1
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Moosavi SG, Rahiman N, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases. J Control Release 2025; 381:113641. [PMID: 40120689 DOI: 10.1016/j.jconrel.2025.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases (NDD) are characterized by the progressive loss of neurons and the impairment of cellular functions. Messenger RNA (mRNA) has emerged as a promising therapy for treating NDD, as it can encode missing or dysfunctional proteins and anti-inflammatory cytokines or neuroprotective proteins to halt the progression of these diseases. However, effective mRNA delivery to the central nervous system (CNS) remains a significant challenge due to the limited penetration of the blood-brain barrier (BBB). Lipid nanoparticles (LNPs) offer an efficient solution by encapsulating and protecting mRNA, facilitating transfection and intracellular delivery. This review discusses the pathophysiological mechanisms of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), ischemic stroke, spinal cord injury, and Friedreich's ataxia. Additionally, it explores the potential of LNP-mediated mRNA delivery as a therapeutic strategy for these diseases. Various approaches to overcoming BBB-related challenges and enhancing the delivery and efficacy of mRNA-LNPs are discussed, including non-invasive methods with strong potential for clinical translation. With advancements in artificial intelligence (AI)-guided mRNA and LNP design, targeted delivery, gene editing, and CAR-T cell therapy, mRNA-LNPs could significantly transform the treatment landscape for NDD, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Seyedeh Ghazal Moosavi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wang Y, Yin S, He D, Zhang Y, Dong Z, Tian Z, Li J, Chen F, Wang Y, Li M, He Q. Dual Strategies Based on Golgi Apparatus/Endoplasmic Reticulum Targeting and Anchoring for High-Efficiency siRNA Delivery and Tumor RNAi Therapy. ACS NANO 2025; 19:3791-3806. [PMID: 39801087 DOI: 10.1021/acsnano.4c14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Endolysosomal degradation of small interfering RNA (siRNA) significantly reduces the efficacy of RNA interference (RNAi) delivered by nonviral systems. Leveraging Golgi apparatus/endoplasmic reticulum (Golgi/ER) transport can help siRNA bypass the endolysosomal degradation pathway, but this approach may also result in insufficient siRNA release and an increased risk of Golgi/ER-mediated exocytosis. To address these challenges, we developed two distinct strategies using a nanocomplex of cell-penetrating poly(disulfide)s and chondroitin sulfate, which enhances targeted internalization, Golgi transport, and rapid cytoplasmic release of loaded siRNA. In the first strategy, monensin synergy was found to enhance RNAi by inhibiting both exocytosis and autophagic degradation. In the second strategy, a "directed sorting" approach based on KDEL peptide-mediated retrograde transport was introduced. By conjugation of the KDEL peptide to chondroitin sulfate, Golgi-to-ER transport was promoted, reducing "random" Golgi/ER-related exocytosis. These two strategies operate alternatively to achieve high-efficiency RNAi with a significant therapeutic potential. Notably, in a mouse melanoma model using anti-Bcl-2 siRNA, the strategies achieved tumor inhibition rates of 87.1 and 90.1%, respectively. These two strategies, based on "targeting" and "anchoring" Golgi/ER, provide potent solutions to overcome the challenges of cellular internalization, intracellular release, and exocytosis in efficient siRNA delivery.
Collapse
Affiliation(s)
- Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sheng Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujia Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhipeng Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiayu Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Fang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
4
|
Debisschop A, Bogaert B, Muntean C, De Smedt SC, Raemdonck K. Beyond chloroquine: Cationic amphiphilic drugs as endosomal escape enhancers for nucleic acid therapeutics. Curr Opin Chem Biol 2024; 83:102531. [PMID: 39369558 DOI: 10.1016/j.cbpa.2024.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Nucleic acid (NA) therapeutics have the potential to treat or prevent a myriad of diseases but generally require cytosolic delivery to be functional. NA drugs are therefore often encapsulated into delivery systems that mediate effective endocytic uptake by target cells, but unfortunately often display limited endosomal escape efficiency. This review will focus on the potential of repurposing cationic amphiphilic drugs (CADs) to enhance endosomal escape. In general terms, CADs are small molecules with one or more hydrophobic groups and a polar domain containing a basic amine. CADs have been reported to accumulate in acidified intracellular compartments (e.g., endosomes and lysosomes), integrate in cellular membranes and alter endosomal trafficking pathways, ultimately resulting in improved cytosolic release of the endocytosed cargo. As many CADs are widely used drugs, their repurposing offers opportunities for combination therapies with NAs.
Collapse
Affiliation(s)
- Aliona Debisschop
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Nguyen L, Nguyen TT, Kim JY, Jeong JH. Advanced siRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates. J Nanobiotechnology 2024; 22:745. [PMID: 39616384 PMCID: PMC11608496 DOI: 10.1186/s12951-024-03004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 12/06/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem, causing thousands of deaths each year worldwide. Although current medications can often inhibit viral replication and reduce the risk of liver carcinoma, several obstacles still hinder their effectiveness. These include viral resistance, prolonged treatment duration, and low efficacy in clearing viral antigens. To address these challenges in current HBV treatment, numerous approaches have been developed with remarkable success. Among these strategies, small-interfering RNA (siRNA) stands out as one of the most promising therapies for hepatitis B. However, naked siRNAs are vulnerable to enzymatic digestion, easily eliminated by renal filtration, and unable to cross the cell membrane due to their large, anionic structure. Therefore, effective delivery systems are required to protect siRNAs and maintain their functionality. In this review, we have discussed the promises of siRNA therapy in treating HBV, milestones in their delivery systems, and products that have entered clinical trials. Finally, we have outlined the future perspectives of siRNA-based therapy for HBV treatment.
Collapse
Affiliation(s)
- Linh Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Tiep Tien Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Ju-Yeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
6
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
7
|
Xu R, Xia C, He X, Hu C, Li Y, Zhang Y, Chen Z. siRNA Nanoparticle Dry Powder Formulation with High Transfection Efficiency and Pulmonary Deposition for Acute Lung Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54344-54358. [PMID: 39325628 DOI: 10.1021/acsami.4c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory syndrome, which was caused by diverse factors. The COVID-19 pandemic has resulted in a higher mortality rate of these conditions. Currently, effective treatments are lacking. Although siRNA nucleotide-based drugs are promising therapeutic approaches, their poor stability and inability to efficiently reach target cells limit their clinical translation. This study identified a peptide from known cell-penetrating peptides that can form an efficient anti-inflammatory complex with TNF-α siRNA, termed SAR6EW/TNF-α siRNA. This complex can effectively transport TNF-α siRNA into the cytoplasm and achieve potent gene silencing in vitro as well as in vivo. By using lactose and triarginine as coexcipients and optimizing the spray-drying process, a powder was produced with micrometer-scale spherical and porous structures, enhancing aerosol release and lung delivery efficiency. The dry powder formulation and process preserve the stability and integrity of the siRNA. When administered intratracheally to ALI model mice, the complex powder demonstrated specific pulmonary gene silencing activity and significantly reduced inflammation symptoms caused by ALI, suggesting a potential strategy for the clinical therapeutic approach of respiratory diseases.
Collapse
Affiliation(s)
- Rui Xu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenjie Xia
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiongxiong He
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Changhui Hu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinjia Li
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufeng Zhang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Zhipeng Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Schneider P, Zhang H, Simic L, Dai Z, Schrörs B, Akilli-Öztürk Ö, Lin J, Durak F, Schunke J, Bolduan V, Bogaert B, Schwiertz D, Schäfer G, Bros M, Grabbe S, Schattenberg JM, Raemdonck K, Koynov K, Diken M, Kaps L, Barz M. Multicompartment Polyion Complex Micelles Based on Triblock Polypept(o)ides Mediate Efficient siRNA Delivery to Cancer-Associated Fibroblasts for Antistromal Therapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404784. [PMID: 38958110 DOI: 10.1002/adma.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.
Collapse
Affiliation(s)
- Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Leon Simic
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Zhuqing Dai
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Barbara Schrörs
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Özlem Akilli-Öztürk
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jian Lin
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Feyza Durak
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - David Schwiertz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Gabriela Schäfer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jörn Markus Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Mustafa Diken
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| |
Collapse
|
9
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
10
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Merckx P, Conickx G, Blomme E, Maes T, Bracke KR, Brusselle G, De Smedt SC, Raemdonck K. Evaluating β 2-agonists as siRNA delivery adjuvants for pulmonary surfactant-coated nanogel inhalation therapy. Eur J Pharm Biopharm 2024; 197:114223. [PMID: 38367760 DOI: 10.1016/j.ejpb.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The lung is an attractive target organ for inhalation of RNA therapeutics, such as small interfering RNA (siRNA). However, clinical translation of siRNA drugs for application in the lung is hampered by many extra- and intracellular barriers. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel (nanogel) core coated with Curosurf®, a clinically used pulmonary surfactant. The surfactant shell was shown to markedly improve particle stability and promote intracellular siRNA delivery, both in vitro and in vivo. However, the full potential of siRNA nanocarriers is typically not reached as they are rapidly trafficked towards lysosomes for degradation and only a fraction of the internalized siRNA cargo is able to escape into the cytosol. We recently reported on the repurposing of widely applied cationic amphiphilic drugs (CADs) as siRNA delivery enhancers. Due to their physicochemical properties, CADs passively accumulate in the (endo)lysosomal compartment causing a transient permeabilization of the lysosomal membrane, which facilitates cytosolic drug delivery. In this work, we assessed a selection of cationic amphiphilic β2-agonists (i.e., salbutamol, formoterol, salmeterol and indacaterol) for their ability to enhance siRNA delivery in a lung epithelial and macrophage cell line. These drugs are widely used in the clinic for their bronchodilating effect in obstructive lung disease. As opposed to the least hydrophobic drugs salbutamol and formoterol, the more hydrophobic long-acting β2-agonist (LABA) salmeterol promoted siRNA delivery in both cell types for both uncoated and surfactant-coated nanogels, whereas indacaterol showed this effect solely in lung epithelial cells. Our results demonstrate the potential of both salmeterol and indacaterol to be repurposed as adjuvants for nanocarrier-mediated siRNA delivery to the lung, which could provide opportunities for drug combination therapy.
Collapse
Affiliation(s)
- Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Evy Blomme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Guy Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Bogaert B, Debisschop A, Ehouarne T, Van Eeckhoutte HP, De Volder J, Jacobs A, Pottie E, De Rycke R, Crabbé A, Mestdagh P, Lentacker I, Brusselle GG, Stove C, Verstraelen S, Maes T, Bracke KR, De Smedt SC, Raemdonck K. Selective Replacement of Cholesterol with Cationic Amphiphilic Drugs Enables the Design of Lipid Nanoparticles with Improved RNA Delivery. NANO LETTERS 2024; 24:2961-2971. [PMID: 38477058 DOI: 10.1021/acs.nanolett.3c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.
Collapse
Affiliation(s)
- Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Aliona Debisschop
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas Ehouarne
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joyceline De Volder
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - An Jacobs
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Riet De Rycke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, OncoRNAlab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sandra Verstraelen
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Lu Z, Zhao R, Li Y, Wang J, Guo J, Bai C, Chen J, Yang J, Geng Y, Zhang T, Wu Y, Jiao X, Wang Y, Yuan J, Zhang X. Smart antioxidant function enhancing (SAFE) nucleic acid therapy for ROS-related chronic diseases and comorbidities. Bioact Mater 2024; 31:509-524. [PMID: 37746661 PMCID: PMC10511342 DOI: 10.1016/j.bioactmat.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Reactive oxygen species (ROS)-mediated oxidative stress exacerbates chronic diseases such as organ damage and neurodegenerative disorders. The Keap1-Nrf2-ARE pathway is a widely distributed endogenous antioxidant system. However, ROS under redox homeostasis regulates a wide range of life activities. Therefore, smart scavenging of excess ROS under pathological conditions is essential to treat chronic diseases safely. This study reports a smart antioxidant function enhancement (SAFE) strategy. On-demand release of nucleic acid drugs in a pathological ROS environment smartly activates the endogenous antioxidant system, thereby smartly alleviating oxidative stress in an exogenous antioxidant-independent manner. Through structural modulation and ligand modification, we develop SAFE nanoparticles based on nanohybrid complexes (SAFE-complex) adapted to brain delivery of nucleic acid drugs. SAFE-complex with homogeneous monodisperse structure efficiently treat ROS-related neurodegenerative diseases while protecting the major organ from oxidative stress damage. Moreover, SAFE-complex can stabilize storage in the form of freeze-dried powder. These data indicate that SAFE nanoparticles hold promise for treating ROS-related chronic diseases and comorbidities through rational transformation.
Collapse
Affiliation(s)
- Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yi Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Jianze Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Chaobo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, PR China
| | - Jing Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, PR China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yiwan Geng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tianlu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yanyue Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiyue Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yining Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Junliang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
15
|
Tang X, Zhang J, Sui D, Yang Q, Wang T, Xu Z, Li X, Gao X, Yan X, Liu X, Song Y, Deng Y. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J Control Release 2023; 364:529-545. [PMID: 37949317 DOI: 10.1016/j.jconrel.2023.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
mRNA vaccines are attractive prospects for the development of DC-targeted vaccines; however, no clinical success has been realized because, currently, it is difficult to simultaneously achieve DC targeting and efficient endosomal/lysosomal escape. Herein, we developed a sialic acid (SA)-modified mRNA vaccine that simultaneously achieved both. The SA modification promoted DCs uptake of lipid nanoparticles (LNPs) by 2 times, >90% of SA-modified LNPs rapidly escaped from early endosomes (EEs), avoided entering lysosomes, achieved mRNA simultaneously translated in ribosomes distributed in the cytoplasm and endoplasmic reticulum (ER), significantly improved the transfection efficiency of mRNA LNPs in DCs. Additionally, we applied cleavable PEG-lipids in mRNA vaccines for the first time and found this conducive to cellular uptake and DC targeting. In summary, SA-modified mRNA vaccines targeted DCs efficiently, and showed significantly higher EEs/lysosomal escape efficiency (90% vs 50%), superior tumor treatment effect, and lower side effects than commercially formulated mRNA vaccines.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiongfen Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoya Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
16
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Van de Vyver T, Muntean C, Efimova I, Krysko DV, De Backer L, De Smedt SC, Raemdonck K. The alpha-adrenergic antagonist prazosin promotes cytosolic siRNA delivery from lysosomal compartments. J Control Release 2023; 364:142-158. [PMID: 37816483 DOI: 10.1016/j.jconrel.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/26/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The widespread use of small interfering RNA (siRNA) is limited by the multiple extra- and intracellular barriers upon in vivo administration. Hence, suitable delivery systems, based on siRNA encapsulation in nanoparticles or its conjugation to targeting ligands, have been developed. Nevertheless, at the intracellular level, these state-of-the-art delivery systems still suffer from a low endosomal escape efficiency. Consequently, the bulk of the endocytosed siRNA drug rapidly accumulates in the lysosomal compartment. We recently reported that a wide variety of cationic amphiphilic drugs (CADs) can promote small nucleic acid delivery from the endolysosomal compartment into the cytosol via transient induction of lysosomal membrane permeabilization. Here, we describe the identification of alternate siRNA delivery enhancers from the NIH Clinical Compound Collection that do not have the typical physicochemical properties of CADs. Additionally, we demonstrate improved endolysosomal escape of siRNA via a cholesterol conjugate and polymeric carriers with the α1-adrenergic antagonist prazosin, which was identified as the best performing delivery enhancer from the compound screen. A more detailed assessment of the mode-of-action of prazosin suggests that a different cellular phenotype compared to typical CAD adjuvants drives cytosolic siRNA delivery. As it has been described in the literature that prazosin also induces cancer cell apoptosis and promotes antigen cross-presentation in dendritic cells, the proof-of-concept data in this work provides opportunities for the repurposing of prazosin in an anti-cancer combination strategy with siRNA.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium; Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia.
| | - Lynn De Backer
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Jeong H, Kim H, Kim YA, Kim KS, Na K. Intranasal mRNA Delivery via Customized RNA-Polyplex Nanoparticles Enhancing Gene Expression through Photochemical Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38015621 DOI: 10.1021/acsami.3c12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Achieving effective mRNA expression in vivo requires careful selection of an appropriate delivery vehicle and route of administration. Among the various routes of administration, intranasal administration has received considerable attention due to its ability to induce potent immune responses. In this context, we designed a specialized cationic polymer tailored for delivery of mRNA into the nasal cavity. These polymers are designed with varying degrees of substitution in different amine groups to allow for identification of the most suitable amine moiety for effective mRNA delivery. We also incorporated a photosensitizer within the polymer structure that can trigger the generation of reactive oxygen species when exposed to light. The synthesized cationic polymer is complexed with anionic mRNA to form a polyplex. Illuminating these polyplexes with laser light enhances their escape from intracellular endosomes, stimulating mRNA translocation into the cytoplasm, followed by increased mRNA expression at the cellular level. Through intranasal administration to C57BL/6 mice, it was confirmed that these photoactive polyplexes effectively induce mRNA expression and activate immune responses in vivo using photochemical effects. This innovative design of a photoactivated cationic polymer presents a promising and reliable strategy to achieve efficient intranasal mRNA delivery. This approach has potential applications in the development of mRNA-based vaccines for both prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical-Chemical Engineering, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
- Department of Biotechnology, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Hongjae Kim
- Department of Biomedical-Chemical Engineering, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
- Department of Biotechnology, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Young A Kim
- Department of Biomedical-Chemical Engineering, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
- Department of Biotechnology, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
- Department of Biotechnology, the Catholic University of Korea, Jibongro 43, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
20
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
21
|
Byun J, Wu Y, Park J, Kim JS, Li Q, Choi J, Shin N, Lan M, Cai Y, Lee J, Oh YK. RNA Nanomedicine: Delivery Strategies and Applications. AAPS J 2023; 25:95. [PMID: 37784005 DOI: 10.1208/s12248-023-00860-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Delivery of RNA using nanomaterials has emerged as a new modality to expand therapeutic applications in biomedical research. However, the delivery of RNA presents unique challenges due to its susceptibility to degradation and the requirement for efficient intracellular delivery. The integration of nanotechnologies with RNA delivery has addressed many of these challenges. In this review, we discuss different strategies employed in the design and development of nanomaterials for RNA delivery. We also highlight recent advances in the pharmaceutical applications of RNA delivered via nanomaterials. Various nanomaterials, such as lipids, polymers, peptides, nucleic acids, and inorganic nanomaterials, have been utilized for delivering functional RNAs, including messenger RNA (mRNA), small interfering RNA, single guide RNA, and microRNA. Furthermore, the utilization of nanomaterials has expanded the applications of functional RNA as active pharmaceutical ingredients. For instance, the delivery of antigen-encoding mRNA using nanomaterials enables the transient expression of vaccine antigens, leading to immunogenicity and prevention against infectious diseases. Additionally, nanomaterial-mediated RNA delivery has been investigated for engineering cells to express exogenous functional proteins. Nanomaterials have also been employed for co-delivering single guide RNA and mRNA to facilitate gene editing of genetic diseases. Apart from the progress made in RNA medicine, we discuss the current challenges and future directions in this field.
Collapse
Affiliation(s)
- Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Namjo Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
23
|
Muntean C, Blondeel E, Harinck L, Pednekar K, Prakash J, De Wever O, Chain JL, De Smedt SC, Remaut K, Raemdonck K. Repositioning the antihistamine ebastine as an intracellular siRNA delivery enhancer. Int J Pharm 2023; 644:123348. [PMID: 37633539 DOI: 10.1016/j.ijpharm.2023.123348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Small interfering RNAs (siRNAs) are promising therapeutics for the treatment of human diseases via the induction of sequence-specific gene silencing. To be functional, siRNAs require cytosolic delivery into target cells. However, state-of-the-art delivery systems mediate cellular entry through endocytosis and suffer from ineffective endosomal escape, routing a substantial fraction of the siRNA towards the lysosomal compartment. Cationic amphiphilic drugs (CADs) have been described to improve cytosolic siRNA delivery by the transient induction of lysosomal membrane permeabilization. In this work, we evaluated ebastine, an antihistamine CAD, for its ability to enhance cytosolic release of siRNA in a non-small cell lung cancer model. In particular, we demonstrated that ebastine can improve the siRNA-mediated gene silencing efficiency of a polymeric nanogel by 40-fold, outperforming other CAD compounds. Additionally, ebastine substantially enhanced gene knockdown of a cholesterol-conjugated siRNA, in two-dimensional (2D) cell culture as well as in three-dimensional (3D) tumor spheroids. Finally, ebastine could strongly promote siRNA delivery of lipid nanoparticles (LNPs) composed of a pH-dependent switchable ionizable lipid and with stable PEGylation, in contrast to state-of-the-art LNP formulations. Altogether, we identified ebastine as a potent and versatile siRNA delivery enhancer in cancer cells, which offers opportunities for drug combination therapy in oncology.
Collapse
Affiliation(s)
- Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Eva Blondeel
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, UZ-Gent, 2RTP, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Laure Harinck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kunal Pednekar
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, 7500 AE Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, 7500 AE Enschede, The Netherlands
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, UZ-Gent, 2RTP, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jeanne Leblond Chain
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Ghent Light Microscopy (GLiM) Core, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
26
|
Xu D, Wan Y, Xie Z, Du C, Wang Y. Hierarchically Structured Hydroxyapatite Particles Facilitate the Enhanced Integration and Selective Anti-Tumor Effects of Amphiphilic Prodrug for Osteosarcoma Therapy. Adv Healthc Mater 2023; 12:e2202668. [PMID: 36857811 DOI: 10.1002/adhm.202202668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Efficient delivery of cargo into target cells is a formidable challenge in modern medicine. Despite the great promise of biomimetic hydroxyapatite (HA) particles in tissue engineering, their potential applications in bone tumor therapy, particularly their structure-function relationships in cargo delivery to target cells, have not yet been well explored. In this study, biomimetic multifunctional composite microparticles (Bm-cMPs) are developed by integrating an amphiphilic prodrug of curcumin with hierarchically structured HA microspheres (Hs-hMPs). Then, the effects of the hierarchical structure of vehicles on the integration and delivery of cargo as well as the anti-osteosarcoma (OS) effect of the composite are determined. Different hierarchical structures of the vehicles strongly influence the self-assembly behavior of the prodrug. The flake-like crystals of Hs-hMPs enable the highest loading capacity and enhance the stability of the cargo. Compared to the normal cells, OS cells exhibit 3.56-times better uptake of flake-like Hs-hMPs, facilitating the selective anti-tumor effect of the prodrug. Moreover, Bm-cMPs suppress tumor growth and metastasis by promoting apoptosis and inhibiting cell proliferation and tumor vascularization. The findings shed light on the potential application of Bm-cMPs and suggest a feasible strategy for developing an effective targeted therapy platform using hierarchically structured minerals for OS treatment.
Collapse
Affiliation(s)
- Dong Xu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yuxin Wan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhenze Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
28
|
Spencer AP, Leiro V, Pêgo AP. Unravelling the interactions of biodegradable dendritic nucleic acid carriers and neural cells. Biomater Sci 2023; 11:1499-1516. [PMID: 36602540 DOI: 10.1039/d2bm01114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomedicines based on nanoparticles as carriers of therapeutics are expected to drastically influence the future of healthcare. However, clinical translation of these technologies can be very challenging. The development process of nanoparticles for biological applications encompasses the analysis and understanding of several steps in vitro, before in vivo, and subsequent clinical applications, namely, the in-depth study of biosafety, cellular interaction, and intracellular trafficking. Recently, we proposed a new family of fully biodegradable PEG-GATGE (Poly(Ethylene Glycol)-Gallic Acid-Triethylene Glycol Ester) dendritic block copolymers to act as versatile delivery vectors in nanomedicine. These nanosystems showed great promise in complexing, protecting, and delivering nucleic acids to cells, forming nanoscaled complexes called dendriplexes. Due to these favourable features, in the present study, the dendriplexes' characterization was expanded and, in addition, their biocompatibility, cellular uptake, and cellular path in neuronal cells from the peripheral and central nervous systems were assessed. Our fully biodegradable dendritic nanosystem was found to be biocompatible in all the studied neuronal cells and mediates fast cellular interaction and endocytosis in both cell line tested and primary mouse cortical neurons. Nevertheless, the mechanism of dendriplex cell entry and intracellular fate was found to be different in cell lines and primary cultures. Dendriplexes' internalization was observed to be mediated by clathrin in ND7/23 and HT22 cells, while caveolin-mediated endocytosis occurred in primary mouse cortical neurons, in which, after internalization, dendriplexes were not colocalized with lysosomes or autophagosomes. Taken together, these results further point to PEG-GATGE dendrimers as biosafe delivery vectors of nucleic acids to neuronal cells in vitro, suggesting their feasibility as carriers in the context of nervous system applications. Furthermore, our data reinforce the importance of testing the performance of new vectors in different models to verify their potential applicability in vitro and/or in vivo.
Collapse
Affiliation(s)
- Ana Patrícia Spencer
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Victoria Leiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-343 Porto, Portugal
| |
Collapse
|
29
|
Huang X, Guo H, Wang L, Zhang Z, Zhang W. Biomimetic cell membrane-coated nanocarriers for targeted siRNA delivery in cancer therapy. Drug Discov Today 2023; 28:103514. [PMID: 36736580 DOI: 10.1016/j.drudis.2023.103514] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Small interfering RNA (siRNA) therapeutics for cancer are a focus of increasing research interest. However, the major obstacle to their clinical application is the targeted delivery of siRNA to cancer cells at desirable levels. Cell membrane-coated nanocarriers have the advantage of combining the properties of both cell membranes and nanoparticles (NPs). In this review, we highlight the most common RNAi therapeutics and the extracellular and intracellular barriers to siRNA delivery. Moreover, we discuss clinical applications of different cell membrane-coated nanocarriers for targeted siRNA delivery, including cancer cell membranes (CCMs), platelet membranes, erythrocyte membranes, stem cell membranes, exosome membranes, and hybrid membranes. Taken together, biomimetic cell membrane-coated nanotechnology is a promising strategy for targeted siRNA delivery for cancer treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
30
|
Shannon SR, Ben-Akiva E, Green JJ. Approaches towards biomaterial-mediated gene editing for cancer immunotherapy. Biomater Sci 2022; 10:6675-6687. [PMID: 35858470 PMCID: PMC10112382 DOI: 10.1039/d2bm00806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapies are transforming treatment modalities for many human diseases and disorders, including those in ophthalmology, oncology, and nephrology. To maximize the clinical efficacy and safety of these treatments, consideration of both delivery materials and cargos is critical. In consideration of the former, a large effort has been placed on transitioning away from potentially immunoreactive and toxic viral delivery mechanisms towards safer and highly tunable nonviral delivery mechanisms, including polymeric, lipid-based, and inorganic carriers. This change of paradigm does not come without obstacles, as efficient non-viral delivery is challenging, particularly to immune cells, and has yet to see clinical translation breakthroughs for gene editing. This mini-review describes notable examples of biomaterial-based gene delivery to immune cells, with emphasis on recent in vivo successes. In consideration of delivery cargos, clustered regularly interspaced palindromic repeat (CRISPR) technology is reviewed and its great promise in the field of immune cell gene editing is described. This mini-review describes how leading non-viral delivery materials and CRISPR technology can be integrated together to advance its clinical potential for therapeutic gene transfer to immune cells to treat cancer.
Collapse
Affiliation(s)
- Sydney R Shannon
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Elana Ben-Akiva
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
31
|
Wu S, Liu C, Bai S, Lu Z, Liu G. Broadening the Horizons of RNA Delivery Strategies in Cancer Therapy. Bioengineering (Basel) 2022; 9:576. [PMID: 36290544 PMCID: PMC9598637 DOI: 10.3390/bioengineering9100576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
RNA-based therapy is a promising and innovative strategy for cancer treatment. However, poor stability, immunogenicity, low cellular uptake rate, and difficulty in endosomal escape are considered the major obstacles in the cancer therapy process, severely limiting the development of clinical translation and application. For efficient and safe transport of RNA into cancer cells, it usually needs to be packaged in appropriate carriers so that it can be taken up by the target cells and then be released to the specific location to perform its function. In this review, we will focus on up-to-date insights of the RNA-based delivery carrier and comprehensively describe its application in cancer therapy. We briefly discuss delivery obstacles in RNA-mediated cancer therapy and summarize the advantages and disadvantages of different carriers (cationic polymers, inorganic nanoparticles, lipids, etc.). In addition, we further summarize and discuss the current RNA therapeutic strategies approved for clinical use. A comprehensive overview of various carriers and emerging delivery strategies for RNA delivery, as well as the current status of clinical applications and practice of RNA medicines are classified and integrated to inspire fresh ideas and breakthroughs.
Collapse
Affiliation(s)
- Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
32
|
Bogaert B, Sauvage F, Guagliardo R, Muntean C, Nguyen VP, Pottie E, Wels M, Minnaert AK, De Rycke R, Yang Q, Peer D, Sanders N, Remaut K, Paulus YM, Stove C, De Smedt SC, Raemdonck K. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J Control Release 2022; 350:256-270. [PMID: 35963467 PMCID: PMC9401634 DOI: 10.1016/j.jconrel.2022.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.
Collapse
Affiliation(s)
- Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Félix Sauvage
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Mike Wels
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Riet De Rycke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, 9052 Ghent, Belgium.
| | - Qiangbing Yang
- Experimental Cardiology Laboratory, Regenerative Medicine Center Utrecht and Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, Utrecht, the Netherlands.
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel.
| | - Niek Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Christophe Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
33
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
35
|
Lan T, Que H, Luo M, Zhao X, Wei X. Genome editing via non-viral delivery platforms: current progress in personalized cancer therapy. Mol Cancer 2022; 21:71. [PMID: 35277177 PMCID: PMC8915502 DOI: 10.1186/s12943-022-01550-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is a severe disease that substantially jeopardizes global health. Although considerable efforts have been made to discover effective anti-cancer therapeutics, the cancer incidence and mortality are still growing. The personalized anti-cancer therapies present themselves as a promising solution for the dilemma because they could precisely destroy or fix the cancer targets based on the comprehensive genomic analyses. In addition, genome editing is an ideal way to implement personalized anti-cancer therapy because it allows the direct modification of pro-tumor genes as well as the generation of personalized anti-tumor immune cells. Furthermore, non-viral delivery system could effectively transport genome editing tools (GETs) into the cell nucleus with an appreciable safety profile. In this manuscript, the important attributes and recent progress of GETs will be discussed. Besides, the laboratory and clinical investigations that seek for the possibility of combining non-viral delivery systems with GETs for the treatment of cancer will be assessed in the scope of personalized therapy.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Sichuan, 610041, Chengdu, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China.
| |
Collapse
|