional method, are explained in this chapter. Various evaluation parameters of ethosomes were also explained. Furthermore, ethosomal gels, patches, and creams can be emphasised as innovative pharmaceutical drug formulations. Some hybrid ethosomal vesicles possessing combinatorial cancer therapy using nanomedicine could overcome the current drug resistance of specific cancer cells. Through the use of repurpose therapy, phytoconstituents may be delivered more effectively. A wide range of in vivo models are employed to assess their effectiveness. Ethosomes have provided numerous potential skin cancer therapeutic approaches in the future.
Collapse
|
28
|
Pinho JO, Matias M, Marques V, Eleutério C, Fernandes C, Gano L, Amaral JD, Mendes E, Perry MJ, Moreira JN, Storm G, Francisco AP, Rodrigues CMP, Gaspar MM. Preclinical validation of a new hybrid molecule loaded in liposomes for melanoma management. Biomed Pharmacother 2023; 157:114021. [PMID: 36399831 DOI: 10.1016/j.biopha.2022.114021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The aggressiveness of melanoma and lack of effective therapies incite the discovery of novel strategies. Recently, a new dual acting hybrid molecule (HM), combining a triazene and a ʟ-tyrosine analogue, was synthesized. HM was designed to specifically be activated by tyrosinase, the enzyme involved in melanin biosynthesis and overexpressed in melanoma. HM displayed remarkable superior antiproliferative activity towards various cancer cell lines compared with temozolomide (TMZ), a triazene drug in clinical use, that acts through DNA alkylation. In B16-F10 cells, HM induced a cell cycle arrest at phase G0/G1 with a 2.8-fold decrease in cell proliferation index. Also, compared to control cells, HM led to a concentration-dependent reduction in tyrosinase activity and increase in caspase 3/7 activity. To maximize the therapeutic performance of HM in vivo, its incorporation in long blood circulating liposomes, containing poly(ethylene glycol) (PEG) at their surface, was performed for passively targeting tumour sites. HM liposomes (LIP HM) exhibited high stability in biological fluids. Preclinical studies demonstrated its safety for systemic administration and in a subcutaneous murine melanoma model, significantly reduced tumour progression. In a metastatic murine melanoma model, a superior antitumour effect was also observed for mice receiving LIP HM, with markedly reduction of lung metastases compared to positive control group (TMZ). Biodistribution studies using 111In-labelled LIP HM demonstrated its ability for passively targeting tumour sites, thus correlating with the high therapeutic effect observed in the two experimental murine melanoma models. Overall, our proposed nanotherapeutic strategy was validated as an effective and safe alternative against melanoma.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carla Eleutério
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - Joana D Amaral
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Eduarda Mendes
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Jesus Perry
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Nuno Moreira
- Center for Neurosciences and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; University of Coimbra (Univ Coimbra), CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Biomaterial Science and Technology, University of Twente, Enschede, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Ana Paula Francisco
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
29
|
Falsafi SR, Wang Y, Ashaolu TJ, Sharma M, Rawal S, Patel K, Askari G, Javanmard SH, Rostamabadi H. Biopolymer Nanovehicles for Oral Delivery of Natural Anticancer Agents. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/06/2025]
Abstract
AbstractCancer is the second leading cause of death throughout the world. Nature‐inspired anticancer agents (NAAs) that are a gift of nature to humanity have been extensively utilized in the alleviation/prevention of the disease due to their numerous pharmacological activities. While the oral route is an ideal and common way of drug administration, the application of NAAs through the oral pathway has been extremely limited owing to their inherent features, e.g., poor solubility, gastrointestinal (GI) instability, and low bioavailability. With the development of nano‐driven encapsulation strategies, polymeric vehicles, especially those with natural origins, have demonstrated a potent platform, which can professionally shield versatile NAAs against GI barricades and safely deliver them to the site of action. In this review, the predicament of orally delivering NAAs and the encapsulation strategy solutions based on biopolymer matrices are summarized. Proof‐of‐concept in vitro/in vivo results are also discussed for oral delivery of these agents by various biopolymer vehicles, which can be found so far from the literature. Last but not the least, the challenges and new opportunities in the field are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Yong Wang
- School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang 550000 Viet Nam
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés Haute Ecole Provinciale de Hainaut‐Condorcet Département AgroBioscience et Chimie 11, Rue de la Sucrerie 7800 ATH Belgium
- Department of Applied Biology University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Shruti Rawal
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
- Department of Pharmaceutics Institute of Pharmacy Nirma University S.G. Highway, Chharodi Ahmedabad Gujarat 382481 India
| | - Kaushika Patel
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
| | - Gholamreza Askari
- Department of Community Nutrition School of Nutrition and Food Science Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center Cardiovascular Research Institute Isfahan University of Medical Isfahan 81746‐73461 Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| |
Collapse
|
30
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
31
|
Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022; 16:100364. [PMID: 35875197 PMCID: PMC9305626 DOI: 10.1016/j.mtbio.2022.100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Nanomedicines have shown a promising strategy for cancer therapy because of their higher safety and efficiency relative to small-molecule drugs, while the dense extracellular matrix (ECM) in tumors often acts as a physical barrier to hamper the accumulation and diffusion of nanoparticles, thus compromising the anticancer efficacy. To address this issue, two major strategies including degrading ECM components and inhibiting ECM formation have been adopted to enhance the therapeutic efficacies of nanomedicines. In this review, we summarize the recent progresses of tumor ECM modulating strategies for enhanced antitumor therapy of nanomedicines. Through degrading ECM components or inhibiting ECM formation, the accumulation and diffusion of nanoparticles in tumors can be facilitated, leading to enhanced efficacies of chemotherapy and phototherapy. Moreover, the ECM degradation can improve the infiltration of immune cells into tumor tissues, thus achieving strong immune response to reject tumors. The adoptions of these two ECM modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are discussed in detail. A conclusion, current challenges and outlook are then given. Extracellular matrix modulating strategies have been adopted to enhance the therapeutic efficacies of nanomedicines. Degrading extracellular matrix components or inhibiting extracellular matrix formation can improve the accumulation and diffusion of nanoparticles in tumors and the infiltration of immune cells into tumor tissues. The adoptions of two extracellular matrix modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are summarized.
Collapse
|
32
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
33
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
34
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
35
|
Novel Pharmaceutical Strategies for Enhancing Skin Penetration of Biomacromolecules. Pharmaceuticals (Basel) 2022; 15:ph15070877. [PMID: 35890174 PMCID: PMC9317023 DOI: 10.3390/ph15070877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Skin delivery of biomacromolecules holds great advantages in the systemic and local treatment of multiple diseases. However, the densely packed stratum corneum and the tight junctions between keratinocytes stand as formidable skin barriers against the penetration of most drug molecules. The large molecular weight, high hydrophilicity, and lability nature of biomacromolecules pose further challenges to their skin penetration. Recently, novel penetration enhancers, nano vesicles, and microneedles have emerged as efficient strategies to deliver biomacromolecules deep into the skin to exert their therapeutic action. This paper reviews the potential application and mechanisms of novel skin delivery strategies with emphasis on the pharmaceutical formulations.
Collapse
|
36
|
Esmailzadeh A, Shanei A, Attaran N, Hejazi SH, Hemati S. Sonodynamic Therapy Using Dacarbazine-Loaded AuSiO 2 Nanoparticles for Melanoma Treatment: An In-Vitro Study on the B16F10 Murine Melanoma Cell Line. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1131-1142. [PMID: 35307236 DOI: 10.1016/j.ultrasmedbio.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The use of nanoparticles as a sonosensitizer in cancer sonodynamic therapy has been gaining attention because of their great advantages in drug delivery applications. By conjugating chemotherapy agents with nanoparticles, we can develop a drug delivery platform, control drug release and improve the outcome of treatments. The in-vitro study described here evaluates the combination of AuSiO2 nanoparticles and dacarbazine (DTIC@AuSiO2) as a sonosensitizer for sonodynamic therapy of melanoma. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays revealed that the viability of B16F10 melanoma cells was significantly inhibited by the increase in apoptosis induction in treatment with DTIC@AuSiO2 nanoparticles under ultrasound exposure compared with treatment with the free DTIC or AuSiO2 nanoparticles. The sonosensitization activity of AuSiO2 nanoparticles and greater uptake of DTIC by tumor cells after loading in DTIC@AuSiO2 nanoparticles inhibited the proliferation of melanoma tumor cells effectively. In conclusion, the DTIC@AuSiO2 nanoparticles established in this study could represent a good drug delivery and sonosensitizer platform for use in melanoma sonodynamic therapy.
Collapse
Affiliation(s)
- Arman Esmailzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simin Hemati
- Department of Radiation Oncology, School of Medicine, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Biomimetic Nanoscale Materials for Skin Cancer Therapy and Detection. J Skin Cancer 2022; 2022:2961996. [PMID: 35433050 PMCID: PMC9010180 DOI: 10.1155/2022/2961996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Skin cancer has developed as one of the most common types of cancer in the world, with a significant impact on public health impact and the economy. Nanotechnology methods for cancer treatment are appealing since they allow for the effective transport of medicines and other biologically active substances to specific tissues while minimizing harmful consequences. It is one of the most significant fields of research for treating skin cancer. Various nanomaterials have been employed in skin cancer therapy. The current review will summarize numerous methods of treating and diagnosing skin cancer in the earliest stages. There are numerous skin cancer indicators available for the prompt diagnosis of this type of disease. Traditional approaches to skin cancer diagnosis are explored, as are their shortcomings. Electrochemical and optical biosensors for skin cancer diagnosis and management were also discussed. Finally, various difficulties concerning the cost and ease of use of innovative methods should be addressed and overcome.
Collapse
|
38
|
Hartmann T, Perron R, Razavi M. Utilization of Nanoparticles, Nanodevices, and Nanotechnology in the Treatment Course of Cutaneous Melanoma. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Hartmann
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Rebecca Perron
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Mehdi Razavi
- College of Medicine University of Central Florida Orlando FL 32827 USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster Department of Internal Medicine College of Medicine University of Central Florida Orlando FL 32827 USA
- Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
39
|
Skok K, Zidarič T, Orthaber K, Pristovnik M, Kostevšek N, Rožman KŽ, Šturm S, Gradišnik L, Maver U, Maver T. Novel Methacrylate-Based Multilayer Nanofilms with Incorporated FePt-Based Nanoparticles and the Anticancer Drug 5-Fluorouracil for Skin Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14040689. [PMID: 35456523 PMCID: PMC9024491 DOI: 10.3390/pharmaceutics14040689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Despite medical advances, skin-associated disorders continue to pose a unique challenge to physicians worldwide. Skin cancer is one of the most common forms of cancer, with more than one million new cases reported each year. Currently, surgical excision is its primary treatment; however, this can be impractical or even contradictory in certain situations. An interesting potential alternative could lie in topical treatment solutions. The goal of our study was to develop novel multilayer nanofilms consisting of a combination of polyhydroxyethyl methacrylate (PHEMA), polyhydroxypropyl methacrylate (PHPMA), sodium deoxycholate (NaDOC) with incorporated superparamagnetic iron–platinum nanoparticles (FePt NPs), and the potent anticancer drug (5-fluorouracil), for theranostic skin cancer treatment. All multilayer systems were prepared by spin-coating and characterised by atomic force microscopy, infrared spectroscopy, and contact angle measurement. The magnetic properties of the incorporated FePt NPs were evaluated using magnetisation measurement, while their size was determined using transmission electron microscopy (TEM). Drug release performance was tested in vitro, and formulation safety was evaluated on human-skin-derived fibroblasts. Finally, the efficacy for skin cancer treatment was tested on our own basal-cell carcinoma cell line.
Collapse
Affiliation(s)
- Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.K.); (K.Ž.R.); (S.Š.)
| | - Kristina Žužek Rožman
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.K.); (K.Ž.R.); (S.Š.)
| | - Sašo Šturm
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.K.); (K.Ž.R.); (S.Š.)
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Correspondence: (U.M.); (T.M.)
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Correspondence: (U.M.); (T.M.)
| |
Collapse
|
40
|
Jiang X, Zeng F, Yang X, Jian C, Zhang L, Yu A, Lu A. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater 2022; 141:102-113. [PMID: 34990813 DOI: 10.1016/j.actbio.2021.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Tumor local chemotherapy employing injectable hydrogel reservoirs is a promising platform to achieve precise drug administration. However, balanced injectability, pH-responsiveness and long-term hydrolysis resistance of self-healing hydrogels remain appealing challenges. Herein, a modular preassembly strategy combining host-guest interactions with dynamic acylhydrazone bonds, was exploited to fabricate injectable cellulose-based hydrogels (CAAs) dressed with self-healing properties, pH-responsiveness and hydrolytic degradation resistance. Attributed to the host-guest interaction between β-cyclodextrin (CD) and 1-adamantane (AD), the hydrogels exhibited injectability, self-healing properties (healing efficiency of 97.5%) and rapid recovery (< 10 min) without external stimuli in physiological environment. Moreover, the hydrogels equipped with dynamic acylhydrazone linkages underwent slow hydrolytic degradation (> 30 days) and pH-responsive behavior, endowing the hydrogels with precise spatiotemporal drug release administration. The in vivo application of CAA as a carrier was studied using doxorubicin (DOX) model drug, and the results shows that using CAA as DOX carrier not only greatly enhances the anti-tumor efficacy of DOX, but also reduced the side effects of DOX. STATEMENT OF SIGNIFICANCE: With the preassemble approach combining host-guest interactions with dynamic acylhydrazone bonds, this work demonstrated a multi-functional self-healing hydrogel as drug carrier developed by using natural polysaccharides, which offers a new avenue for the high-value utilization of biomass. The strategy demonstrated in the present work may also supply a pathway for the preparation and regulation of hydrogels as intelligent biomedicine materials.
Collapse
|
41
|
Chelladurai M, Margavelu G, Vijayakumar S, González-Sánchez ZI, Vijayan K, Sahadevan R. Preparation and characterization of amine-functionalized mupirocin-loaded zinc oxide nanoparticles: A potent drug delivery agent in targeting human epidermoid carcinoma (A431) cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
43
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
44
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|
45
|
Kadukkattil Ramanunny A, Singh SK, Wadhwa S, Gulati M, Kapoor B, Khursheed R, Kuppusamy G, Dua K, Dureja H, Chellappan DK, Jha NK, Gupta PK, Vishwas S. Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opin Drug Deliv 2021; 19:23-45. [PMID: 34913772 DOI: 10.1080/17425247.2022.2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application. AREAS COVERED The present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed. EXPERT OPINION NANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further.
Collapse
Affiliation(s)
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India.,Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (Set), Sharda University, Greater Noida, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
46
|
Yasmeen, Iqubal MK, Khan MA, Agarwal NB, Ali J, Baboota S. Nanoformulations-based advancement in the delivery of phytopharmaceuticals for skin cancer management. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Non-Surgical Treatments for Keratinocyte Carcinomas. Adv Ther 2021; 38:5635-5648. [PMID: 34652721 DOI: 10.1007/s12325-021-01916-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Skin cancer is the most common malignancy worldwide, comprising approximately 30% of all human tumors. In recent decades, the incidence of keratinocyte carcinomas, which include basal cell carcinoma and cutaneous squamous cell carcinoma, has been steadily increasing globally (Rogers et al. in JAMA Dermatol 151(10):1081-1086. https://doi.org/10.1001/jamadermatol.2015.1187 , 2015; Nehal and Bichakjian in N Engl J Med 379(4):363-374. https://doi.org/10.1056/nejmra1708701 , 2018). Most tumors are cured with surgical excision; however, some tumors are best treated with non-surgical approaches. Superficial tumors can often be cured with non-surgical methods whereas more advanced stage tumors may not be amenable to surgery. Additionally, surgical treatment may not be available for all populations depending on geographic location and accessibility to care. This article reviews commonly utilized nonsurgical options such as cryotherapy, photodynamic therapy, topical treatments, and radiation as well as systemic treatments including immunotherapies and chemotherapies.
Collapse
|
48
|
Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021; 11:754541. [PMID: 34712615 PMCID: PMC8547654 DOI: 10.3389/fonc.2021.754541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
49
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
50
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|