1
|
Leeman JE, Han Z, Haas-Kogan DA. When Best Care Takes a Back Seat to the Bottom Line. JAMA Oncol 2024; 10:1311-1312. [PMID: 39088197 DOI: 10.1001/jamaoncol.2024.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This Viewpoint discusses the clinical vs economic success of magnetic resonance imaging combined with linear accelerator technology and its impact on patients.
Collapse
Affiliation(s)
- Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| | - Zhaohui Han
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Jiang L, Ye Y, Feng Z, Liu W, Cao Y, Zhao X, Zhu X, Zhang H. Stereotactic body radiation therapy for the primary tumor and oligometastases versus the primary tumor alone in patients with metastatic pancreatic cancer. Radiat Oncol 2024; 19:111. [PMID: 39160547 PMCID: PMC11334573 DOI: 10.1186/s13014-024-02493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Local therapies may benefit patients with oligometastatic cancer. However, there were limited data about pancreatic cancer. Here, we compared the efficacy and safety of stereotactic body radiation therapy (SBRT) to the primary tumor and all oligometastases with SBRT to the primary tumor alone in patients with metastatic pancreatic cancer. METHODS A retrospective review of patients with synchronous oligometastatic pancreatic cancer (up to 5 lesions) receiving SBRT to all lesions (including all oligometastases and the primary tumor) were performed. Another comparable group of patients with similar baseline characteristics, including metastatic burden, SBRT doses, and chemotherapy regimens, receiving SBRT to the primary tumor alone were identified. The primary endpoint was overall survival (OS). The secondary endpoints were progression frees survival (PFS), polyprogression free survival (PPFS) and adverse events. RESULTS There were 59 and 158 patients receiving SBRT to all lesions and to the primary tumor alone. The median OS of patients with SBRT to all lesions and the primary tumor alone was 10.9 months (95% CI 10.2-11.6 months) and 9.3 months (95% CI 8.8-9.8 months) (P < 0.001). The median PFS of two groups was 6.5 months (95% CI 5.6-7.4 months) and 4.1 months (95% CI 3.8-4.4 months) (P < 0.001). The median PPFS of two groups was 9.8 months (95% CI 8.9-10.7 months) and 7.8 months (95% CI 7.2-8.4 months) (P < 0.001). Additionally, 14 (23.7%) and 32 (20.2%) patients in two groups had grade 3 or 4 treatment-related toxicity. CONCLUSIONS SBRT to all oligometastases and the primary tumor in patients with pancreatic cancer may improve survival, which needs prospective verification.
Collapse
Affiliation(s)
- Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhiru Feng
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Yarlagadda S, Weiss Y, Chuong MD, Bassiri N, Gutierrez AN, Kotecha R, Mehta MP, Mittauer KE. Case report: Intrafraction dose-guided tracking for gastrointestinal organ-at-risk isotoxicity delivery on an MR-guided radiotherapy system. Front Oncol 2024; 14:1357916. [PMID: 39055555 PMCID: PMC11269146 DOI: 10.3389/fonc.2024.1357916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In the current era of high-precision radiation therapy, real-time magnetic resonance (MR)-guided tracking of the tumor and organs at risk (OARs) is a novel approach that enables accurate and safe delivery of high-dose radiation. Organ tracking provides a general sense of the need for daily online adaptation but lacks precise information regarding exact dosimetry. To overcome this limitation, we developed the methodology for monitoring intrafraction motion with real-time MR-guided isodose line-based tracking of an OAR in combination with anatomic tumor-based tracking and reported the first case treated with this approach. An isolated para-aortic (PA) nodal recurrence from carcinosarcoma of the endometrium was treated with an ablative dose of 50 Gy in five fractions using MR-guided radiotherapy (MRgRT). This report demonstrates the feasibility, workflow, dosimetric constraints, and treatment paradigm for real-time isodose line-based OAR tracking and gating to enable an isotoxicity delivery approach. This innovative treatment strategy effectively tracked the intrafraction motion of both the target and OAR independently and enhanced the accuracy of structure localization in time and space with a more precise dosimetric evaluation.
Collapse
Affiliation(s)
- Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Yonatan Weiss
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Michael David Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kathryn Elizabeth Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
4
|
Bassiri N, Bayouth J, Chuong MD, Kotecha R, Weiss Y, Mehta MP, Gutierrez AN, Mittauer KE. Quality assurance of an established online adaptive radiotherapy program: patch and software upgrade. Front Oncol 2024; 14:1358487. [PMID: 38863634 PMCID: PMC11165228 DOI: 10.3389/fonc.2024.1358487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction The ability to dynamically adjust target contours, derived Boolean structures, and ultimately, the optimized fluence is the end goal of online adaptive radiotherapy (ART). The purpose of this work is to describe the necessary tests to perform after a software patch installation and/or upgrade for an established online ART program. Methods A patch upgrade on a low-field MR Linac system was evaluated for post-software upgrade quality assurance (QA) with current infrastructure of ART workflow on (1) the treatment planning system (TPS) during the initial planning stage and (2) the treatment delivery system (TDS), which is a TPS integrated into the delivery console for online ART planning. Online ART QA procedures recommended for post-software upgrade include: (1) user interface (UI) configuration; (2) TPS beam model consistency; (3) segmentation consistency; (4) dose calculation consistency; (5) optimizer robustness consistency; (6) CT density table consistency; and (7) end-to-end absolute ART dose and predicted dose measured including interruption testing. Differences of calculated doses were evaluated through DVH and/or 3D gamma comparisons. The measured dose was assessed using an MR-compatible A26 ionization chamber in a motion phantom. Segmentation differences were assessed through absolute volume and visual inspection. Results (1) No UI configuration discrepancies were observed. (2) Dose differences on TPS pre-/post-software upgrade were within 1% for DVH metrics. (3) Differences in segmentation when observed were small in general, with the largest change noted for small-volume regions of interest (ROIs) due to partial volume impact. (4) Agreement between TPS and TDS calculated doses was 99.9% using a 2%/2-mm gamma criteria. (5) Comparison between TPS and online ART plans for a given patient plan showed agreement within 2% for targets and 0.6 cc for organs at risk. (6) Relative electron densities demonstrated comparable agreement between TPS and TDS. (7) ART absolute and predicted measured end-to-end doses were within 1% of calculated TDS. Discussion An online ART QA program for post-software upgrade has been developed and implemented on an MR Linac system. Testing mechanics and their respective baselines may vary across institutions, but all necessary components for a post-software upgrade QA have been outlined and detailed. These outlined tests were demonstrated feasible for a low-field MR Linac system; however, the scope of this work may be applied and adapted more broadly to other online ART platforms.
Collapse
Affiliation(s)
- Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - John Bayouth
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Yonatan Weiss
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kathryn E. Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Bryant JM, Cruz-Chamorro RJ, Gan A, Liveringhouse C, Weygand J, Nguyen A, Keit E, Sandoval ML, Sim AJ, Perez BA, Dilling TJ, Redler G, Andreozzi J, Nardella L, Naghavi AO, Feygelman V, Latifi K, Rosenberg SA. Structure-specific rigid dose accumulation dosimetric analysis of ablative stereotactic MRI-guided adaptive radiation therapy in ultracentral lung lesions. COMMUNICATIONS MEDICINE 2024; 4:96. [PMID: 38778215 PMCID: PMC11111790 DOI: 10.1038/s43856-024-00526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Definitive local therapy with stereotactic ablative radiation therapy (SABR) for ultracentral lung lesions is associated with a high risk of toxicity, including treatment related death. Stereotactic MR-guided adaptive radiation therapy (SMART) can overcome many of the challenges associated with SABR treatment of ultracentral lesions. METHODS We retrospectively identified 14 consecutive patients who received SMART to ultracentral lung lesions from 10/2019 to 01/2021. Patients had a median distance from the proximal bronchial tree (PBT) of 0.38 cm. Tumors were most often lung primary (64.3%) and HILUS group A (85.7%). A structure-specific rigid registration approach was used for cumulative dose analysis. Kaplan-Meier log-rank analysis was used for clinical outcome data and the Wilcoxon Signed Rank test was used for dosimetric data. RESULTS Here we show that SMART dosimetric improvements in favor of delivered plans over predicted non-adapted plans for PBT, with improvements in proximal bronchial tree DMax of 5.7 Gy (p = 0.002) and gross tumor 100% prescription coverage of 7.3% (p = 0.002). The mean estimated follow-up is 17.2 months and 2-year local control and local failure free survival rates are 92.9% and 85.7%, respectively. There are no grade ≥ 3 toxicities. CONCLUSIONS SMART has dosimetric advantages and excellent clinical outcomes for ultracentral lung tumors. Daily plan adaptation reliably improves target coverage while simultaneously reducing doses to the proximal airways. These results further characterize the therapeutic window improvements for SMART. Structure-specific rigid dose accumulation dosimetric analysis provides insights that elucidate the dosimetric advantages of SMART more so than per fractional analysis alone.
Collapse
Affiliation(s)
- J M Bryant
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Ruben J Cruz-Chamorro
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alberic Gan
- University of South Florida Health Morsani College of Medicine, Tampa, FL, USA
| | - Casey Liveringhouse
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joseph Weygand
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ann Nguyen
- University of South Florida Health Morsani College of Medicine, Tampa, FL, USA
| | - Emily Keit
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Maria L Sandoval
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Austin J Sim
- Department of Radiation Oncology; James Cancer Hospital, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Bradford A Perez
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Thomas J Dilling
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Gage Redler
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jacqueline Andreozzi
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Louis Nardella
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Arash O Naghavi
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Vladimir Feygelman
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kujtim Latifi
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Stephen A Rosenberg
- Department of Radiation Oncology; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
6
|
Ocanto A, Torres L, Montijano M, Rincón D, Fernández C, Sevilla B, Gonsalves D, Teja M, Guijarro M, Glaría L, Hernánz R, Zafra-Martin J, Sanmamed N, Kishan A, Alongi F, Moghanaki D, Nagar H, Couñago F. MR-LINAC, a New Partner in Radiation Oncology: Current Landscape. Cancers (Basel) 2024; 16:270. [PMID: 38254760 PMCID: PMC10813892 DOI: 10.3390/cancers16020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Technological advances in radiation oncology are oriented towards improving treatment precision and tumor control. Among these advances, magnetic-resonance-image-guided radiation therapy (MRgRT) stands out, with technological advances to deliver targeted treatments adapted to a tumor's anatomy on the day while minimizing incidental exposure to organs at risk, offering an unprecedented therapeutic advantage compared to X-ray-based IGRT delivery systems. This new technology changes the traditional workflow in radiation oncology and requires an evolution in team coordination to administer more precise treatments. Once implemented, it paves the way for newer indication for radiation therapy to safely deliver higher doses than ever before, with better preservation of healthy tissues to optimize patient outcomes. In this narrative review, we assess the technical aspects of the novel linear accelerators that can deliver MRgRT and summarize the available published experience to date, focusing on oncological results and future challenges.
Collapse
Affiliation(s)
- Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Lisselott Torres
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Miguel Montijano
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Diego Rincón
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Castalia Fernández
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Beatriz Sevilla
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Daniela Gonsalves
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Macarena Teja
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Marcos Guijarro
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Luis Glaría
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
| | - Raúl Hernánz
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
| | - Juan Zafra-Martin
- Group of Translational Research in Cancer Immunotherapy, Centro de Investigaciones Médico-Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), 29010 Málaga, Spain;
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Noelia Sanmamed
- Department of Radiation Oncology, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Amar Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar, Italy;
- University of Brescia, 25121 Brescia, Italy
| | - Drew Moghanaki
- UCLA Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
- GenesisCare, 28043 Madrid, Spain
| |
Collapse
|
7
|
Mantello G, Galofaro E, Caravatta L, Di Carlo C, Montrone S, Arpa D, Chiloiro G, De Paoli A, Donato V, Gambacorta MA, Genovesi D, Lupattelli M, Macchia G, Montesi G, Niespolo RM, Palazzari E, Pontoriero A, Scricciolo M, Valvo F, Franco P. Pattern of care for re-irradiation in locally recurrent rectal cancer: a national survey on behalf of the AIRO gastrointestinal tumors study group. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01652-3. [PMID: 37365381 DOI: 10.1007/s11547-023-01652-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Radical resection (R0) represents the best curative treatment for local recurrence (LR) rectal cancer. Re-irradiation (re-RT) can increase the rate of R0 resection. Currently, there is a lack of guidelines on Re-RT for LR rectal cancer. The Italian Association of Radiation and clinical oncology for gastrointestinal tumors (AIRO-GI) study group released a national survey to investigate the current clinical practice of external beam radiation therapy in these patients. MATERIAL AND METHODS In February 2021, the survey was designed and distributed to members of the GI working group. The questionnaire consisted of 40 questions regarding center characteristics, clinical indications, doses, and treatment techniques of re-RT for LR rectal cancer. RESULTS A total of 37 questionnaires were collected. Re-RT was reported as an option for neoadjuvant treatment in resectable and unresectable disease by 55% and 75% of respondents, respectively. Long-course treatment with 30-40 Gy (1.8-2 Gy/die, 1.2 Gy bid) and hypofractionated regimen of 30-35 Gy in 5 fractions were used in most centers. A total dose of 90-100 Gy as EqD2 dose (α/β = 5 Gy) was delivered by 46% of the respondents considering the previous treatment. Modern conformal techniques and daily image-guided radiation therapy protocols were used in 94% of centers. CONCLUSION Our survey showed that re-RT treatment is performed with advanced technology that allow a good management of LR rectal cancer. Significant variations were observed in terms of dose and fractionation, highlighting the need for a consensus on a common treatment strategy that could be validated in prospective studies.
Collapse
Affiliation(s)
- Giovanna Mantello
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Elena Galofaro
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Via Conca 71, 60126, Ancona, Italy.
| | - Luciana Caravatta
- Department of Radiation Oncology, SS Annunziata Hospital, Chieti, Italy
| | - Clelia Di Carlo
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Via Conca 71, 60126, Ancona, Italy
| | | | - Donatella Arpa
- IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Radiotherapy Unit, Meldola, Italy
| | - Giuditta Chiloiro
- Departments of Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonino De Paoli
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vittorio Donato
- Radiation Oncology Division, Oncology and Speciality Medicine Department, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Domenico Genovesi
- Department of Radiation Oncology, SS Annunziata Hospital, Chieti, Italy
| | - Marco Lupattelli
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Gabriella Macchia
- Radiotherapy Unit, Gemelli Molise Hospital, Catholic University of Sacred Heart, Campobasso, Italy
| | | | | | - Elisa Palazzari
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Melissa Scricciolo
- UOC di Radioterapia Oncologica Mestre, Ospedale dell'Angelo, Venice, Mestre, Italy
| | - Francesca Valvo
- Fondazione CNAO, National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Pierfrancesco Franco
- Department of Translational Medicine, Department of Radiation Oncology, Maggiore Della Carità University Hospital, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
8
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|