1
|
Ma M, Pan Z, Zhu Z, Ling C, Yuan J, Huo X, Li S, Liu R. Enhanced cancer therapy using modified magnetic α-Fe 2O 3/Fe 3O 4nanorods: Dual role in curcumin delivery and ferroptosis induction. Colloids Surf B Biointerfaces 2025; 252:114689. [PMID: 40228427 DOI: 10.1016/j.colsurfb.2025.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Curcumin (CUR) has gained considerable attention in oncology due to its potent anti-tumor, anti-inflammatory, and antioxidant properties. However, its clinical utility was significantly hindered by low bioavailability and rapid metabolic degradation. This work designed a magnetic α-Fe2O3/Fe3O4 heterogeneous nanorod prepared via a urea hydrolysis-calcination process for curcumin delivery. The nanorods were modified with hyaluronic acid (HA), providing a stable matrix for curcumin encapsulation. The zeta potential of α-Fe2O3/Fe3O4/HA/CUR was -3.94 mV, the saturation magnetization was 7.82 emu·g-1, the encapsulation rate and drug loading rate were 10.53 % and 29.64 % respectively. At pH 5.4, 6.5, and 7.4, the release rates were 44.8 %, 40.2 %, and 39.3 %, respectively. Kinetic modeling indicated that release profiles followed the Weibull kinetic model, with an R2 value greater than 0.98. The α-Fe2O3/Fe3O4/HA/CUR exhibited excellent magnetic responsiveness, demonstrating a significant inhibitory effect on human liver cancer (HepG2) cells (inhibition rate greater than 60 %) under a magnetic field. Moreover, they substantially reduced the cytotoxicity of curcumin on normal human (LO2) cells. The α-Fe2O3/Fe3O4/HA/CUR inhibited migration and proliferation of HepG2 cells, induced apoptosis via the Caspase pathway, and synergistically suppressed tumor cell development through ferroptosis. The drug release from the α-Fe2O3/Fe3O4/HA/CUR was stable, significantly enhancing the bioavailability of curcumin. This provided a promising strategy for improving the bioavailability of poorly soluble drugs and enhancing liver cancer treatment outcomes.
Collapse
Affiliation(s)
- Mingyi Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhongjun Pan
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Ziye Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen Ling
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiahao Yuan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiangdong Huo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Fan Y, Shi J, Zhang R, Tian F, Zhang Y, Zhang L, Yang M. Tumor microenvironment-activated and near-infrared light-driven free radicals amplifier for tetra-modal cancer imaging and synergistic treatment. J Colloid Interface Sci 2025; 689:137208. [PMID: 40056676 DOI: 10.1016/j.jcis.2025.02.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
The tumor microenvironment (TME) exhibits a specific feature of hypoxia, which poses significant challenges for oxygen (O2)-dependent treatments. In this study, we developed an intelligent nanoplatform (PEGylated AIPH@MSN/CDs-MnO2, denoted as A@M/C-Mn) by integrating a photosensitizer of red carbon dots (CDs) with a thermolabile initiator-loaded mesoporous silica nanoparticle (AIPH@MSN, denoted as A@M), and then growing manganese dioxide nanosheets (MnO2 NS) in situ and PEGylating the structure to achieve TME-responsive synergistic diagnosis and phototherapy against hypoxic tumors. The outer-layer MnO2 NS has the capability to decompose endogenous hydrogen peroxide (H2O2) in the acidic TME, thereby producing O2 to alleviate hypoxia while releasing Mn2+. This process restores the fluorescence (FL) and photodynamic therapy (PDT) properties of the CDs, enhancing singlet oxygen (1O2) generation upon near-infrared (NIR) laser irradiation. Concomitantly, the exposed CDs induce hyperthermia for photothermal therapy (PTT) and promote the decomposition of AIPH to form cytotoxic alkyl radicals (R) for O2-independent PDT. Importantly, the entire treatment process can be monitored through ultrasound (US)/magnetic resonance (MR)/photoacoustic (PA)/FL imaging, owing to O2 production, Mn2+ release, and CDs activation, respectively. Both in vitro and in vivo results provide evidence that A@M/C-Mn represents a promising theranostic nanoagent for hypoxic tumors.
Collapse
Affiliation(s)
- Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Feng Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China; Joint Research Center in Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China; Hong Kong Polytechnic Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Zhang Y, Wang Y, Lu Y, Quan H, Wang Y, Song S, Guo H. Advanced oral drug delivery systems for gastrointestinal targeted delivery: the design principles and foundations. J Nanobiotechnology 2025; 23:400. [PMID: 40448152 DOI: 10.1186/s12951-025-03479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Oral administration has long been considered the most convenient method of drug delivery, requiring minimal expertise and invasiveness. Unlike injections, it avoids discomfort, wound infections, and complications, leading to higher patient compliance. However, the effectiveness of oral delivery is often hindered by the harsh biological barriers of the gastrointestinal tract, which limit the bioaccessibility and bioavailability of drugs. The development of oral drug delivery systems (ODDSs) represents a critical area for the advancement of pharmacotherapy. This review highlights the characteristics and precise targeting mechanisms of ODDSs. It first examines the unique properties of each gastrointestinal compartment, including the stomach, small intestine, intestinal mucus, intestinal epithelial barrier, and colon. Based on these features, it outlines the targeting strategies and design principles for ODDSs aimed at overcoming gastrointestinal barriers to enhance disease treatment. Lastly, the review discusses the challenges and potential future directions for ODDS development, emphasizing their importance for advancing drug delivery technologies and accelerating their future growth.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Heng Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yuqi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Sijia Song
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China.
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Sahli C, Kenry. The Journey and Modes of Action of Therapeutic Nanomaterials in Cells. Bioconjug Chem 2025; 36:914-929. [PMID: 40213918 DOI: 10.1021/acs.bioconjchem.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Over past decades, a wide range of nanomaterials have been synthesized and exploited to augment the efficacy and biocompatibility of disease theranostics and nanomedicine. The unique physicochemical properties of nanomaterials, such as high specific surface area, tunable size and shape, and versatile surface chemistry, enable the controlled modulation of nanomaterial-biosystem interactions and, consequently, more precise interventions, particularly at the cellular level. The selective modulation of nanomaterial-cell interactions can be leveraged to regulate cellular internalization, intracellular trafficking and localization, and cellular clearance of nanomaterials to enhance the disease therapeutic efficacy and minimize potential cytotoxicity. Herein, we provide an overview of our recent understanding of the journey and modes of action of therapeutic nanomaterials in cells. Specifically, we highlight the various pathways of cellular internalization, trafficking, and excretion of these nanomaterials. The different modes of action of therapeutic nanomaterials, especially controlled release and delivery, photothermal and photodynamic effects, and immunomodulation, are also discussed. We conclude our review by offering some perspectives on the current challenges and potential opportunities in this field.
Collapse
Affiliation(s)
- Célia Sahli
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kenry
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Clinical and Translational Oncology Program and Skin Cancer Institute, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Dutta D, Chen X, Li C, Ahmad W, Sajjad W, Ji Y, Zhou Q, Li S, Ge Z. Homologous-Targeting Porous Type I/II Nanophotosensitizers for Efficient Delivery of STING Agonists and Enhanced Photodynamic Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29224-29237. [PMID: 40338125 DOI: 10.1021/acsami.5c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Immunotherapy as a transformative cancer treatment modality frequently struggles with the immunosuppressive tumor microenvironment, which hinders effective immune responses. In this report, we construct biomimetic tumor cell membrane-cloaked porous covalent organic framework (COF) nanophotosensitizers (CMSCOFs) to synergistically enhance photodynamic therapy (PDT) and stimulate interferon genes (STING)-mediated immunotherapy. CMSCOF is prepared from porphyrin and benzothiadiazole-based units and cloaked with 4T1 cancer cell membranes for homologous tumor targeting. The porous structure of COF enables efficient encapsulation of the non-nucleotide STING agonist SR717. Upon 660 nm light irradiation, CMSCOFs trigger both type I and II photodynamic effects by producing both superoxide (O2•-) and singlet oxygen (1O2). The tumor cell membrane-cloaked design improves the stability of the nanophotosensitizers and mimics the natural cancer cells for enhanced blood circulation, tumor accumulation, and homologous-targeting to tumors. Inside tumor tissues, this unique CMSCOF design leads to enhanced immunogenic cell death (ICD) of tumor cells upon exposure to light irradiation. Furthermore, the encapsulated STING agonist SR717 is released after cellular internalization to activate the STING pathway and elicit a potent antitumor immune response. This synergistic approach effectively reverses the immunosuppressive tumor microenvironment, enhances cytotoxic T cell infiltration, and suppresses both primary and metastatic tumors, demonstrating the potential of CMSCOF nanophotosensitizers as a promising platform for photodynamic cancer immunotherapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P.R. China
| | - Xin Chen
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Cheng Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xian Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Waqas Ahmad
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wasim Sajjad
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanyuan Ji
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xian Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shikuo Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P.R. China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
7
|
Zhou C, Zhang Y, Tian B, Yu Y, Li D, Wu B, Chang W, Shi T, Xu F, Bai J, Wang C. Bacteria-responsive cytoderm drug delivery systems. Biomater Sci 2025; 13:2744-2754. [PMID: 40196901 DOI: 10.1039/d5bm00026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Signs of bacterial activities have been reported in a variety of disease models. Here, we extracted plant cytoderm ghosts (PCGs) from plant cells, acting as bacteria-responsive drug delivery systems (DDSs) that release drugs specifically in response to the presence or activity of bacteria. Cellulose, which is one of the main components of PCGs, can be degraded in the presence of specialized bacteria that secrete enzymes to convert the cellulose into simpler sugars, thus breaking down the structure of PCGs to release the loaded drugs. In our study, PCGs loaded with ciprofloxacin (PCG@CIP) could effectively inhibit the proliferation and retention of bacteria at the infection site, and improve the local wound microenvironment to accelerate wound repair. In addition, the PCG platform with anticancer drugs could effectively regulate the progression of tumor growth. Therefore, we report a new drug delivery system that responds to the microbiota based on plant cytoderm, providing a new option for drug responsive delivery.
Collapse
Affiliation(s)
- Chenmeng Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yue Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Dongxiao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bingbing Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Wenju Chang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
8
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
9
|
Zhou Y, Ge Q, Wang X, Wang Y, Sun Q, Wang J, Yang T, Wang C. Advances in Lipid Nanoparticle-Based Disease Treatment. ChemMedChem 2025; 20:e202400938. [PMID: 39962990 DOI: 10.1002/cmdc.202400938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/11/2025] [Indexed: 05/09/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as a transformative platform for the targeted delivery of therapeutic agents, revolutionizing treatment paradigms across a spectrum of diseases. Since the inception of liposomes in the 1960s, lipid-based nanotechnology has evolved to address limitations such as poor bioavailability, off-target effects, and instability, thereby enhancing the efficacy and safety of drug administration. This review highlights the latest advancements in LNPs technology, focusing on their application in cancer therapy, gene therapy, infectious disease management, glaucoma, and other clinical areas. Recent studies underscore the potential of LNPs to deliver messenger RNA (mRNA) and small interfering RNA (siRNA) for precise genetic intervention, exemplified by breakthroughs in RNA interference and CRISPR-Cas9 genome editing. Additionally, LNPs have been successfully employed to ameliorate conditions, demonstrating their versatility in addressing both acute and chronic disorders. However, challenges persist concerning large-scale manufacturing, long-term stability, and comprehensive safety evaluations. Future research must focus on optimizing formulations, exploring synergistic combinations with existing therapies, and expanding the scope of treatable diseases. The integration of LNPs into personalized medicine and the exploration of applications in other diseases represent promising avenues for further investigation. LNPs are poised to play an increasingly central role in the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Qiqi Ge
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Xin Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Qianqian Sun
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Tie Yang
- Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, 211100, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| |
Collapse
|
10
|
Song J, Kawakami K, Ariga K. Localized assembly in biological activity: Origin of life and future of nanoarchitectonics. Adv Colloid Interface Sci 2025; 339:103420. [PMID: 39923322 DOI: 10.1016/j.cis.2025.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The concept of nanoarchitectonics has emerged as a post-nanotechnology paradigm in the field of functional materials development. This concept entails the construction of functional material systems at the nanoscale, based on the knowledge acquired from nanotechnology. In biological systems, advanced nanoarchitectonics is achieved through precise structural organization governed by spatial localization, a process facilitated by localized assembly mechanisms. A thorough understanding of the principles of localized assembly is crucial for the creation of complex, asymmetric, hierarchical organizations that are similar in structure and function to living organisms. This review explores the concept of localized assembly, highlighting its biological inspiration, providing representative examples, and discussing its contributions to nanoarchitectonics. Key examples include assemblies using biological materials, those mimicking cellular functions, and those occurring within cells. Additionally, the role of interfacial interactions and liquid-liquid phase separation in localized assembly is emphasized. Particularly, the utilization of liquid-liquid phase separation demonstrates a remarkable capacity for forming intricate compartmentalized structures without discernible membranes, paving the way for multifunctional, localized systems. These localized assemblies are fundamental to essential biological functions and provide valuable insights into the molecular mechanisms underlying the origin of cells and life. Such understanding holds significant promise for advancing materials nanoarchitectonics, particularly in biomedical applications.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
11
|
Thakor AS. The Third Pillar of Precision Medicine - Precision Delivery. MedComm (Beijing) 2025; 6:e70200. [PMID: 40297244 PMCID: PMC12035764 DOI: 10.1002/mco2.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Precision Medicine is thought of as having two main pillars: Precision Diagnosis and Precision Therapy. However, for Precision Medicine to reach its full potential, a third pillar is needed that we propose to call Precision Delivery. In the laboratory, many therapies show great efficacy when tested directly with target cells. However, upon clinical translation, they are often given via intravenous or oral administration, resulting in their systemic distribution. To ensure therapies reach target sites at the correct therapeutic levels, they are often given at higher concentrations. However, this can be associated with off-target effects, side-effects, and unwanted interactions. Delivery strategies can help mitigate this by "spatially re-coupling" therapies in vivo with target cells. This review explains the concept of Precision Delivery, which can be thought of as three interconnected, but independent, modules: targeted delivery, microenvironment modulation, and cellular interactions. While locoregional approaches directly deliver therapies into target tissues through endovascular, endoluminal, percutaneous, and implantation techniques, microenvironment modulation technologies facilitate the movement of therapies across biological barriers and through tissue matrices, so optimized therapies can reach and interact with target cells. We highlight new innovations driving advances in Precision Delivery, while also discussing the considerations and challenges that Precision Delivery faces as it becomes increasingly integrated into treatment workflows.
Collapse
Affiliation(s)
- Avnesh S. Thakor
- Department of RadiologyCenter for Interventional Radiology Innovation at Stanford (IRIS)School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
12
|
El-Hammadi MM, Martín-Navarro L, Berrocoso E, Álvarez-Fuentes J, Crespo-Facorro B, Suárez-Pereira I, Vázquez-Bourgon J, Martín-Banderas L. Enhanced Metabolic Syndrome Management Through Cannabidiol-Loaded PLGA Nanoparticles: Development and In Vitro Evaluation. J Biomed Mater Res A 2025; 113:e37916. [PMID: 40277882 DOI: 10.1002/jbm.a.37916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Cannabidiol (CBD) holds promise for managing metabolic diseases, yet enhancing its oral bioavailability and efficacy remains challenging. To address this, we developed polymeric nanoparticles (NPs), using poly(lactic-co-glycolic acid) (PLGA), encapsulating CBD using nanoprecipitation, aiming to create an effective CBD-nanoformulation for metabolic disorder treatment. These NPs (135-265 nm) demonstrated high encapsulation efficiency (EE% ≈ 100%) and sustained release kinetics. Their therapeutic potential was evaluated in an in vitro metabolic syndrome model employing sodium palmitate-induced HepG2 cells. Key assessment parameters included cell viability (MTT assay), glucose uptake, lipid accumulation (Oil Red O staining), triglycerides, cholesterol, HDL-c levels, and gene expression of metabolic regulators. Results showed an IC50 of 9.85 μg/mL for free CBD and 11.26 μg/mL for CBD-loaded NPs. CBD-loaded NPs significantly enhanced glucose uptake, reduced lipid content, lowered triglycerides and total cholesterol, and increased HDL-c levels compared to free CBD. Gene analysis indicated reduced gluconeogenesis via downregulation of PPARγ, FOXO-1, PEPCK, and G6Pase and enhanced fatty acid oxidation through CPT-1 upregulation. These findings suggest that CBD-loaded NPs may serve as a novel therapeutic strategy for the management of metabolic disorders, warranting further in vivo studies.
Collapse
Affiliation(s)
- Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | - Lucía Martín-Navarro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Psychology, University of Cadiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Josefa Álvarez-Fuentes
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS)-Campus Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS)-Campus Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio, Sevilla, Spain
| | - Irene Suárez-Pereira
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cadiz, Cádiz, Spain
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla. Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
| | - Lucía Martín-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS)-Campus Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
13
|
Chen G, Koide T, Nakamura J, Ariga K. Nanoarchitectonics for Pentagon Defects in Carbon: Properties and Catalytic Role in Oxygen Reduction Reaction. SMALL METHODS 2025:e2500069. [PMID: 40263926 DOI: 10.1002/smtd.202500069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/25/2025] [Indexed: 04/24/2025]
Abstract
The oxygen reduction reaction (ORR) is a crucial process in electrochemical energy technologies, featuring fuel cells and metal-air batteries in the coming carbon-neutral society. Carbon materials have garnered significant attention as economical, sustainable alternatives to precious metal catalysts. In particular, there have been increasing reports recently that pentagons introduced into graphitic carbons promote catalytic activity for ORR. In addition, interesting studies are reported on carbon materials' synthesis, characterization, and spin polarization properties with pentagonal defects. This review comprehensively summarizes the formation mechanism, characterization, spin, oxygen (O2) adsorption, and ORR catalytic activity of carbon catalysts with pentagonal defects. By connecting the dots between theoretical insights and experimental results, this review elucidates the fundamental principles governing pentagon-related activity and offers perspectives on future directions for designing efficient ORR catalysts based on carbon materials.
Collapse
Affiliation(s)
- Guoping Chen
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Taro Koide
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Junji Nakamura
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Japan
| |
Collapse
|
14
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
16
|
Rafique A, Bulbul YE, Raza ZA, Oksuz AU. Free radical synthesis of succinic anhydride grafted poly(lactic acid) porous templates for sustained drug delivery in the buffer media. Int J Biol Macromol 2025; 297:139830. [PMID: 39809392 DOI: 10.1016/j.ijbiomac.2025.139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA). The study undertakes the synthesis of succinic anhydride (SA)-grafted PLA [SA-g-PLA] films for sustained drug delivery applications. The entrapped porogen was leached out under alkaline treatment to make the PLA film porous by creating channels/cavities for drug inclusion. The success of the surface treatment of PLA-based films was investigated using specific chemical analyses. The results demonstrated the hydrophilic nature (water contact angle of 31°) of the SA-g-PLA films for the prevalence of MA (1780 cm-1) and methylamine (340-640 cm-1) congeners as expressed under FTIR analysis. The SA-g-PLA film expressed a crystallinity of 72.41 % and a melting temperature of 201.9 °C. The SA-g-PLA film exhibited pH-responsive streptomycin sulfate uptake (pH 6.5) and release (pH 7.4) profiles and obeyed first-order kinetics. The SA-g-PLA porous films with potential modification would be a sustainable and biocompatible candidate for drug delivery applications.
Collapse
Affiliation(s)
- Ammara Rafique
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Department of Chemistry, Faculty of Arts and Science, Turkey Suleyman Demirel University, Faculty of Arts and Science, 32260 Isparta, Turkey
| | - Y Emre Bulbul
- Department of Chemistry, Faculty of Arts and Science, Turkey Suleyman Demirel University, Faculty of Arts and Science, 32260 Isparta, Turkey
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Faculty of Arts and Science, Turkey Suleyman Demirel University, Faculty of Arts and Science, 32260 Isparta, Turkey
| |
Collapse
|
17
|
Cheng X, Xu J, Cui Y, Liu J, Chen Y, He C, Cui L, Liu Y, Song B, Gong C, Mi P. Nanovesicles for Lipid Metabolism Reprogram-Enhanced Ferroptosis and Magnetotherapy of Refractory Tumors and Inhibiting Metastasis with Activated Innate Immunity. ACS NANO 2025; 19:7213-7230. [PMID: 39928515 DOI: 10.1021/acsnano.4c16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Castration-resistant prostate cancer (CRPC) is an intractable disease, but approaches for eradicating primary tumors and inhibiting metastasis are limited. Considering that lipid metabolism plays key roles in ferroptosis and tumor progression and treatment resistance, here we developed a biomimetic nanovesicle (FiFe@RBM) encapsulating fatty acid synthetase inhibitors and iron oxide nanoparticles for synergistic therapy of CRPC and inhibiting the metastasis. FiFe@RBM with superior magnetic properties efficiently delivered drugs into the CRPC cancer cells, where it can release Fe ions to efficiently induce reactive oxygen species and mitochondrial dysfunction and inhibit the AKT-mTOR pathway, which synergistically causes apoptosis and enhances ferroptosis by rewired lipid metabolism through increasing polyunsaturated fatty acids (PUFAs), PUFA-enriched phosphatidylcholine (PUFA-PC), PUFA-enriched phosphatidylethanolamine (PUFA-PE), etc. By intravenous injection, the high accumulation of FiFe@RBM in PC-3 tumors enabled precision T1/T2-weighted magnetic resonance imaging-guided effective eradication of human CRPC PC-3 tumors by synergistic magnetic hyperthermia therapy (MHT) and ferroptosis, which further inhibited liver metastasis by the activated and recruited high rates of natural killer cells in the nude mice model. This work presents an effective nanovesicle strategy for reprogramming lipid metabolism to enhance ferroptosis in synergy with MHT for effectively treating refractory cancers.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinshun Xu
- Department of Ultrasound, Sichuan Cancer Hospital, Chengdu 610042, Sichuan, China
| | - Yongsheng Cui
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuntian Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuanshi He
- Department of Ultrasound, Sichuan Cancer Hospital, Chengdu 610042, Sichuan, China
| | - Lele Cui
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610051, Sichuan, China
| | - Bin Song
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Radiology, Sanya People's Hospital, Sanya 572032, Hainan, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
18
|
Zhang J, Yang X, Chang Z, Zhu W, Ma Y, He H. Polymeric nanocarriers for therapeutic gene delivery. Asian J Pharm Sci 2025; 20:101015. [PMID: 39931356 PMCID: PMC11808530 DOI: 10.1016/j.ajps.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/13/2025] Open
Abstract
The recent commercialization of gene products has sparked significant interest in gene therapy, necessitating efficient and precise gene delivery via various vectors. Currently, viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed. Beyond these vectors, polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities, such as improving the stability, cellar uptake and endosomal escape of nucleic acid drugs, along with precise delivery to targeted tissues. This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery, focusing on key cationic polymers, nanocarrier types, and preparation methods. It also highlights targeted diseases, strategies to improve delivery efficiency, and potential future directions in this research area. The review is hoped to inspire the development, optimization, and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Xinyu Yang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhichao Chang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenwei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuhua Ma
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
19
|
Bai Z, Yang Y, Cui Z, Liang W, Zhang X, Zhang Z, Sun J, Liu Z, Li K, Shi M, Li J. Double-targeted liposomes coated with matrix metallopeptidase-2-responsive polypeptide nanogel for chemotherapy and enhanced immunotherapy against cervical cancer. Mater Today Bio 2025; 30:101412. [PMID: 39811606 PMCID: PMC11731983 DOI: 10.1016/j.mtbio.2024.101412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Immunotherapy is a cornerstone in cancer treatment, celebrated for its precision, ability to eliminate residual cancer cells, and potential to avert tumor recurrence. Nonetheless, its effectiveness is frequently undermined by the immunosuppressive milieu created by tumors. This study presents a novel nanogel-based drug delivery system, DOX-4PI@CpG@Lipo@Gel (DPCLG), engineered to respond to Matrix Metallopeptidase-2 (MMP-2)-a protease abundant in the tumor microenvironment (TME). This system enables the controlled release of two distinct types of liposomes within the TME. The first, DOX-4PI@Liposome (DPL), carries doxorubicin (DOX) and 4-phenylimidazole (4PI), targeting cancer cells to provide chemotherapeutic effects while diminishing the immunosuppressive environment. The second, a mannosyl-modified cationic liposome (CL), is loaded with Cytosine phosphate guanine (CpG) oligodeoxynucleotides to specifically target M2 phenotype macrophages, reversing their tumor-associated phenotype (TAM) and activating immune cytokines to promote tumor destruction. Our findings indicate that DPCLG significantly curtails tumor growth, both in vitro and in vivo, mitigates the immunosuppressive TME, and triggers a potent systemic immune response. This study underscores the potential of DPCLG as an advanced, dual-targeting drug delivery system for comprehensive cancer therapy.
Collapse
Affiliation(s)
- Zhimin Bai
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Yibo Yang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Zutong Cui
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Wenming Liang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Xin Zhang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Zihan Zhang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Jianming Sun
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Zhiwei Liu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Kun Li
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Ming Shi
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
20
|
Sun H, Zhong Z. Bioresponsive Polymeric Nanoparticles: From Design, Targeted Therapy to Cancer Immunotherapy. Biomacromolecules 2025; 26:33-42. [PMID: 39667037 DOI: 10.1021/acs.biomac.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns. In the past 17 years, we have devoted ourselves to exploring elegant strategies to address the above basic and translational problems by introducing diverse functional groups and/or targeting ligands to safe biomedical materials, such as biodegradable polymers and water-soluble polymers. This minimal modification is critical for further clinical translation. We have tailor-made various bioresponsive NPs including shell-sheddable and/or acid-sensitive biodegradable NPs, disulfide-cross-linked biodegradable micelles and polymersomes, and blood-brain barrier (BBB)-permeable NPs, to target different tumors. This perspective provides an overview of our work path toward targeted nanomedicines and personalized vaccines, which might inspire clinical translation and future research on cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, PR China
| |
Collapse
|
21
|
Zhao M, Zhou Q, Ge Z. Supramolecular Assemblies via Host-Guest Interactions for Tumor Immunotherapy. Chemistry 2025; 31:e202403508. [PMID: 39448542 DOI: 10.1002/chem.202403508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapy has emerged as one of the most promising modalities for cancer treatment providing hopes of cancer patients with the significant advantages over traditional antitumor therapy methods. Supramolecular assemblies based on host-guest interactions have been widely explored in the field of cancer immunotherapy as the delivery systems. A variety of supramolecular materials show unique features for efficient drug encapsulation, targeting delivery and release, which are favorable to activate antitumor immune responses especially through combination of different treatment strategies. In this review article, we summarize the research progresses of supramolecular assemblies via host-guest interactions for tumor immunotherapy. The construction of various drug delivery systems including hydrogels, liposomes, and polymeric nanoparticles, the drug encapsulation and delivery, as well as advantages and disadvantages are discussed. The perspectives related to future developments in this field are also described.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
22
|
Li L, Zhao Q, Chen Z, Zhao Z, Du B, Wang M, Bai P, Wang X, Ren X, Li L, Zhang R. Size-Tunable Boron Nanoreactors for Boron Neutron Capture Synergistic Chemodynamic Therapy of Tumor. Adv Healthc Mater 2025; 14:e2402307. [PMID: 39555631 DOI: 10.1002/adhm.202402307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Boron neutron capture therapy (BNCT) stands out as a noninvasive potential modality for invasive malignant tumors, with boron drugs playing a crucial role in its efficacy. Nevertheless, the development of boron drugs with biodegradability, as well as high permeability and retention effects, continues to present significant challenges. Here, we fabricate a size-tunable boron nanoreactor (TBNR) via assembling boron nitride quantum dots (BNQDs) and Fe3+ for tumor BNCT and chemodynamic (CDT) synergistic treatment. The obtained TBNR with an appropriate size exhibits superior tumor accumulation and retention. Upon stimulation by the tumor microenvironment (TME), the contained Fe3+ undergo redox reactions with glutathione (GSH) to produce Fe2+ Fenton reagents, which in turn activate CDT function and simultaneously induce TBNR depolymerization. Subsequently, the released ultrasmall BNQDs exhibit intra-deep penetration characteristic and are fully enriched at the tumor site. The in vivo experiments reveal that TBNR possesses excellent biocompatibility and superior synergistic anti-tumor ability post neutron irradiation, resulting in significant shrinkage of subcutaneous 4T1 tumors. Moreover, the TBNR-mediated BNCT has triggered an obvious immune response, which contributes to the long-term suppression of tumors after neutron irradiation. To conclude, this study provides a new approach for constructing more efficient versatile nanocarriers for BNCT-induced combination cancer therapies.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qian Zhao
- Department of Chemistry, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhiqing Chen
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zican Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baojie Du
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mixue Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaozhe Wang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaofeng Ren
- Department of Chemistry, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Liping Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Department of Chemistry, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
23
|
Zhu H, Kuang H, Huang X, Li X, Zhao R, Shang G, Wang Z, Liao Y, He J, Li D. 3D printing of drug delivery systems enhanced with micro/nano-technology. Adv Drug Deliv Rev 2025; 216:115479. [PMID: 39603388 DOI: 10.1016/j.addr.2024.115479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huijuan Kuang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinxin Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruosen Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guojin Shang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziyu Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yucheng Liao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
24
|
Alimohammadvand S, Zenjanab MK, Pakchin PS, Abdolahinia ED, Barar J, Omidi Y, Pourseif MM, Fathi M, Shayegh J. Aripiprazole-loaded niosome/chitosan-gold nanoparticles for breast cancer chemo-photo therapy. BMC Biotechnol 2024; 24:108. [PMID: 39719556 DOI: 10.1186/s12896-024-00939-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
INTRODUCTION Breast cancer, a formidable global health challenge for women, necessitates innovative therapeutic strategies with enhanced efficacy and minimal side effects. Aripiprazole (ARI), a widely used schizophrenia medication, exhibits promising potential in the treatment of breast cancer. As cancer therapy evolves towards a combination approach, multimodal nano-based delivery systems, such as ARI-loaded niosomes (NIOs) combined with Chitosan-Au nanoparticles for chemo-photothermal therapy, show promise over traditional chemotherapy alone by enhancing targeted efficacy and minimizing side effects. METHODS In this study, a niosomal formulation was designed, incorporating ARI and chitosan-coated AuNPs (i.e. NIOs/AuNPs-CS/ARI), to study the synergistic effect of photothermal/chemotherapy in breast cancer cells. RESULTS The nanosystems were characterized using UV-Vis spectroscopy and Fourier-transform infrared spectroscopy (FT-IR), confirming the successful synthesis steps. The hydrodynamic diameter of NIOs/AuNPs-CS was determined to be 44.62 nm with a zeta potential of -0.836. Also, Transmission Electron Microscopy (TEM) and Field-Emission Scanning Electron Microscopical (FE-SEM) analysis were performed to assess the size and morphology of NPs. The loading efficiency of ARI in NIOs and NIOs/AuNPs-CS was 75% and 88%, respectively. Furthermore, the release rate of the drug from NIOs/AuNPs-CS is higher than blank NIOs at two pH values (5.8 and 7.4). The cellular uptake of AuNPs-CS-encapsulated NIOs was considerably higher than that of blank NIOs. The Annexin V/PI staining assay showed that the apoptosis/necrosis rate was high in NIOs/AuNPs-CS/ARI (46%) and NIOs/ARI (36%) in 48 h. The results of MTT assessments demonstrated higher cytotoxicity by ARI-loaded NPs. The viability of MCF-7 cells treated with NIOs/AuNPs-CS/ARI was reduced from 60% and 50% to 40% and 20%, respectively, after 24 and 48 h upon laser irradiation. CONCLUSION The results of this experiment demonstrated the remarkable effectiveness of NIOs/AuNPs-CS/ARI in cancer treatment, owing to their unique properties, including the PTT capability and pH sensitivity.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Masoumeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33313, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Engineered Biomaterial Research Center, Khazar University, Baku, Azerbaijan
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar Branch, Shabestar, Iran.
| |
Collapse
|
25
|
Alshahrani SM, Alotaibi HF, Begum MY. Computational analysis of controlled drug release from porous polymeric carrier with the aid of Mass transfer and Artificial Intelligence modeling. Sci Rep 2024; 14:28422. [PMID: 39558051 PMCID: PMC11574292 DOI: 10.1038/s41598-024-79749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Controlled release of a desired drug from porous polymeric biomaterials was analyzed via computational method. The method is based on simulation of mass transfer and utilization of artificial intelligence (AI). This study explores the efficacy of three regression models, i.e., Kernel Ridge Regression (KRR), Gaussian Process Regression (GPR), and Gradient Boosting (GB) in determining the concentration of a chemical substance (C) based on coordinates (r, z). Leveraging Firefly Optimization (FFA) for hyperparameter optimization, the models are fine-tuned to maximize their predictive performance. The findings unveil notable disparities in the performance metrics of the models, with GB showcasing the most impressive R2 score of 0.9977, indicative of a remarkable alignment with the data. GPR closely trails with an R2 score of 0.88754, while KRR falls short with an R2 score of 0.76134. Additionally, GB manifests the most modest Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) among the trio of models, further cementing its supremacy in predictive precision. These outcomes accentuate the significance of judiciously selecting regression methodologies and optimization approaches for adeptly modeling intricate spatial datasets.
Collapse
Affiliation(s)
- Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al- Kharj, 11942, Saudi Arabia.
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
26
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
27
|
Kim M, Shin M, Zhao Y, Ghosh M, Son Y. Transformative Impact of Nanocarrier‐Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons. SMALL SCIENCE 2024; 4. [DOI: 10.1002/smsc.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Advancing therapeutic progress is centered on developing drug delivery systems (DDS) that control therapeutic molecule release, ensuring precise targeting and optimal concentrations. Targeted DDS enhances treatment efficacy and minimizes off‐target effects, but struggles with drug degradation. Over the last three decades, nanopharmaceuticals have evolved from laboratory concepts into clinical products, highlighting the profound impact of nanotechnology in medicine. Despite advancements, the effective delivery of therapeutics remains challenging because of biological barriers. Nanocarriers offer a solution with a small size, high surface‐to‐volume ratios, and customizable properties. These systems address physiological and biological challenges, such as shear stress, protein adsorption, and quick clearance. They allow targeted delivery to specific tissues, improve treatment outcomes, and reduce adverse effects. Nanocarriers exhibit controlled release, decreased degradation, and enhanced efficacy. Their size facilitates cell membrane penetration and intracellular delivery. Surface modifications increase affinity for specific cell types, allowing precise treatment delivery. This study also elucidates the potential integration of artificial intelligence with nanoscience to innovate future nanocarrier systems.
Collapse
Affiliation(s)
- Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Young‐Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
- Bio‐Health Materials Core‐Facility Center Jeju National University Jeju‐si 63243 Republic of Korea
- Practical Translational Research Center Jeju National University Jeju‐si 63243 Republic of Korea
| |
Collapse
|
28
|
Cheng X, He C, Huang J, Li J, Hu Z, Wang L, Wei T, Cui L, Lu M, Mi P, Xu J. A Tumor-Homing Nanoframework for Synergistic Microwave Tumor Ablation and Provoking Strong Anticancer Immunity Against Metastasis. ACS NANO 2024; 18:29121-29139. [PMID: 39387481 DOI: 10.1021/acsnano.4c10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Microwave thermotherapy (MT) is a clinical local tumor ablation modality, but its applications are limited by its therapeutic efficacy and safety. Therefore, developing sensitizers to optimize the outcomes of MT is in demand in clinical practice. Herein, we engineered a special nanoframework (i.e., FdMI) based on a fucoidan-decorated zirconium metal-organic framework incorporating manganese ions and liquid physisorption for microwave tumor ablation. The monodisperse nanoframework exhibited both microwave thermal effects and microwave dynamic effects, which could effectively kill cancer cells by efficient intracellular drug delivery. Through fucoidan-mediated targeting of P-selectin in the tumor microenvironment (TME), the FdMI effectively accumulated in tumor regions, leading to significant eradication of orthotropic triple-negative breast cancer (TNBC) and aggressive Hepa1-6 liver tumors by the synergistic effects of microwave thermotherapy/dynamic therapy (MT/MDT). The eradication of primary tumors could activate systemic immune responses, which effectively inhibited distant TNBC tumors and lung metastasis of Hepa1-6 liver tumors, respectively. This work not only engineered nanoparticle sensitizers for tumor-targeted synergistic MT/MDT but also demonstrated that nanocarrier-based microwave tumor ablation could stimulate antitumor immunity to effectively inhibit distant and metastatic tumors, demonstrating the high potential for effectively managing advanced malignant tumors.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Chuanshi He
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Jiangbo Huang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Juan Li
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ziyue Hu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Lu Wang
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ting Wei
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Likun Cui
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Man Lu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Jinshun Xu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| |
Collapse
|
29
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Chen P, Cabral H. Enhancing Targeted Drug Delivery through Cell-Specific Endosomal Escape. ChemMedChem 2024; 19:e202400274. [PMID: 38830827 DOI: 10.1002/cmdc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Endosome is a major barrier in the intracellular delivery of drugs, especially for biologics, such as proteins, peptides, and nucleic acids. After being endocytosed, these cargos will be trapped inside the endosomal compartments and finally degraded in the lysosomes. Thus, various strategies have been developed to facilitate the escape of cargos from the endosomes to improve the intracellular delivery efficiency. While the majority of the studies are focusing on strengthening the endosomal escape capability to maximize the delivery outcome, recent evidence suggests that a careful control of the endosomal escape process could provide opportunity for targeted drug delivery. In this concept review, we examined current delivery systems that can sense intra-endosomal factors or external stimuli for controlling endosomal escape toward a targeted intracellular delivery of cargos. Furthermore, the prospects and challenges of such strategies are discussed.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Horacio Cabral
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
32
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
33
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
He W, Gao H, Wu W. Nanomedicine biointeractions during body trafficking. Adv Drug Deliv Rev 2024; 209:115324. [PMID: 38663551 DOI: 10.1016/j.addr.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Wu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|