1
|
Rawat E, Sharma S, Vyas S, Alsaidan OA, Kapoor DU, Prajapati BG. Advances in alginate-based nanoformulations: Innovative and effective strategies for targeting and treating brain disorders. Int J Pharm 2025; 681:125851. [PMID: 40516772 DOI: 10.1016/j.ijpharm.2025.125851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/27/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Brain disorders, encompassing neurodegenerative conditions and intracranial neoplasms, present formidable obstacles in the realm of pharmacological delivery due to the existence of athe blood-brain barrier (BBB) and the restricted bioavailability of therapeutic agents. Alginate-derived nanoformulations have emerged as highly promising systems for drug delivery, offering attributes such as biocompatibility, regulated release, and improved targeting efficacies. This review investigates contemporary advancements in alginate-based nanoformulations, with a particular emphasis on their efficacy in surmounting obstacles to successful pharmacological delivery to the brain. Initially, we furnish a comprehensive overview of alginate, underscoring its pertinent properties, biomedical applications, and inherent limitations. Subsequently, the discourse progresses to strategies for nanoformulation, which encompass lipid-based, polymeric, and inorganic methodologies, with a focus on their benefits in relation to cerebral targeting. Moreover, this review entails the therapeutic potential of alginate-based nanoformulations in addressing significant neurological disorders, including Alzheimer's disease, Parkinson's disease, brain tumours, traumatic brain injury, epilepsy, and amyotrophic lateral sclerosis. By amalgamating cutting-edge nanotechnology with the distinctive properties of alginate, these formulations signify a promising pathway for the advancement of efficacious therapies aimed at brain targeting. Additionally, prospective research trajectories and challenges associated with the optimization of alginate-based nanocarriers for clinical applications are also elucidated.
Collapse
Affiliation(s)
- Ekta Rawat
- Manav Rachna University, Faridabad 121004 Haryana, India
| | - Suman Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022 Rajasthan, India
| | - Shweta Vyas
- Department of Pure & Applied Chemistry, University of Kota, Kota 324005 Rajasthan, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia 72341
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601 Gujarat, India.
| | - Bhupendra G Prajapati
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
Ljubimov VA, Sun T, Wang J, Li L, Wang PZ, Ljubimov AV, Holler E, Black KL, Kopeček J, Ljubimova JY, Yang J. Blood-brain barrier crossing biopolymer targeting c-Myc and anti-PD-1 activate primary brain lymphoma immunity: Artificial intelligence analysis. J Control Release 2025; 381:113611. [PMID: 40088978 PMCID: PMC12148312 DOI: 10.1016/j.jconrel.2025.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Primary Central Nervous System Lymphoma is an aggressive central nervous system neoplasm with poor response to pharmacological treatment, partially due to insufficient drug delivery across blood-brain barrier. In this study, we developed a novel therapy for this lymphoma by combining a targeted nanopolymer treatment with an immune checkpoint inhibitor antibody (anti-PD-1). A N-(2-hydroxypropyl)methacrylamide copolymer-based nanoconjugate was designed to block tumor cell c-Myc oncogene expression by antisense oligonucleotide. Angiopep-2 peptide was conjugated to the copolymer to facilitate nanodrug crossing of the blood-brain barrier. Systemically administered polymeric nanodrug, alone or in combination with immune checkpoint inhibitor antibody anti-PD-1, was tested in syngeneic mouse model of A20 intracranial brain lymphoma. There was no significant survival difference between saline- and free anti-PD-1-treated groups. However, significant survival advantage vs. saline was observed upon treatment with nanodrug bearing Angiopep-2, H6 (6 histidines for endosome escape), and c-Myc antisense alone and especially when it was combined with anti-PD-1 antibody. Animal survival after combined treatment was also significantly increased vs. free anti-PD-1. Artificial Intelligence-assisted analysis of gene expression database after RNA-seq of tumors was used to find novel immune pathways, molecular targets and the most effective multifunctional drugs together with future drug prediction for brain lymphoma in vivo model. Spectral flow cytometry and RNA-seq analysis revealed a robust activation of tumor infiltrating T lymphocytes with enhanced interferon γ signaling and polarization to M1-type macrophages in treated tumors, which was confirmed by immunofluorescence staining. In summary, a new effective blood-brain barrier crossing nano immuno therapeutic system was developed that effectively blocked tumor c-Myc acting in combination with immune checkpoint inhibitor anti-PD-1 to treat primary brain lymphoma. The treatment improved survival of tumor-bearing animals through activation of both the adaptive and innate immune responses.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Jiawei Wang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Lian Li
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Paul Z Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Alexander V Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States; Institut für Biophysik und Physikalische Biochemie Universität Regensburg, D-93040 Regensburg, Germany
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jindřich Kopeček
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Julia Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States.
| | - Jiyuan Yang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
3
|
Ljubimova JY, Holler E, Black KL, Ljubimov AV. Nanoparticles crossing blood-brain barrier need specific design for normal, neurodegenerative or cancerous brain conditions. Nanomedicine (Lond) 2024; 19:1863-1866. [PMID: 39109486 PMCID: PMC11457639 DOI: 10.1080/17435889.2024.2380241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Julia Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA90024, USA
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA90024, USA
- Institut für Biophysik und Physikalische Biochemie Universtität, Regensburg, D-93040, Regensburg, Germany
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA90048, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA90048, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA90048, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA90048, USA
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA90095, USA
| |
Collapse
|
4
|
Iqbal J, Courville E, Kazim SF, Kogan M, Schmidt MH, Bowers CA. Role of nanotechnology in neurosurgery: A review of recent advances and their applications. World Neurosurg X 2024; 22:100298. [PMID: 38455250 PMCID: PMC10918265 DOI: 10.1016/j.wnsx.2024.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Javed Iqbal
- School of Medicine, King Edward Medical University, Lahore, Pakistan
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Evan Courville
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Michael Kogan
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Meic H. Schmidt
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Christian A. Bowers
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| |
Collapse
|
5
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Utilizing Immunoinformatics to Target Brain Tumors; An Aid to Current Neurosurgical Practice. Neuromodulation 2022. [DOI: 10.5812/ipmn-131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Despite major advancements in the field, the current neurosurgical practice requires an interdisciplinary approach. It is known that surgical practice and other cancer-eliminating treatments can be combined for optimal results. However, recent attempts have failed to address many debilitating conditions, indicating an emergent need for novel interdisciplinary therapeutic approaches. Evidence Acquisition: We searched PubMed and Google Scholar for the keywords “immunoinformatics,” “in silico,” “neurology,” and “neurosurgery.” Without time restriction. Results: The immune system is versatile because it is involved in physiological brain function and affects the course of central nervous system (CNS) disease and infection. A novel approach combines neurosurgery and immunoinformatics for optimal results. For instance, brain tumors, such as glioblastoma multiforme (GBM), are still associated with a severely reduced survival of patients, and resection of tumors may provide little help. In silico approaches could help to identify molecular pathways and design immunotherapies for such conditions at a significantly increased speed compared to traditional vaccinology approaches. Conclusions: The neurosurgical practice could be affected by different infectious organisms. These organisms can be targeted by in silico vaccinology techniques. Here, we provide a brief overview of bioinformatics/immunoinformatics and discuss the possible role of immunoinformatics in neurosurgery. In light of the current Coronavirus disease-2019 (COVID-19) epidemic, projections for future studies are also included.
Collapse
|
7
|
Du X, Chen C, Yang L, Cui Y, Tan B. Bibliometric and visualized analysis of the application of nanotechnology in glioma. Front Pharmacol 2022; 13:995512. [PMID: 36188579 PMCID: PMC9520472 DOI: 10.3389/fphar.2022.995512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Glioma is the most prevalent malignant tumor in the central nervous system (CNS). Due to its highly invasive characteristics and the existence of the blood–brain barrier (BBB), the early diagnosis and treatment of glioma remains a major challenge in cancer. With the flourishing development of nanotechnology, targeted nano-therapy for glioma has become a hot topic of current research by using the characteristics of nanoparticles (NPs), such as it is easier to pass the blood–brain barrier, degradable, and aids controllable release of drugs in the brain. The purpose of this study is to visualize the scientific achievements and research trends of the application of nanotechnology in glioma. Methods: We searched the literature related to glioma nanotechnology on the Web of Science (WOS). The bibliometric and visual analysis was performed mainly using CiteSpace, VOSviewer, and R software, for countries/regions, authors, journals, references, and keywords associated with the field. Results: A total of 3,290 publications from 2012 to June 2022 were searched, and 2,041 works of literature were finally obtained according to the search criteria, the number of publications increasing year by year, with an average growth rate (AGR) of 15.22% from 2012 to 2021. China published 694 (20.99%), followed by the United States (480, 20.70%). The institution with the highest number of publications is Fudan Univ (111, 13.16%), and 80% of the top ten institutions belong to China. HUILE GAO (30) and XINGUO JIANG (30) both published the largest number of research studies. STUPP R (412) was the most cited author, followed by GAO HL (224). The degree of collaboration (DC) among countries/regions, research institutions, and authors is 23.37%, 86.23%, and 99.22%, respectively. International Journal of Nanomedicine published the largest number of publications (81), followed by Biomaterials (73). Biomaterials (1,420) was the most cited journal, followed by J Control Release (1,300). The high frequency of keywords was drug delivery (487), followed by nanoparticle (450), which indicates that nanoparticles (NPs) as a carrier for drug delivery is a hot topic of current research and a direction of continuous development. Conclusion: In recent years, nanotechnology has attracted much attention in the medical field. Cooperation and communication between countries/regions and institutions need to be strengthened in future research to promote the development of nanomedicine. Nanotherapeutic drug delivery systems (NDDS) can enhance drug penetration and retention in tumor tissues, improve drug targeting, and reduce the toxic side effects of drugs, which has great potential for the treatment of glioma and has become the focus of current research and future research trends in the treatment of glioma.
Collapse
Affiliation(s)
- Xue Du
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | | | - Lu Yang
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | - Yu Cui
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | - Bangxian Tan
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
- *Correspondence: Bangxian Tan,
| |
Collapse
|