1
|
Wu M, Sheng J, Xie Q, Qi Y, Zhao Y, Zhang S. Recent advances in stimuli-responsive hyaluronic acid-based nanodelivery systems for cancer treatment: A review. Int J Biol Macromol 2025; 316:144357. [PMID: 40403810 DOI: 10.1016/j.ijbiomac.2025.144357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Cancer is a worldwide public health problem that poses a serious threat to human health. Drug therapy, as the mainstay of cancer treatment, relies on carriers for the in vivo delivery of chemotherapeutic or nucleic acid-based drugs. Traditional drug delivery carriers have shortcomings, however, including a lack of targeting, uncontrollable release of drugs, and low stability, potentially leading to toxic side effects and reducing their antitumor efficacy. Advances in nanotechnology and biomedicine have furthered the development of stimuli-responsive nanodelivery systems, which can be used to realize the accumulation and on-demand release of drugs and reduce the required drug dosage and toxicity. Hyaluronic acid (HA), as a natural anionic polysaccharide with excellent biocompatibility, an easily modified structure, and the ability to target cancer cells, is a US Food and Drug Administration-approved biomaterial that is ideal for the construction of stimuli-responsive nanodelivery systems. Herein, we review HA-based stimuli-responsive nanodelivery systems including various HA-modified structures. We summarize the feasibility and effectiveness of these systems in cancer therapy according to their roles as endogenous- (pH, redox, enzyme, and hypoxia) or exogenous- (light, temperature, ultrasound, and magnetism) stimuli-responsive systems. We also discuss the problems and challenges in the development of HA-based stimuli-responsive nanodelivery systems and the perspectives for future development. This review highlights the great potential of HA-based stimuli-responsive nanodelivery systems for use in precision cancer treatment and controlled drug release.
Collapse
Affiliation(s)
- Mengdi Wu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiabao Sheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Qihan Xie
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Wang Y, Hu X, Wang J, Zhang Y, Guo P, Lv Y, Ma G, Wei W, Wang S. Versatile PLGA-Based Drug Delivery Systems for Tumor Immunotherapy. SMALL METHODS 2025; 9:e2401623. [PMID: 39924767 DOI: 10.1002/smtd.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Indexed: 02/11/2025]
Abstract
Tumor immunotherapy, which utilizes the immune system to fight cancer, represents a revolutionary method for cancer treatment. Poly (lactic-co-glycolic acid) (PLGA) copolymer has emerged as a promising material for tumor immunotherapy due to its biocompatibility, biodegradability, and versatility in drug delivery. By tuning the size, shape, and surface properties of PLGA-based systems, researchers have improved their ability to align with the requirements for diverse tumor immunotherapy modalities. In this review, the basic properties of the PLGA materials are first introduced and further the principal forms of the PLGA systems for controlled release are summarized and delivery applications are targeted. In addition, recent advances in the use of PLGA delivery systems are highlighted to enhance antitumor immune responses in terms of tumor vaccines, immunogenic cell death-mediated immune responses, tumor microenvironment modulation, and combination immunotherapies. Finally, prospects for the future research and clinical translation of PLGA materials are proposed.
Collapse
Affiliation(s)
- Yishu Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoming Hu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghui Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yu Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilin Guo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Lv
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Kong S, Zhang J, Ding B, He C, Zhang X. Nanoplatform-based synergistic cancer Immuno-Chemodynamic therapy. Int J Pharm 2024; 667:124956. [PMID: 39550012 DOI: 10.1016/j.ijpharm.2024.124956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Immunotherapy has made excellent breakthroughs in the field of cancer treatments, but faces challenges with low immunogenicity of tumor cells and an immunosuppressive tumor microenvironment (ITME). The emerging chemodynamic therapy (CDT) based on the Fenton/Fenton-like reaction can induce immunogenic cell death (ICD) to enhance tumor immunogenicity, facilitating the transition from immune-cold to immune-hot tumors. Synergistic CDT and immunotherapy based on advanced nanotechnology have shown immense promise for improving therapeutic efficacy while minimizing side effects in cancer treatment. This review summarizes and discusses recent advances in the field, with the goal of designing a high-quality nanoplatform to enhance synergistic CDT in combination with immunotherapy and lay the foundation for its future clinical translation.
Collapse
Affiliation(s)
- Shuaizhi Kong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China; Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Jie Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
| | - Chuanchuan He
- Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, PR China.
| | - Xiaojuan Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
4
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
5
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zhao J, Zhang L, Li P, Liu S, Yu S, Chen Z, Zhu M, Xie S, Ling D, Li F. An Immunomodulatory Zinc-Alum/Ovalbumin Nanovaccine Boosts Cancer Metalloimmunotherapy Through Erythrocyte-Assisted Cascade Immune Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307389. [PMID: 38064201 PMCID: PMC10853754 DOI: 10.1002/advs.202307389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Indexed: 02/10/2024]
Abstract
Cancer therapeutic vaccines are powerful tools for immune system activation and eliciting protective responses against tumors. However, their efficacy has often been hindered by weak and slow immune responses. Here, the authors introduce an immunization strategy employing senescent erythrocytes to facilitate the accumulation of immunomodulatory zinc-Alum/ovalbumin (ZAlum/OVA) nanovaccines within both the spleen and solid tumors by temporarily saturating liver macrophages. This approach sets the stage for boosted cancer metalloimmunotherapy through a cascade immune activation. The accumulation of ZAlum/OVA nanovaccines in the spleen substantially enhances autophagy-dependent antigen presentation in dendritic cells, rapidly initiating OVA-specific T-cell responses against solid tumors. Concurrently, ZAlum/OVA nanovaccines accumulated in the tumor microenvironment trigger immunogenic cell death, leading to the induction of individualized tumor-associated antigen-specific T cell responses and increased T cell infiltration. This erythrocyte-assisted cascade immune activation using ZAlum/OVA nanovaccines results in rapid and robust antitumor immunity induction, holding great potential for clinical cancer metalloimmunotherapy.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusC DK‐8000Denmark
| | - Pin Li
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Shanbiao Liu
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Shiyi Yu
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Zheng Chen
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Mingjian Zhu
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Shangzhi Xie
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Daishun Ling
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringSchool of Biomedical EngineeringNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
- World Laureates Association (WLA) LaboratoriesShanghai201203P. R. China
| | - Fangyuan Li
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
- World Laureates Association (WLA) LaboratoriesShanghai201203P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|
7
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
8
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
9
|
Bashkeran T, Kamaruddin AH, Ngo TX, Suda K, Umakoshi H, Watanabe N, Nadzir MM. Niosomes in cancer treatment: A focus on curcumin encapsulation. Heliyon 2023; 9:e18710. [PMID: 37593605 PMCID: PMC10428065 DOI: 10.1016/j.heliyon.2023.e18710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Curcumin is widely used as a therapeutic drug for cancer treatment. However, its limited absorption and rapid excretion are the major therapeutic limitations to its clinical use. Using niosomes as a curcumin delivery system is a cheap, easy, and less toxic strategy for enhancing the absorption of curcumin by cells and delaying its excretion. Thus, there is a vital need to explore curcumin niosomes to configure the curcumin to suitably serve and aid current pharmacokinetics in treatments for cancer. To date, no comprehensive review has focused on the cytotoxic effects of curcumin niosomes on malignant cells. Thus, this review provides a critical analysis of the curcumin niosomes in cancer treatment, formulations of curcumin niosomes, characterizations of curcumin niosomes, and factors influencing their performance. The findings from this review article can strongly accelerate the understanding of curcumin niosomes and pave a brighter direction towards advances in the pharmaceutical, biotechnology, and medical industries.
Collapse
Affiliation(s)
- Thaaranni Bashkeran
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Azlina Harun Kamaruddin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Trung Xuan Ngo
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Kazuma Suda
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
10
|
Li C, Gan Y, Li Z, Fu M, Li Y, Peng X, Yang Y, Tian GB, Yang YY, Yuan P, Ding X. Neutrophil-inspired photothermo-responsive drug delivery system for targeted treatment of bacterial infection and endotoxins neutralization. Biomater Res 2023; 27:30. [PMID: 37061741 PMCID: PMC10105932 DOI: 10.1186/s40824-023-00372-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/26/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND P. aeruginosa, a highly virulent Gram-negative bacterium, can cause severe nosocomial infections, and it has developed resistance against most antibiotics. New therapeutic strategies are urgently needed to treat such bacterial infection and reduce its toxicity caused by endotoxin (lipopolysaccharide, LPS). Neutrophils have been proven to be able to target inflammation site and neutrophil membrane receptors such as Toll-like receptor-4 (TLR4) and CD14, and exhibit specific affinity to LPS. However, antibacterial delivery system based on the unique properties of neutrophils has not been reported. METHODS A neutrophil-inspired antibacterial delivery system for targeted photothermal treatment, stimuli-responsive antibiotic release and endotoxin neutralization is reported in this study. Specifically, the photothermal reagent indocyanine green (ICG) and antibiotic rifampicin (RIF) are co-loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP-ICG/RIF), followed by coating with neutrophil membrane to obtain antibacterial delivery system (NM-NP-ICG/RIF). The inflammation targeting properties, synergistic antibacterial activity of photothermal therapy and antibiotic treatment, and endotoxin neutralization have been studied in vitro. A P. aeruginosa-induced murine skin abscess infection model has been used to evaluate the therapeutic efficacy of the NM-NP-ICG/RIF. RESULTS Once irradiated by near-infrared lasers, the heat generated by NP-ICG/RIF triggers the release of RIF and ICG, resulting in a synergistic chemo-photothermal antibacterial effect against P. aeruginosa (~ 99.99% killing efficiency in 5 min). After coating with neutrophil-like cell membrane vesicles (NMVs), the nanoparticles (NM-NP-ICG/RIF) specifically bind to inflammatory vascular endothelial cells in infectious site, endowing the nanoparticles with an infection microenvironment targeting function to enhance retention time. Importantly, it is discovered for the first time that NMVs-coated nanoparticles are able to neutralize endotoxins. The P. aeruginosa murine skin abscess infection model further demonstrates the in vivo therapeutic efficacy of NM-NP-ICG/RIF. CONCLUSION The neutrophil-inspired antibacterial delivery system (NM-NP-ICG/RIF) is capable of targeting infection microenvironment, neutralizing endotoxin, and eradicating bacteria through a synergistic effect of photothermal therapy and antibiotic treatment. This drug delivery system made from FDA-approved compounds provides a promising approach to fighting against hard-to-treat bacterial infections.
Collapse
Affiliation(s)
- Chengnan Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yingying Gan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zongshao Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Mengjing Fu
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuzhen Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Xinran Peng
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yongqiang Yang
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Bao Tian
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Xin Ding
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
11
|
Gao M, Yang T, Qin W, Wang Q, Huang M, Peng H, Shao M, Yao W, Yi X, Sun G, He X. Cell Membrane-Anchoring Nano-Photosensitizer for Light-Controlled Calcium-Overload and Tumor-Specific Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204689. [PMID: 36180398 DOI: 10.1002/smll.202204689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Poor selectivity and unintended toxicity to normal organs are major challenges in calcium ion (Ca2+ ) overload tumor therapy. To address this issue, a cell membrane-anchoring nano-photosensitizer (CMA-nPS) is constructed for inducing tumor-specific Ca2+ overload through multistage endogenous Ca2+ homeostasis disruption under light guidance, i.e., the extracellular Ca2+ influx caused by cell membrane damage, followed by the intracellular Ca2+ imbalance caused by mitochondrial dysfunction. CMA-nPS is decorated by two types of functionalized cell membranes, the azide-modified macrophage cell membrane is used to conjugate the dibenzocyclooctyne-decorated photosensitizer, and the vesicular stomatitis virus glycoprotein (VSV-G)-modified NIH3T3 cell membrane is used to guide the anchoring of photosensitizer to the lung cancer cell membrane. The in vitro study shows that CMA-nPS mainly anchors on the cell membrane, and further causes membrane damage, mitochondrial dysfunction, as well as intracellular Ca2+ overload upon light irradiation. Synergistically enhanced antitumor efficiency is observed in vitro and in vivo. This study provides a new synergistic strategy for Ca2+ -overload-based cancer therapy, as well as a strategy for anchoring photosensitizer on the cell membrane, offering broad application prospects for the treatment of lung cancer.
Collapse
Affiliation(s)
- Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tianhao Yang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weiji Qin
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingyue Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wanqing Yao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230012, China
| |
Collapse
|
12
|
Wang F, Zheng A, Zhang D, Zou T, Xiao M, Chen J, Wen B, Wen Q, Wu X, Li M, Du F, Chen Y, Zhao Y, Shen J, Xiang S, Li J, Deng S, Zhang Z, Yi T, Xiao Z. Molecular profiling of core immune-escape genes highlights LCK as an immune-related prognostic biomarker in melanoma. Front Immunol 2022; 13:1024931. [PMID: 36341345 PMCID: PMC9630653 DOI: 10.3389/fimmu.2022.1024931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment is complicated and continuously evolving. This study was devoted to the identification of potential prognostic biomarkers based on the tumor microenvironment associated with immunotherapy for melanoma. This study integrates a couple of melanoma single cell and transcriptome sequencing datasets and performs a series of silico analyses as nicely as validation of molecular biology techniques. A core set of immune escape related genes was identified through Lawson et al. and the ImmPort portal. The differential proteins were identified through the cBioPortal database. Regression analysis was used to profile independent prognostic factors. Correlation with the level of immune cell infiltration was evaluated by multiple algorithms. The capacity of LCK to predict response was assessed in two independent immunotherapy cohorts. High LCK expression is associated with better prognosis, high levels of TILs and better clinical staging. Pathway analysis showed that high expression of LCK was significantly associated with activation of multiple tumor pathways as well as immune-related pathways. LCK expression tends to be higher in immunotherapy-responsive patients and those with lower IC50s treated with chemotherapeutic agents. RT-qPCR detected that LCK expression was significantly upregulated in melanoma cell lines. Single-cell transcriptome analysis showed that LCK was specifically highly expressed on T cells. CellChat analysis confirmed that LCK in C2 subpopulations and T cell subpopulations exerted immune promotion between cells by binding to CD8 receptors. In conclusion, LCK is a reliable biomarker for melanoma and will contribute to its immunotherapy.
Collapse
Affiliation(s)
- Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tao Zou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shixin Xiang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Southwest Medical University, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Zhang J, Sun X, Zhao X, Yang C, Shi M, Zhang B, Hu H, Qiao M, Chen D, Zhao X. Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharm Sin B 2022; 12:3694-3709. [PMID: 36176905 PMCID: PMC9513492 DOI: 10.1016/j.apsb.2022.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Amplifying "eat me signal" during tumor immunogenic cell death (ICD) cascade is crucial for tumor immunotherapy. Inspired by the indispensable role of adenosine triphosphate (ATP, a necessary "eat me signal" for ICD), a versatile ICD amplifier was developed for chemotherapy-sensitized immunotherapy. Doxorubicin (DOX), ATP and ferrous ions (Fe2+) were co-assembled into nanosized amplifier (ADO-Fe) through π‒π stacking and coordination effect. Meanwhile, phenylboric acid-polyethylene glycol-phenylboric acid (PBA-PEG-PBA) was modified on the surface of ADO-Fe (denoted as PADO-Fe) by the virtue of d-ribose unit of ATP. PADO-Fe could display active targetability against tumor cells via sialic acid/PBA interaction. In acidic microenvironment, PBA-PEG-PBA would dissociate from amplifier. Moreover, high H2O2 concentration would induce hydroxyl radical (·OH) and oxygen (O2) generation through Fenton reaction by Fe2+. DOX and ATP would be released from the amplifier, which could induce ICD effect and "ICD adjuvant" to amplify this process. Together with programmed death ligands 1 (PD-L1) checkpoint blockade immunotherapy, PADO-Fe could not only activate immune response against primary tumor, but also strong abscopal effect against distant tumor. Our simple and multifunctional ICD amplifier opens a new window for enhancing ICD effect and immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiufeng Zhao
- Department of Oncology, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Benzhuo Zhang
- Department of Neurology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang 157009, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding author. Tel.: +86 24 23986306.
| |
Collapse
|
14
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201734. [PMID: 35652198 PMCID: PMC9353475 DOI: 10.1002/advs.202201734] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Collapse
Affiliation(s)
- Zhilin Li
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoqin Lai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqin Fu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Long Ren
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Zhongwei Gu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelei Ma
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
15
|
Ahmad MZ, Alasiri AS, Alasmary MY, Abdullah MM, Ahmad J, Abdel Wahab BA, M Alqahtani SA, Pathak K, Mustafa G, Khan MA, Saikia R, Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: opportunities and challenges. Immunotherapy 2022; 14:957-983. [PMID: 35852105 DOI: 10.2217/imt-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is one of the most common causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and an appropriate therapeutic approach for all cancers are climacterics for a favorable prognosis. Targeting the immune system in breast cancer is already a clinical reality with notable successes, specifically with checkpoint blockade antibodies and chimeric antigen receptor T-cell therapy. However, there have been inevitable setbacks in the clinical application of cancer immunotherapy, including inadequate immune responses due to insufficient delivery of immunostimulants to immune cells and uncontrolled immune system modulation. Rapid advancements and new evidence have suggested that nanomedicine-based immunotherapy may be a viable option for treating breast cancer.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Ali S Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Medical Department, College of Medicine, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - M M Abdullah
- Advanced Materials & Nano-Research Centre, Department of Physics, Faculty of Science & Arts, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gulam Mustafa
- College of Pharmacy, Shaqra University, Ad-Dawadmi Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
16
|
Sun X, Zhang J, Xiu J, Zhao X, Yang C, Li D, Li K, Hu H, Qiao M, Chen D, Zhao X. A phenolic based tumor-permeated nano-framework for immunogenic cell death induction combined with PD-L1 immune checkpoint blockade. Biomater Sci 2022; 10:3808-3822. [PMID: 35670432 DOI: 10.1039/d2bm00455k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A critical obstacle for programmed death ligand 1 (PD-L1) immune checkpoint blockade immunotherapy is the insufficient T cell infiltration and low immunogenicity of tumor cells. Improving tumor immunogenicity through immunogenic cell death (ICD) can make tumor sensitive to PD-L1 checkpoint blockade immunotherapy. Herein, a phenolic based tumor-permeated nano-framework (EGPt-NF) was fabricated by cross-linking phenylboric acid modified platinum nanoparticles (PBA-Pt, ICD inducer) and epigallocatechin-3-O-gallate (EGCG, PD-L1 inhibitor) via pH-reversible borate ester. In particular, PBA-Pt could not only induce ICD cascade but also relieve tumor hypoxia. Consequently, EGPt-NF could effectively promote dendritic cell maturation and downregulate PD-L1 expression in tumor cells. Furthermore, EGPt-NF could also relieve tumor hypoxia to facilitate cytotoxic T lymphocyte infiltration and IFN-γ secretion. The synergistic effect of EGPt-NF could effectively improve tumor immunogenicity and amplify the therapeutic outcomes of cancer immunotherapy, resulting in a strong antitumor immune response in primary tumor and metastasis inhibition. Our simple approach expands the application of platinum-based drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Jingya Xiu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Xiufeng Zhao
- Department of Oncology, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, PR China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Xinling Road, No. 22, Shantou, PR China
| | - Dan Li
- Department of Pharmaceutics, Affiliated Central Hospital of Shenyang Medical College, Nanqi West Road, No. 5, Shenyang, PR China
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| |
Collapse
|
17
|
Shang Q, Dong Y, Su Y, Leslie F, Sun M, Wang F. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev 2022; 185:114308. [PMID: 35472398 DOI: 10.1016/j.addr.2022.114308] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy, which reprograms a patient's own immune system to eradicate cancer cells, has been demonstrated as a promising therapeutic strategy clinically. Immune checkpoint blockade (ICB) therapies, cytokine therapies, cancer vaccines, and chimeric antigen receptor (CAR) T cell therapies utilize immunotherapy techniques to relieve tumor immune suppression and/or activate cellular immune responses to suppress tumor growth, metastasis and recurrence. However, systemic administration is often hampered by limited drug efficacy and adverse side effects due to nonspecific tissue distribution of immunotherapeutic agents. Advancements in local scaffold-based delivery systems facilitate a controlled release of therapeutic agents into specific tissue sites through creating a local drug reservoir, providing a potent strategy to overcome previous immunotherapy limitations by improving site-specific efficacy and minimizing systemic toxicity. In this review, we summarized recent advances in local scaffold-assisted delivery of immunotherapeutic agents to reeducate the immune system, aiming to amplify anticancer efficacy and minimize immune-related adverse events. Additionally, the challenges and future perspectives of local scaffold-assisted cancer immunotherapy for clinical translation and applications are discussed.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yun Su
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, United States; Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21231, United States
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
18
|
Zhou Z, Liang H, Yang R, Yang Y, Dong J, Di Y, Sun M. Glutathione Depletion-Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of "Cold" Tumor. Angew Chem Int Ed Engl 2022; 61:e202202843. [PMID: 35238124 DOI: 10.1002/anie.202202843] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The abundant glutathione (GSH) in "cold" tumors weakens ferroptosis therapy and the immune response. Inspired by lipids, we fabricated cinnamaldehyde dimers (CDC) into lipid-like materials to form dimersomes capable of depleting GSH and delivering therapeutics to potentiate the ferroptosis and immunotherapy of breast cancer. The dimersomes exhibited superior storage stability for over one year. After reaching the tumor, they quickly underwent breakage in the cytosol owing to the conjugation of hydrophilic GSH on CDC by Michael addition, which not only triggered the drug release and fluorescence switch "ON", but also led to the depletion of intracellular GSH. Ferroptosis was significantly enhanced after combination with sorafenib (SRF) and elicited a robust immune response in vivo by promoting the maturation of dendritic cells and the priming of CD8+ T cells. As a result, the CDC@SRF dimersomes cured breast cancer in all the mice after four doses of administration.
Collapse
Affiliation(s)
- Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Huan Liang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ruoxi Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ying Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yongxiang Di
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| |
Collapse
|
19
|
Zhou Z, Liang H, Yang R, Yang Y, Dong J, Di Y, Sun M. Glutathione Depletion‐Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of “Cold” Tumor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| | - Huan Liang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| | - Ruoxi Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| | - Ying Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| | - Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| | - Yongxiang Di
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|