1
|
Li Y, Wang X, Ye F, Hong X, Chen Y, Huang J, Liu J, Huang X, Liang L, Guo Y, Shi F, Zhu K, Lin L, Huang W. Acid-responsive engineered bacteria with aberrant In-Situ anti-PD-1 expression for post-ablation immunotherapy of hepatocellular carcinoma. Biomed Pharmacother 2025; 186:118046. [PMID: 40209305 DOI: 10.1016/j.biopha.2025.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Local thermal ablation (TA) can not only reduce the tumor burden of hepatocellular carcinoma (HCC) but also stimulate the host anti-tumor immune response, offering a promising avenue for combination with immune checkpoint blockade (ICB). However, tumor recurrence and ICB resistance are associated with residual tumor masses caused by incomplete TA treatment. Thus, adjuvant therapy that can accurately eliminate residual HCC tumors post-TA is expected to improve prognosis. Bacteria-mediated tumor therapy has showed promising potential for tumor-targeting ability and in situ therapeutic proteins expression in the tumor. Here, we presented a kind of nonpathogenic engineered bacteria (named PD-1@EcM) for the potent tumor-targeting and acidic-controlled production of fusion protein comprising a mouse-derived anti-PD-1 single-chain variable fragment (scFv). A single injection of this engineered bacteria demonstrated a significantly tumor inhibition and extended survival in advanced murine primary and metastatic post-TA treatment HCC model. We observed that this engineered bacteria elicited an enhanced antitumour immune response resulting in an extensive priming of activated CD8+ T cells and polarization of tumor-associated macrophage from M2 phenotype to M1 phenotype. Taken together, this work provides a novel strategy to address major challenges in TA therapy and expand the current applications of bacteria-based platforms for precision therapy.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Feilong Ye
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Jiabai Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Xinkun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Licong Liang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern medical university, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China.
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China.
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China.
| |
Collapse
|
2
|
Kuhl GC, Tangney M. Bacterial-Mediated In Situ Engineering of Tumour-Associated Macrophages for Cancer Immunotherapy. Cancers (Basel) 2025; 17:723. [PMID: 40075571 PMCID: PMC11899205 DOI: 10.3390/cancers17050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumour-associated macrophages (TAMs) are critical components of the tumour microenvironment (TME), significantly influencing cancer progression and treatment resistance. This review aims to explore the innovative use of engineered bacteria to reprogram TAMs, enhancing their anti-tumour functions and improving therapeutic outcomes. METHODS We conducted a systematic review following a predefined protocol. Multiple databases were searched to identify relevant studies on TAMs, their phenotypic plasticity, and the use of engineered bacteria for reprogramming. Inclusion and exclusion criteria were applied to select studies, and data were extracted using standardised forms. Data synthesis was performed to summarise the findings, focusing on the mechanisms and therapeutic benefits of using non-pathogenic bacteria to modify TAMs. RESULTS The review summarises the findings that engineered bacteria can selectively target TAMs, promoting a shift from the tumour-promoting M2 phenotype to the tumour-fighting M1 phenotype. This reprogramming enhances pro-inflammatory responses and anti-tumour activity within the TME. Evidence from various studies indicates significant tumour regression and improved immune responses following bacterial therapy. CONCLUSIONS Reprogramming TAMs using engineered bacteria presents a promising strategy for cancer therapy. This approach leverages the natural targeting abilities of bacteria to modify TAMs directly within the tumour, potentially improving patient outcomes and offering new insights into immune-based cancer treatments. Further research is needed to optimise these methods and assess their clinical applicability.
Collapse
Affiliation(s)
- Gabriela Christina Kuhl
- Cancer Research @UCC, College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Mark Tangney
- Cancer Research @UCC, College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
3
|
Zhu D, Pan W, Li H, Hua J, Zhang C, Zhao K. Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy. ACS NANO 2025; 19:5077-5109. [PMID: 39874477 DOI: 10.1021/acsnano.4c15237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including Escherichia coli, Salmonella, and Listeria monocytogenes, along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME). These bacteria and their derivatives possess intrinsic properties that stimulate the immune system, enhancing both innate and adaptive immune responses to further amplify therapeutic effects. The ability of bacteria to naturally accumulate in hypoxic tumor regions and their versatility in genetic modifications allow for tailored drug delivery strategies that synergistically enhance the effectiveness of chemotherapy, immunotherapy, and targeted therapies. This review comprehensively examines the fundamental principles of bacterial therapy, focusing on the strategies employed for bacterial engineering, drug loading, and the use of bacteria and their derivatives in targeted tumor therapy. It also discusses the challenges faced in optimizing bacterial delivery systems, such as safety concerns, unintended immune responses, and scalability for clinical applications. By exploring these aspects, this review provides a theoretical framework for improving bacterial-based drug delivery systems, contributing to the development of more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Denghui Zhu
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
| | - Wendi Pan
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
| | - Heqi Li
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Heilongjiang Qiqihar 161006, China
| | - Jingsheng Hua
- Department of Hematology, Municipal Hospital Affiliated to Taizhou University, Zhejiang Taizhou 318000, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Heilongjiang Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
- Department of Hematology, Municipal Hospital Affiliated to Taizhou University, Zhejiang Taizhou 318000, China
| |
Collapse
|
4
|
Zhu Z, Chu Z, Fei F, Wu C, Fei Z, Sun Y, Chen Y, Lu P. Neo-BCV: A Novel Bacterial Liquid Complex Vaccine for Enhancing Dendritic Cell-Mediated Immune Responses Against Lung Cancer. Vaccines (Basel) 2025; 13:64. [PMID: 39852843 PMCID: PMC11768841 DOI: 10.3390/vaccines13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND In the past decade, immunotherapy has become a major choice for the treatment of lung cancer, yet its therapeutic efficacy is still relatively limited due to the various immune escape mechanisms of tumors. Based on this, we introduce Neo-BCV, a novel bacterial composite vaccine designed to enhance immune responses against lung cancer. METHODS We investigated the immune enhancing effect of Neo-BCV through in vivo and in vitro experiments, including flow cytometry, RNA-seq, and Western blot. RESULTS We have demonstrated that Neo-BCV can promote Dendritic cells (DCs) maturation and induce DCs differentiation into pro-inflammatory subgroups, significantly enhancing cytotoxic T lymphocyte (CTL)-mediated anti-tumor responses. Transcriptome sequencing revealed that Neo-BCV exerts its effects by specifically inhibiting the JAK2-STAT3 signaling pathway, a crucial regulator of cancer progression, metabolism, and inflammation. Moreover, Neo-BCV significantly improved the immune microenvironment in both tumor and spleen tissues without inducing notable toxic effects in major organs. CONCLUSIONS These findings highlight Neo-BCV's potential as a safe and effective therapeutic strategy, offering a novel avenue for clinical translation in lung cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Chen
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; (Z.Z.); (Z.C.); (F.F.); (C.W.); (Z.F.); (Y.S.)
| | - Peihua Lu
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; (Z.Z.); (Z.C.); (F.F.); (C.W.); (Z.F.); (Y.S.)
| |
Collapse
|
5
|
Manole S, Nguyen DH, Min JJ, Zhou S, Forbes N. Setting "cold" tumors on fire: Cancer therapy with live tumor-targeting bacteria. MED 2025; 6:100549. [PMID: 39689707 DOI: 10.1016/j.medj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy with checkpoint blockade has shown remarkable efficacy in many patients with a variety of different types of cancer. However, the majority of patients with cancer have yet to benefit from this revolutionary therapy. Studies have shown that checkpoint blockade works best against immune-inflamed tumors characterized by the presence of tumor-infiltrating lymphocytes (TILs). In this review, we summarize studies using live tumor-targeting bacteria to treat cancer and describe various strategies to engineer the tumor-targeting bacteria for maximized immunoregulatory effects. We propose that tumor-localized infections by such engineered bacteria can create an immune microenvironment in favor of a more effective antitumor immunity with or without other therapies, such as immune checkpoint blockade (ICB). Finally, we will briefly outline some exemplary oncology clinical trials involving ICB plus live therapeutic bacteria, with a focus on their ability to modulate antitumor immune responses.
Collapse
Affiliation(s)
- Simin Manole
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam 58128, South Korea.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Neil Forbes
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA; Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
6
|
Anwer M, Bhaliya K, Munn A, Wei MQ. Bacterial ghosts: A breakthrough approach to cancer vaccination. Biomed Pharmacother 2025; 182:117766. [PMID: 39700871 DOI: 10.1016/j.biopha.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer is a devastating disease worldwide with high mortality rates and is a foremost concern for society. Immunotherapy has emerged as a promising strategy for treating cancer, harnessing the power of immune system to recognize and kill tumor cells. Bacterial ghosts (BGs), a novel platform in cancer vaccination, are suitable for personalized and effective immunotherapeutic interventions. BG are empty bacterial cell envelopes generated through a controlled lysis process, leaving behind empty but structurally intact cell membranes. BGs have been used as vaccine adjuvants and vaccine delivery vehicles worldwide. They possess inherent immunogenicity, enabling them to be used for controlled release and targeted drug delivery. Recently, the potential of BGs has been explored for tumor inhibition, making them suitable carrier vehicles. This review highlights cancer immunotherapy, methods of BG preparation, characterization of BGs, the interaction of BGs with the immune system, and research progress on BG-based cancer vaccines with future insights.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia.
| | - Krupa Bhaliya
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Alan Munn
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Ming Q Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| |
Collapse
|
7
|
Duan Z, Song J, Zhang M, Zhang Z, Li N, Fu Y, Sun Z, Lu T, Li S, Cao M, Wang Q, Sun C, Wang X. Effects of Yersinia pseudotuberculosis outer membrane vesicles on Pseudomonas aeruginosa antigens immune response. PLoS One 2024; 19:e0310652. [PMID: 39705292 PMCID: PMC11661608 DOI: 10.1371/journal.pone.0310652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/04/2024] [Indexed: 12/22/2024] Open
Abstract
Outer membrane vesicles (OMVs) are immunogenic self-adjuvanting vesicles produced by Gram-negative bacteria such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis. While the effects of OMVs on different antigens immune stimulation are not clear. In this study, we constructed recombinant Yersinia pseudotuberculosis ΔlpxL strain,with pBlue-PcrV and pBlue-OprF/I, and then purified ΔlpxL rOMVPcrV (rOMVyp2P)and ΔlpxL rOMVOprF/I (rOMVyp2F) and analyzed its effect on immune response and protection against Pseudomonas aeruginosa PAO1 infection. The results showed that OMV assists in eliciting similar humoral immune responses to PcrV and OprF/I antigens. ΔlpxL rOMVPcrV and ΔlpxL rOMVOprF/I elicited Th1/Th2 balanced immune response, and higher IgM and IgA antibodies.However, there are differences in immune protection for the pulmonary. The survival rate of mice in ΔlpxL rOMVPcrV group was 20%, which was significantly better than that in ΔlpxL rOMVOprF/I group. ΔlpxL OMVPcrV is better cooperation for Pseudomonas immune protection in lung.
Collapse
Affiliation(s)
- Zhongxu Duan
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingqi Song
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mingru Zhang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhe Zhang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqin Fu
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Tiancheng Lu
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Siyuan Li
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mingyue Cao
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qingyu Wang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Chunhui Sun
- Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiuran Wang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| |
Collapse
|
8
|
Huang Y, Piao L, Liu X. Enhancing Tumor-Specific immunity with SL dacA: A attenuated Salmonella-mediated c-di-AMP delivery system targeting the STING pathway. Int J Pharm 2024; 666:124759. [PMID: 39332458 DOI: 10.1016/j.ijpharm.2024.124759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The STING agonist stimulates an anti-tumor immune response by activating T cells, but its limited tumor-targeting specificity poses risks of cytokine storms or autoimmune reactions. Conversely, attenuated Salmonella typhimurium △ppGpp (S.t△ppGpp) exhibits superior tumor-targeting specificity and potent anti-tumor immunogenicity. However, the anti-tumor effects of Salmonella carrying STING agonists remain underexplored. In this study, we engineered a strain called SLdacA, utilizing S.t△ppGpp as a carrier, to produce c-di-AMP. This engineered strain effectively enhances dendritic cell maturation and M1-type macrophage polarization by inducing type I interferon production, thereby recruiting and activating effector T cells against tumor progression. This process is regulated by the STING/type I interferon pathway. Our findings indicate that utilizing S.t△ppGpp as a delivery vehicle for STING agonists holds promise as a strategy for synergistic bacterial-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuanjia Huang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Linghua Piao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Science, Hainan Medical University, No. 3 Xueyuan Avenue, Haikou 57119, China.
| | - Xiande Liu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.
| |
Collapse
|
9
|
Li X, Lai Y, Wan G, Zou J, He W, Yang P. Approved natural products-derived nanomedicines for disease treatment. Chin J Nat Med 2024; 22:1100-1116. [PMID: 39725511 DOI: 10.1016/s1875-5364(24)60726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/28/2024]
Abstract
In recent years, there has been an increasing emphasis on exploring innovative drug delivery approaches due to the limitations of conventional therapeutic strategies, such as inadequate drug targeting, insufficient therapeutic efficacy, and significant adverse effects. Nanomedicines have emerged as a promising solution with notable advantages, including extended drug circulation, targeted delivery, and improved bioavailability, potentially enhancing the clinical treatment of various diseases. Natural products/materials-derived nanomedicines, characterized by their natural therapeutic efficacy, superior biocompatibility, and safety profile, play a crucial role in nanomedicine-based treatments. This review provides a comprehensive overview of currently approved natural products-derived nanomedicines, emphasizing the essential properties of natural products-derived drug carriers, their applications in clinical diagnosis and treatment, and the current therapeutic potential and challenges. The aim is to offer guidance for the application and further development of these innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaoyao Lai
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Guanghan Wan
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
10
|
Shahid GB, Ahan RE, Ostaku J, Seker UOS. Bacterial Living Therapeutics with Engineered Protein Secretion Circuits to Eliminate Breast Cancer Cells. ACS Synth Biol 2024; 13:3150-3162. [PMID: 39367855 DOI: 10.1021/acssynbio.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Cancer therapy can be limited by potential side effects, and bacteria-based living cancer therapeutics have gained scientific interest in recent years. However, the full potential of bacteria as therapeutics has yet to be explored due to engineering challenges. In this study, we present a bacterial device designed to specifically target and eliminate breast cancer cells. We have engineered Escherichia coli (E. coli) to bind to HER2 receptors on breast cancer cells while also secreting a toxin, HlyE, which is a pore-forming protein. The binding of E. coli to HER2 is facilitated by a nanobody expressed on the bacteria's surface via the Ag43 autotransporter protein system. Our findings demonstrate that the nanobody efficiently binds to HER2+ cells in vitro, and we have utilized the YebF secretion tag to secrete HlyE and kill the target cancer cells. Overall, our results highlight the potential of our engineered bacteria as an innovative strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Gozeel Binte Shahid
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Julian Ostaku
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
11
|
Xiao Y, Pan T, Da W, Liu Y, Chen S, Chen D, Liu K, Zheng Y, Xie D, Gao Y, Xu H, Sun Y, Tan W. Aptamer-drug conjugates-loaded bacteria for pancreatic cancer synergistic therapy. Signal Transduct Target Ther 2024; 9:272. [PMID: 39397032 PMCID: PMC11471780 DOI: 10.1038/s41392-024-01973-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with the highest mortality rates, and it currently lacks effective drugs. Aptamer-drug conjugates (ApDC), as a form of nucleic acid drug, show great potential in cancer therapy. However, the instability of nucleic acid-based drugs in vivo and the avascularity of pancreatic cancer with dense stroma have limited their application. Fortunately, VNP20009, a genetically modified strain of Salmonella typhimurium, which has a preference for anaerobic environments, but is toxic and lacks specificity, can potentially serve as a delivery vehicle for ApDC. Here, we propose a synergistic therapy approach that combines the penetrative capability of bacteria with the targeting and toxic effects of ApDC by conjugating ApDC to VNP20009 through straightforward, one-step click chemistry. With this strategy, bacteria specifically target pancreatic cancer through anaerobic chemotaxis and subsequently adhere to tumor cells driven by the aptamer's specific binding. Results indicate that this method prolongs the serum stability of ApDC up to 48 h and resulted in increased drug concentration at tumor sites compared to the free drugs group. Moreover, the aptamer's targeted binding to cancer cells tripled bacterial colonization at the tumor site, leading to increased death of tumor cells and T cell infiltration. Notably, by integrating chemotherapy and immunotherapy, the effectiveness of the treatment is significantly enhanced, showing consistent results across various animal models. Overall, this strategy takes advantage of bacteria and ApDC and thus presents an effective synergistic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yu Xiao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Pan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuren Da
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanding Liu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangya Chen
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiquan Chen
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keying Liu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Zheng
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daolong Xie
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Gao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yang Sun
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
12
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
13
|
Van den Berghe L, Masschelein J, Pinheiro VB. From competition to cure: the development of live biotherapeutic products for anticancer therapy in the iGEM competition. Front Bioeng Biotechnol 2024; 12:1447176. [PMID: 39351063 PMCID: PMC11439766 DOI: 10.3389/fbioe.2024.1447176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a leading cause of mortality globally, often diagnosed at advanced stages with metastases already present, complicating treatment efficacy. Traditional treatments like chemotherapy and radiotherapy face challenges such as lack of specificity and drug resistance. The hallmarks of cancer, as defined by Hanahan and Weinberg, describe tumors as complex entities capable of evolving traits that promote malignancy, including sustained proliferation, resistance to cell death, and metastasis. Emerging research highlights the significant role of the microbiome in cancer development and treatment, influencing tumor progression and immune responses. This review explores the potential of live biotherapeutic products (LBPs) for cancer diagnosis and therapy, focusing on projects from the International Genetically Engineered Machines (iGEM) competition that aim to innovate LBPs for cancer treatment. Analyzing 77 projects from 2022, we highlight the progress and ongoing challenges within this research field.
Collapse
Affiliation(s)
- Luka Van den Berghe
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Vitor B Pinheiro
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Nguyen DH, You SH, Ngo HTT, Van Nguyen K, Tran KV, Chu TH, Kim SY, Ha SJ, Hong Y, Min JJ. Reprogramming the tumor immune microenvironment using engineered dual-drug loaded Salmonella. Nat Commun 2024; 15:6680. [PMID: 39107284 PMCID: PMC11303714 DOI: 10.1038/s41467-024-50950-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Synergistic combinations of immunotherapeutic agents can improve the performance of anti-cancer therapies but may lead to immune-mediated adverse effects. These side-effects can be overcome by using a tumor-specific delivery system. Here, we report a method of targeted immunotherapy using an attenuated Salmonella typhimurium (SAM-FC) engineered to release dual payloads: cytolysin A (ClyA), a cytolytic anti-cancer agent, and Vibrio vulnificus flagellin B (FlaB), a potent inducer of anti-tumor innate immunity. Localized secretion of ClyA from SAM-FC induces immunogenic cancer cell death and promotes release of tumor-specific antigens and damage-associated molecular patterns, which establish long-term antitumor memory. Localized secretion of FlaB promotes phenotypic and functional remodeling of intratumoral macrophages that markedly inhibits tumor metastasis in mice bearing tumors of mouse and human origin. Both primary and metastatic tumors from bacteria-treated female mice are characterized by massive infiltration of anti-tumorigenic innate immune cells and activated tumor-specific effector/memory T cells; however, the percentage of immunosuppressive cells is low. Here, we show that SAM-FC induces functional reprogramming of the tumor immune microenvironment by activating both the innate and adaptive arms of the immune system and can be used for targeted delivery of multiple immunotherapeutic payloads for the establishment of potent and long-lasting antitumor immunity.
Collapse
Affiliation(s)
- Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | | | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Dong Da, No 1, Ton That Tung St., Hanoi, 100000, Vietnam
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Khang Vuong Tran
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
15
|
Kwon SY, You SH, Im JH, Nguyen DH, Kim DY, Pyo A, Kim GJ, Bom HS, Hong Y, Min JJ. Tumor Pre-Targeting System Using Streptavidin-Expressing Bacteria. Mol Imaging Biol 2024; 26:593-602. [PMID: 38814379 DOI: 10.1007/s11307-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE A major obstacle to targeted cancer therapy is identifying suitable targets that are specifically and abundantly expressed by solid tumors. Certain bacterial strains selectively colonize solid tumors and can deliver genetically encoded cargo molecules to the tumor cells. Here, we engineered bacteria to express monomeric streptavidin (mSA) in tumors, and developed a novel tumor pre-targeting system by visualizing the presence of tumor-associated mSA using a biotinylated imaging probe. PROCEDURES We constructed a plasmid expressing mSA fused to maltose-binding protein and optimized the ribosome binding site sequence to increase solubility and expression levels. E. coli MG1655 was transformed with the recombinant plasmid, expression of which is driven by the pBAD promotor. Expression of mSA was induced by L-arabinose 4 days after injection of bacteria into mice bearing CT26 mouse colon carcinoma cells. Selective accumulation of mSA in tumor tissues was visualized by optical imaging after administration of a biotinylated fluorescent dye. Counting of viable bacterial cells was also performed. RESULTS Compared with a conventional system, the novel expression system resulted in significantly higher expression of mSA and sustained binding to biotin. Imaging signals in tumor tissues were significantly stronger in the mSA-expressing group than in non-expressing group (P = 0.0005). Furthermore, the fluorescent signal in tumor tissues became detectable again after multiple inductions with L-arabinose. The bacterial counts in tumor tissues showed no significant differences between conditions with and without L-arabinose (P = 0.45). Western blot analysis of tumor tissues confirmed expression and binding of mSA to biotin. CONCLUSIONS We successfully engineered tumor-targeting bacteria carrying a recombinant plasmid expressing mSA, which was targeted to, and expressed in, tumor tissues. These data demonstrate the potential of this novel tumor pre-targeting system when combined with biotinylated imaging probes or therapeutic agents.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
- CNCure Biotech, Jeonnam, 58128, Republic of Korea
| | - Jin Hee Im
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University College of Natural Sciences, Gwangju, 61186, Republic of Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea
| | - Yeongjin Hong
- CNCure Biotech, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea.
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea.
- CNCure Biotech, Jeonnam, 58128, Republic of Korea.
| |
Collapse
|
16
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
17
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
19
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
20
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
21
|
Zhang H, Luo Y, Zhao X, Liu X. Engineering Proteus mirabilis improves antitumor efficacy via enhancing cytotoxic T cell responses. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200770. [PMID: 38596299 PMCID: PMC10937320 DOI: 10.1016/j.omton.2024.200770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 04/11/2024]
Abstract
Cancer immunotherapy based on bioengineering of bacteria can effectively increase anticancer immune responses. However, few studies have investigated the antitumor potential of engineering Proteus mirabilis. Here, we genetically engineered P. mirabilis to overexpress Vibrio vulnificus flagellin B (FlaB) protein in a murine CT26 tumor model. We found that a large number of FlaB-expressing P. mirabilis colonized tumor tissues, enhanced T cell infiltration and secretion of cytokines and cytotoxic proteins in tumors, and significantly restrained tumor growth. Our results also showed that programmed death ligand 1 (PD-L1) expression in tumor-infiltrating immune cells was elevated after treatment with FlaB-expressing P. mirabilis. In addition, combination therapy with FlaB-expressing P. mirabilis and PD-L1 blockade synergistically improved antitumor efficacy by enhancing infiltration of CD8+ cells. Furthermore, serum liver biochemical indices of mice increased in the short term in both the P. mirabilis and the FlaB-expressing P. mirabilis treatment groups but gradually recovered in the later stage of treatment so that FlaB protein expression did not increase the toxicity of P. mirabilis in vivo. Taken together, our results suggest that P. mirabilis could serve as an engineered bacterium for bacterium-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
- College of Animal Science and Technology, Anhui Agricultural University, Heifei, Anhui 230036, P.R. China
| | - Yinlin Luo
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Xincheng Zhao
- China Animal Disease Control Center, Beijing 100026, P.R. China
| | - Xiande Liu
- School of Life and Health, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
22
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
23
|
Li X, Zhang Y, Wang C, Wang L, Ye Y, Xue R, Shi Y, Su Q, Zhu Y, Wang L. Drug-Loaded Biomimetic Carriers for Non-Hodgkin's Lymphoma Therapy: Advances and Perspective. ACS Biomater Sci Eng 2024; 10:723-742. [PMID: 38296812 DOI: 10.1021/acsbiomaterials.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemotherapy remains the mainstay of treatment for the lymphoma patient population, despite its relatively poor therapeutic results, high toxicity, and low specificity. With the advancement of biotechnology, the significance of drug-loading biomimetic materials in the medical field has become increasingly evident, attracting extensive attention from the scientific community and the pharmaceutical industry. Given that they can cater to the particular requirements of lymphoma patients, drug-loading biomimetic materials have recently become a potent and promising delivery approach for various applications. This review mainly reviews the recent advancements in the treatment of tumors with biological drug carrier-loaded drugs, outlines the mechanisms of lymphoma development and the diverse treatment modalities currently available, and discusses the merits and limitations of biological drug carriers. What is more, the practical application of biocarriers in tumors is explored by providing examples, and the possibility of loading such organisms with antilymphoma drugs for the treatment of lymphoma is conceived.
Collapse
Affiliation(s)
- Xiaoqi Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
| | - Yu Zhang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong China
| | - Chao Wang
- Department of Hematology, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Liyuan Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
| | - Yufu Ye
- Department of Hepatobiliary and Pancreatic Surgery, the First Affliliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, Zhejiang China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Hangzhou310000, Zhejiang China
| | - Renyu Xue
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Yuanwei Shi
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Tumor Biology, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| |
Collapse
|
24
|
Ngo HTT, Nguyen DH, You SH, Van Nguyen K, Kim SY, Hong Y, Min JJ. Reprogramming a Doxycycline-Inducible Gene Switch System for Bacteria-Mediated Cancer Therapy. Mol Imaging Biol 2024; 26:148-161. [PMID: 38017353 DOI: 10.1007/s11307-023-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Attenuated Salmonella typhimurium is a potential biotherapeutic antitumor agent because it can colonize tumors and inhibit their growth. The present study aimed to develop a doxycycline (Doxy)-inducible gene switch system in attenuated S. typhimurium and assess its therapeutic efficacy in various tumor-bearing mice models. PROCEDURES A Doxy-inducible gene switch system comprising two plasmids was engineered to trigger the expression of cargo genes (Rluc8 and clyA). Attenuated S. typhimurium carrying Rluc8 were injected intravenously into BALB/c mice bearing CT26 tumors, and bioluminescence images were captured at specified intervals post-administration of doxycycline. The tumor-suppressive effects of bacteria carrying clyA were evaluated in BALB/c mice bearing CT26 tumors and in C57BL/6 mice bearing MC38 tumors. RESULTS Expression of the fimE gene, induced only in the presence of Doxy, triggered a unidirectional switch of the POXB20 promoter to induce expression of the cargo genes. The switch event was maintained over a long period of bacterial culture. After intravenous injection of transformed Salmonella into mice bearing CT26 tumors, the bacteria transformed with the Doxy-inducible gene switch system for Rluc8 targeted only tumor tissues and expressed the payloads 2 days after Doxy treatment. Notably, bacteria carrying the Doxy-inducible gene switch system for clyA effectively suppressed tumor growth and prolonged survival, even after just one Doxy induction. CONCLUSIONS These results suggest that attenuated S. typhimurium carrying this novel gene switch system elicited significant therapeutic effects through a single induction triggering and were a potential biotherapeutic agent for tumor therapy.
Collapse
Affiliation(s)
- Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, No 1, Ton That Tung St., Dong Da, Hanoi, 100000, Vietnam
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
25
|
Guo C, Liu J, Zhang Y. Current advances in bacteria-based cancer immunotherapy. Eur J Immunol 2024; 54:e2350778. [PMID: 38105295 DOI: 10.1002/eji.202350778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
As the understanding of the tumor microenvironment has deepened, immunotherapy has become a promising strategy for cancer treatment. In contrast to traditional therapies, immunotherapy is more precise and induces fewer adverse effects. In this field, some bacteria have attracted increased attention because of their natural ability to preferentially colonize and proliferate inside tumor sites and exert antitumor effects. Moreover, bacterial components may activate innate and adaptive immunity to resist tumor progression. However, the application of bacteria-based cancer immunotherapy is hampered by potential infection-associated toxicity and unpredictable behavior in vivo. Owing to modern developments in genetic engineering, bacteria can be modified to weaken their toxicity and enhance their ability to eliminate tumor cells or activate the antitumor immune response. This review summarizes the roles of bacteria in the tumor microenvironment, current strategies for bacterial engineering, and the synergistic efficiency of bacteria with other immunotherapies. In addition, the prospects and challenges of the clinical translation of engineered bacteria are summarized.
Collapse
Affiliation(s)
- Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Lu Y, Mei N, Ying Y, Wang D, Li X, Zhao Y, Zhu Y, Shen S, Yin B. Bacteria-Based Nanoprobes for Cancer Therapy. Int J Nanomedicine 2024; 19:759-785. [PMID: 38283198 PMCID: PMC10821665 DOI: 10.2147/ijn.s438164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Surgical removal together with chemotherapy and radiotherapy has used to be the pillars of cancer treatment. Although these traditional methods are still considered as the first-line or standard treatments, non-operative situation, systemic toxicity or resistance severely weakened the therapeutic effect. More recently, synthetic biological nanocarriers elicited substantial interest and exhibited promising potential for combating cancer. In particular, bacteria and their derivatives are omnipotent to realize intrinsic tumor targeting and inhibit tumor growth with anti-cancer agents secreted and immune response. They are frequently employed in synergistic bacteria-mediated anticancer treatments to strengthen the effectiveness of anti-cancer treatment. In this review, we elaborate on the development, mechanism and advantage of bacterial therapy against cancer and then systematically introduce the bacteria-based nanoprobes against cancer and the recent achievements in synergistic treatment strategies and clinical trials. We also discuss the advantages as well as the limitations of these bacteria-based nanoprobes, especially the questions that hinder their application in human, exhibiting this novel anti-cancer endeavor comprehensively.
Collapse
Affiliation(s)
- Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yinwei Ying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yajing Zhao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
27
|
Faghihkhorasani A, Ahmed HH, Mashool NM, Alwan M, Assefi M, Adab AH, Yasamineh S, Gholizadeh O, Baghani M. The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection. Virol J 2023; 20:222. [PMID: 37789431 PMCID: PMC10548687 DOI: 10.1186/s12985-023-02183-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Viral infections in humans are responsible for fatalities worldwide and contribute to the incidence of various human ailments. Controllable targeted medicine delivery against many illnesses, including viral infection, may be significantly aided by using bacteria and bacteria-derived products. They may accumulate in diseased tissues despite physical obstacles, where they can launch antiviral immunity. The ability to genetically and chemically modify them means that vaccinations against viral infections may be manufactured and delivered to affected tissues more safely and effectively. The objective of this study is to provide an overview of the latest advancements in the field of utilizing bacteria and bacterial derivatives as carriers for administering medication to treat viral diseases such as SARS-CoV-2, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, human papillomavirus, influenza, and Ebola virus.
Collapse
Affiliation(s)
| | | | | | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Marjan Assefi
- University of North Carolina at Greensboro, Greensboro, USA
| | - Aya Hussein Adab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Moein Baghani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Saleh N, Mahmoud HE, Eltaher H, Helmy M, El-Khordagui L, Hussein AA. Prodigiosin-Functionalized Probiotic Ghosts as a Bioinspired Combination Against Colorectal Cancer Cells. Probiotics Antimicrob Proteins 2023; 15:1271-1286. [PMID: 36030493 PMCID: PMC10491537 DOI: 10.1007/s12602-022-09980-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Lactobacillus acidophilus ghosts (LAGs) with the unique safety of a probiotic, inherent tropism for colon cells, and multiple bioactivities offer promise as drug carriers for colon targeting. Our objective was to evaluate LAGs functionalized with prodigiosin (PG), apoptotic secondary bacterial metabolite, as a bioinspired formulation against colorectal cancer (CRC). LAGs were prepared by a chemical method and highly purified by density gradient centrifugation. LAGs were characterized by microscopic and staining techniques as relatively small-sized uniform vesicles (≈1.6 µm), nearly devoid of cytoplasmic and genetic materials and having a negatively charged intact envelope. PG was highly bound to LAGs envelope, generating a physiologically stable bioactive entity (PG-LAGs), as verified by multiple microscopic techniques and lack of PG release under physiological conditions. PG-LAGs were active against HCT116 CRC cells at both the cellular and molecular levels. Cell viability data highlighted the cytotoxicity of PG and LAGs and LAGs-induced enhancement of PG selectivity for HCT116 cells, anticipating dose reduction for PG and LAGs. Molecularly, expression of the apoptotic caspase 3 and P53 biomarkers in HCT116 intracellular proteins was significantly upregulated while that of the anti-apoptotic Bcl-2 (B-cell lymphoma 2) was downregulated by PG-LAGs relative to PG and 5-fluorouracil. PG-LAGs provide a novel bacteria-based combination for anticancer biomedicine.
Collapse
Affiliation(s)
- Nessrin Saleh
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Maged Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
30
|
Effendi SSW, Ng IS. Prospective and challenges of live bacterial therapeutics from a superhero Escherichia coli Nissle 1917. Crit Rev Microbiol 2023; 49:611-627. [PMID: 35947523 DOI: 10.1080/1040841x.2022.2109405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Escherichia coli Nissle 1917 (EcN), the active component of Mutaflor(R), is a notable probiotic from Gram-negative to treat Crohn's disease and irritable bowel syndrome. Therefore, a comprehensive genomic database maximizes the systemic probiotic assessment to discover EcN's role in human health. Recently, advanced synthetic and genetic tools have opened up a rich area to execute EcN as "living medicines" with controllable functions. Incorporating unique biomarkers allows the engineered EcN to switch genes on and off in response to environmental cues. Since EcN holds promise as a safe nature vehicle, more studies are desired to fully realize a wide range of probiotic potential for disease treatment. This review aims to deliver a historical origin of EcN, discuss the recent promising genetic toolbox in the rational design of probiotics, and pinpoint the clinical translation and evaluation of engineered EcN in vitro and in vivo. The summary of safety concerns, strategies of biotherapeutics development, and the challenges and prospects of engineered EcN is also concluded.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
31
|
Peng H, Wang J, Chen J, Peng Y, Wang X, Chen Y, Kaplan DL, Wang Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv 2023; 20:1349-1369. [PMID: 37450427 PMCID: PMC10990675 DOI: 10.1080/17425247.2023.2237408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jiahe Wang
- Department of Humanities, Daqing Branch, Harbin Medical University, Daqing, China
| | - Jiayu Chen
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, China
| | - Xiaoxian Wang
- The Affiliated Hospital of Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
32
|
Nguyen DH, Chong A, Hong Y, Min JJ. Bioengineering of bacteria for cancer immunotherapy. Nat Commun 2023; 14:3553. [PMID: 37322031 PMCID: PMC10272223 DOI: 10.1038/s41467-023-39224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Ari Chong
- Department of Nuclear Medicine, Chosun University Medical School and Hospital, Gwangju, 61452, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, 61469, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, 61469, Republic of Korea.
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
33
|
Abdullah NA, Mahmoud HE, El-Nikhely NA, Hussein AA, El-Khordagui LK. Carbon dots labeled Lactiplantibacillus plantarum: a fluorescent multifunctional biocarrier for anticancer drug delivery. Front Bioeng Biotechnol 2023; 11:1166094. [PMID: 37304143 PMCID: PMC10248154 DOI: 10.3389/fbioe.2023.1166094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
A carbon dots (CDs)-biolabeled heat-inactivated Lactiplantibacillus plantarum (HILP) hybrid was investigated as a multifunctional probiotic drug carrier with bioimaging properties using prodigiosin (PG) as anticancer agent. HILP, CDs and PG were prepared and characterized using standard methods. CDs-labeled HILP (CDs/HILP) and PG loaded CDs/HILP were characterized by transmission electron microscopy (TEM), laser scanning confocal microscopy (LSCM) and for entrapment efficiency (EE%) of CDs and PG, respectively. PG-CDs/HILP was examined for stability and PG release. the anticancer activity of PG-CDs/HILP was assessed using different methods. CDs imparted green fluorescence to HILP cells and induced their aggregation. HILP internalized CDs via membrane proteins, forming a biostructure with retained fluorescence in PBS for 3 months at 4°C. Loading PG into CDs/HILP generated a stable green/red bicolor fluorescent combination permitting tracking of both drug carrier and cargo. Cytotoxicity assay using Caco-2 and A549 cells revealed enhanced PG activity by CDs/HILP. LCSM imaging of PG-CDs/HILP-treated Caco-2 cells demonstrated improved cytoplasmic and nuclear distribution of PG and nuclear delivery of CDs. CDs/HILP promoted PG-induced late apoptosis of Caco-2 cells and reduced their migratory ability as affirmed by flow cytometry and scratch assay, respectively. Molecular docking indicated PG interaction with mitogenic molecules involved in cell proliferation and growth regulation. Thus, CDs/HILP offers great promise as an innovative multifunctional nanobiotechnological biocarrier for anticancer drug delivery. This hybrid delivery vehicle merges the physiological activity, cytocompatibility, biotargetability and sustainability of probiotics and the bioimaging and therapeutic potential of CDs.
Collapse
Affiliation(s)
- Noor A. Abdullah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E. Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nefertiti A. El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed A. Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Labiba K. El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
34
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
35
|
Qin Y, You SH, Zhang Y, Venu A, Hong Y, Min JJ. Genetic Programming by Nitric Oxide-Sensing Gene Switch System in Tumor-Targeting Bacteria. BIOSENSORS 2023; 13:266. [PMID: 36832032 PMCID: PMC9954711 DOI: 10.3390/bios13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recent progress in synthetic biology has enabled bacteria to respond to specific disease signals to perform diagnostic and/or therapeutic tasks. Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) colonization of tumors results in increases in nitric oxide (NO) levels, suggesting that NO may act as a candidate inducer of tumor-specific gene expression. The present study describes a NO-sensing gene switch system for triggering tumor-specific gene expression in an attenuated strain of S. Typhimurium. The genetic circuit was designed to sense NO via NorR, thus initiating the expression of FimE DNA recombinase. This was found to lead sequentially to the unidirectional inversion of a promoter region (fimS), which induced the expression of target genes. Target gene expression in bacteria transformed with the NO-sensing switch system was triggered in the presence of a chemical source of NO, diethylenetriamine/nitric oxide (DETA/NO) in vitro. In vivo results revealed that the gene expression is tumor-targeted, and specific to NO generated by inducible nitric oxide synthase (iNOS) after S. Typhimurium colonization. These results showed that NO was a promising inducer to finely tune the expression of target genes carried by tumor-targeting bacteria.
Collapse
Affiliation(s)
- Yeshan Qin
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Ying Zhang
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Akhil Venu
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
36
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
37
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
38
|
Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022; 11:pathogens11121444. [PMID: 36558778 PMCID: PMC9781236 DOI: 10.3390/pathogens11121444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prophylactic vaccines against human papillomavirus (HPV) have proven efficacy in those who have not been infected by the virus. However, they do not benefit patients with established tumors. Therefore, the development of therapeutic options for HPV-related malignancies is critical. Third-generation vaccines based on nucleic acids are fast and simple approaches to eliciting adaptive immune responses. However, techniques to boost immunogenicity, reduce degradation, and facilitate their capture by immune cells are frequently required. One option to overcome this constraint is to employ delivery systems that allow selective antigen absorption and help modulate the immune response. This review aimed to discuss the influence of these different systems on the response generated by nucleic acid vaccines. The results indicate that delivery systems based on lipids, polymers, and microorganisms such as yeasts can be used to ensure the stability and transport of nucleic acid vaccines to their respective protein synthesis compartments. Thus, in view of the limitations of nucleic acid-based vaccines, it is important to consider the type of delivery system to be used-due to its impact on the immune response and desired final effect.
Collapse
|
39
|
Ayariga JA, Ibrahim I, Gildea L, Abugri J, Villafane R. Microbiota in a long survival discourse with the human host. Arch Microbiol 2022; 205:5. [PMID: 36441284 DOI: 10.1007/s00203-022-03342-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
The relationship between human health and gut microbiota is becoming more apparent. It is now widely believed that healthy gut flora plays a vital role in the overall well-being of the individual. There are spatial and temporal variations in the distribution of microbes from the esophagus to the rectum throughout an individual's lifetime. Through the development of genome sequencing technologies, scientists have been able to study the interactions between different microorganisms and their hosts to improve the health and disease of individuals. The normal gut microbiota provides various functions to the host, whereas the host, in turn, provides nutrients and promotes the development of healthy and resilient microbiota communities. Thus, the microbiota provides and maintains the gut's structural integrity and protects the gut against pathogens. The development of the normal gut microbiota is influenced by various factors. Some of these include the mode of delivery, diet, and antibiotics. In addition, the environment can also affect the development of the gut microbiota. For example, one of the main concerns of antibiotic use is the alteration of the gut microbiota, which could lead to the development of multidrug-resistant organisms. When microbes are disturbed, it can potentially lead to various diseases. Depending on the species' ability to adapt to the human body's environment, the fate of the microbes in the host and their relationship with the human body are decided. This review aims to provide a comprehensive analysis of microbe, microbes-host immune interactions, and factors that can disturb their interactions.
Collapse
Affiliation(s)
- Joseph A Ayariga
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA.
| | - Iddrisu Ibrahim
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA
| | - Logan Gildea
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA
| | - James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.
| | - Robert Villafane
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA
| |
Collapse
|
40
|
Liang S, Wang C, Shao Y, Wang Y, Xing D, Geng Z. Recent advances in bacteria-mediated cancer therapy. Front Bioeng Biotechnol 2022; 10:1026248. [PMID: 36312554 PMCID: PMC9597243 DOI: 10.3389/fbioe.2022.1026248] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is among the leading cause of deaths worldwide. Although conventional therapies have been applied in the fight against the cancer, the poor oxygen, low extracellular pH, and high interstitial fluid pressure of the tumor microenvironment mean that these treatments fail to completely eradicate cancer cells. Recently, bacteria have increasingly been considered to be a promising platform for cancer therapy thanks to their many unique properties, such as specific tumor-targeting ability, high motility, immunogenicity, and their use as gene or drug carriers. Several types of bacteria have already been used for solid and metastatic tumor therapies, with promising results. With the development of synthetic biology, engineered bacteria have been endowed with the controllable expression of therapeutic proteins. Meanwhile, nanomaterials have been widely used to modify bacteria for targeted drug delivery, photothermal therapy, magnetothermal therapy, and photodynamic therapy, while promoting the antitumor efficiency of synergistic cancer therapies. This review will provide a brief introduction to the foundation of bacterial biotherapy. We begin by summarizing the recent advances in the use of many different types of bacteria in multiple targeted tumor therapies. We will then discuss the future prospects of bacteria-mediated cancer therapies.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchun Shao
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhong Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| | - Zhongmin Geng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| |
Collapse
|
41
|
Liu X, Guo Y, Sun Y, Chen Y, Tan W, Min JJ, Zheng JH. Comparison of Anticancer Activities and Biosafety Between Salmonella enterica Serovar Typhimurium ΔppGpp and VNP20009 in a Murine Cancer Model. Front Microbiol 2022; 13:914575. [PMID: 35847095 PMCID: PMC9277105 DOI: 10.3389/fmicb.2022.914575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Salmonella Typhimurium defective in guanosine 5′-diphosphate-3′-diphosphate (ppGpp) synthesis (ΔppGpp) is an attenuated strain with good biosafety and excellent anticancer efficacy. It has been widely applied in preclinical studies of anticancer therapy for various types of solid cancer. VNP20009 is another genetically modified auxotrophic strain with 108-kb deletion, purI−, msbB−, and many single nucleotide polymorphisms (SNPs); it has shown promising therapeutic efficacy in various preclinical tumor models and entered phase I clinical trials. Here, the invasion activities and virulence of ΔppGpp were obviously lower than those of the VNP20009 strain when tested with cancer cells in vitro. In addition, the MC38 tumor-bearing mice showed comparable cancer suppression when treated with ΔppGpp or VNP20009 intravenously. However, the ΔppGpp-treated mice showed 16.7% of complete cancer eradication and prolonged survival in mice, whereas VNP20009 showed higher toxicity to animals, even with equal tumor size individually. Moreover, we found decreased levels of inflammatory cytokines in circulation but strengthened immune boost in tumor microenvironments of ΔppGpp-treated mice. Therefore, the engineered ΔppGpp has high potential for cancer therapeutics, and it is a promising option for future clinical cancer therapy.
Collapse
Affiliation(s)
- Xiaoqing Liu
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yujie Sun
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yu Chen
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Wenzhi Tan
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
- Jung-Joon Min,
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha, China
- *Correspondence: Jin Hai Zheng,
| |
Collapse
|
42
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
43
|
Woong Yoo S, Young Kwon S, Kang SR, Min JJ. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy. Adv Drug Deliv Rev 2022; 187:114366. [PMID: 35654213 DOI: 10.1016/j.addr.2022.114366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Bacteria-mediated cancer therapy is a potential therapeutic strategy for cancer that has unique properties, including broad tumor-targeting ability, various administration routes, the flexibility of delivery, and facilitating the host's immune responses. The molecular imaging of bacteria-mediated cancer therapy allows the therapeutically injected bacteria to be visualized and confirms the accurate delivery of the therapeutic bacteria to the target lesion. Several hurdles make bacteria-specific imaging challenging, including the need to discriminate therapeutic bacterial infection from inflammation or other pathologic lesions. To realize the full potential of bacteria-specific imaging, it is necessary to develop bacteria-specific targets that can be associated with an imaging assay. This review describes the current status of bacterial imaging techniques together with the advantages and disadvantages of several imaging modalities. Also, we describe potential targets for bacterial-specific imaging and related applications.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea.
| |
Collapse
|
44
|
Pattern of F-18 FDG Uptake in Colon Cancer after Bacterial Cancer Therapy Using Engineered Salmonella Typhimurium: A Preliminary In Vivo Study. Mol Imaging 2022; 2022:9222331. [PMID: 35517712 PMCID: PMC9042370 DOI: 10.1155/2022/9222331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose. Bacterial cancer therapy (BCT) research using engineered Salmonella typhimurium has increased in recent years. 2-Deoxy-2[18F] fluoro-D-glucose positron emission tomography (FDG PET) is widely used in cancer patients to detect cancer, monitor treatment responses, and predict prognoses. The aim of this pilot study was to investigate FDG uptake patterns in a mouse tumor model after BCT. Procedures. BCT was performed via the intravenous injection of attenuated S. typhimurium (SLΔppGpp/lux) into female mice bearing a tumor (derived from CT26 murine colon cancer cells) in the right thigh. 18F-FDG PET images acquired before BCT and at different time points after BCT. In vivo bioluminescence imaging confirmed bacterial presence in the tumor. The tumor volume, standardized uptake value (SUV) of FDG (SUVmax and SUVmean), early SUV reduction%, and normalized tumor volume change were analyzed. Results. Early after BCT (1 or 2 days post-injection (dpi)), FDG tumor uptake decreased in 10 out of 11 mice and then increased at later stages. FDG uptake before BCT was correlated with normalized tumor volume change after BCT. Early FDG reduction% after BCT was correlated with normalized volume change after BCT. Conclusions. Early after BCT, FDG tumor uptake decreased and then increased at later stages. The higher the FDG tumor uptake before BCT, the better the BCT response. FDG uptake patterns were related to tumor volume change after BCT. Therefore, FDG uptake was a good candidate for evaluating BCT.
Collapse
|