1
|
Utpal BK, Mokhfi FZ, Zehravi M, Sweilam SH, Gupta JK, Kareemulla S, C RD, Rao AA, Kumar VV, Krosuri P, Prasad D, Khan SL, Roy SC, Rab SO, Alshehri MA, Emran TB. Resveratrol: A Natural Compound Targeting the PI3K/Akt/mTOR Pathway in Neurological Diseases. Mol Neurobiol 2025; 62:5579-5608. [PMID: 39578340 DOI: 10.1007/s12035-024-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Neurological diseases (NDs), including neurodegenerative disorders and acute injuries, are a significant global health concern. The PI3K/Akt/mTOR pathway, a crucial signaling cascade, is responsible for the survival of cells, proliferation, and metabolism. Dysregulation of this pathway has been linked to neurological conditions, indicating its potential as a vital target for therapeutic approaches. Resveratrol (RSV), a natural compound found in berries, peanuts, and red grapes, has antioxidant, anti-cancer, and anti-inflammatory effects. Its ability to modulate the PI3K/Akt/mTOR pathway has been interesting in NDs. Studies have shown that RSV can activate the PI3K/Akt pathway, promoting cell survival and inhibiting apoptosis of neuronal cells. Its impact on mTOR, a downstream effector of Akt, further contributes to its neuroprotective effects. RSV's ability to restore autophagic flux presents a promising avenue for therapeutic intervention. Its anti-inflammatory properties suppress inflammatory responses by inhibiting key signaling molecules within the pathway. Additionally, RSV's role in enhancing mitochondrial function contributes to its neuroprotective profile. This study highlights RSV's potential as a multifaceted therapeutic agent in NDs, specifically by PI3K/Akt/mTOR pathway modulation. Additional investigation is required to optimize its therapeutic capacity in diverse neurological conditions.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuha, Mathura, Uttar Pradesh, 281406, India
| | - Shaik Kareemulla
- Department of Pharmacy Practice, Malla Reddy College of Pharmacy (MRCP), Kompally, Secunderabad, Telangana, 500100, India
| | - Ronald Darwin C
- Department of Pharmacology, School of Pharmaceutical Sciences, Technology and Advanced Studies (VISTAS), Vels Institute of Science, Pallavaram, Chennai, 600117, India
| | - A Anka Rao
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Voleti Vijaya Kumar
- Department of Pharmaceutics, School of Pharmacy, Satyabhama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pavankumar Krosuri
- Department of Pharmaceutics, Santhiram College of Pharmacy, NH40, Nandyal, Andhra Pradesh, 518112, India
| | - Dharani Prasad
- Depertment of Pharmacology Mohan Babu University MB School of Pharmaceutical Sciences, Erstwhile Sree Vidyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, 517102, India
| | - Sharukh L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
2
|
Zhu L, Yang M, Fan L, Yan Q, Zhang L, Mu P, Lu F. Interaction between resveratrol and SIRT1: role in neurodegenerative diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:89-101. [PMID: 39105797 DOI: 10.1007/s00210-024-03319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant health challenges and economic burdens worldwide. Recent studies have emphasized the potential therapeutic value of activating silent information regulator-1 (SIRT1) in treating these conditions. Resveratrol, a compound known for its ability to potently activate SIRT1, has demonstrated promising neuroprotective effects by targeting the underlying mechanisms of neurodegeneration. In this review, we delve into the crucial role of resveratrol-mediated SIRT1 upregulation in improving neurodegenerative diseases. The role of the activation of SIRT1 by resveratrol was reviewed. Moreover, network pharmacology was used to elucidate the possible mechanisms of resveratrol in these diseases. Activation of SIRT1 by resveratrol had positive effects on neuronal function and survival and alleviated the hallmark features of these diseases, such as protein aggregation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. In terms of network pharmacology, the signaling pathways by which resveratrol protects against different neurodegenerative diseases were slightly different. Although the precise mechanisms underlying the neuroprotective effects of resveratrol and SIRT1 activation remain under investigation, these findings offer valuable insights into potential therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, 113004, People's Republic of China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Miaomiao Yang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, 113004, People's Republic of China
- Basic Medical College, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Lehao Fan
- Basic Medical College, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Qiuying Yan
- Basic Medical College, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Lifeng Zhang
- Department of Public Health, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
| | - Ping Mu
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
- Department of Physiology, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
| | - Fangjin Lu
- Department of Pharmaceutical Analysis, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
| |
Collapse
|
3
|
Yang H, Wang F, Zhao P, Ullah S, Ma Y, Zhao G, Cheng Y, Li Q, Li T, Qiao M, Song L, Zhang L, Galaverna G, Huang X, Li N. Black soybean peptide mediates the AMPK/SIRT1/NF-κB signaling pathway to alleviate Alzheimer's-related neuroinflammation in lead-exposed HT22 cells. Int J Biol Macromol 2025; 286:138404. [PMID: 39643189 DOI: 10.1016/j.ijbiomac.2024.138404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by hyperphosphorylation of tau, neuroinflammation, and amyloid-beta (Aβ) plaques. Lead (Pb) exposure has been linked to an increased risk of AD and neuroinflammation. The purpose of this study is to determine if black soybean peptide (BSP1) may reduce neuroinflammation caused by Pb and associated AD-like pathology. Pb exposure was given to mouse hippocampus HT22 cells in the presence or absence of BSP1, positive control resveratrol (Rsv), or the SIRT1 inhibitor EX-527. Our findings suggest that BSP1 downregulates the expression of beta-secretase (BACE1) and amyloid precursor protein (APP), inhibits tau phosphorylation, and reduces Aβ1-42 deposition. In addition, BSP1 effectively alleviated Pb-induced neuroinflammation by reducing the phosphorylation of NF-κB and the expression of pro-inflammatory cytokines (IL-1β, TNF-α, NLRP3, and IL-18). BSP1 provides neuroprotective effect via phosphorylating LKB1 and AMPK, inhibiting mTOR signaling, and activating the AMPK/SIRT1 pathway. These results suggest that BSP1 may be therapeutically beneficial for preventing or treating AD by reducing Pb-induced neuroinflammation.
Collapse
Affiliation(s)
- Huijie Yang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, 450002 Zhengzhou, China
| | - Peijun Zhao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Saif Ullah
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Guangshan Zhao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Qian Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Lei Zhang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Gianni Galaverna
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 17/a, 43124 Parma, Italy
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China.
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China.
| |
Collapse
|
4
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
5
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
6
|
Bagheri J, Alipour N, Delavar A, Baradaran R, Salimi A, Rahimi Anbarkeh F. Resveratrol as modulator of PSA-NCAM expression in the hippocampus of diazinon-injured rat fetuses. Neurosci Lett 2024; 836:137892. [PMID: 38981564 DOI: 10.1016/j.neulet.2024.137892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in the developing central nervous system (CNS) and plays an important role in neurogenesis. Organophosphorus (OP) toxins, including diazinon (DZN), cause oxidative stress (OS) and damage the CNS. Resveratrol (RV), with its antioxidant effect, leads to the reduction of OS. Therefore, this research was conducted with the aim of the effect of RVon the expression of PSA-NCAM in the hippocampus (HPC) of rat fetuses treated with DZN. In this study, 24 female Wistar rats were divided into 4 groups (n = 6): Control, DZN (40 mg/kg), RV(10 mg/kg), and DZN + RV(40 mg/kg + 10 mg/kg) after confirming they were pregnant. On the 21st day of pregnancy, the mother mice were anesthetized with ketamine and xylazine, and the fetuses were removed; after anesthesia, their brains were removed for immunohistochemistry and western blot (WB) technique. The results of the study showed that in the group receiving DZN, the level of PSA-NCAM protein expression decreased significantly compared to the control group, and the group receiving RV with its antioxidant property increased the expression of PSA-NCAM protein compared to the DZN group. All in all, the exposure of pregnant mice to DZN causes disorders in the CNS, especially the level of PSA-NCAM protein expression in the HPC of fetuses, and the use of RV as an antioxidant by pregnant mothers neutralizes the effects of DZN in the HPC of their fetuses.
Collapse
Affiliation(s)
- Javad Bagheri
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Islamic Azad University, Mashhad, Iran
| | - Nasim Alipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Islamic Azad University, Mashhad, Iran
| | - Amir Delavar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Baradaran
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Alireza Salimi
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Rahimi Anbarkeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, Vanoli C, Vanoli E, Ferrara F. The Brain-Gut Axis, an Important Player in Alzheimer and Parkinson Disease: A Narrative Review. J Clin Med 2024; 13:4130. [PMID: 39064171 PMCID: PMC11278248 DOI: 10.3390/jcm13144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are severe age-related disorders with complex and multifactorial causes. Recent research suggests a critical link between neurodegeneration and the gut microbiome, via the gut-brain communication pathway. This review examines the role of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, in the development of AD and PD, and investigates its interaction with microRNAs (miRNAs) along this bidirectional pathway. TMAO, which is produced from dietary metabolites like choline and carnitine, has been linked to increased neuroinflammation, protein misfolding, and cognitive decline. In AD, elevated TMAO levels are associated with amyloid-beta and tau pathologies, blood-brain barrier disruption, and neuronal death. TMAO can cross the blood-brain barrier and promote the aggregation of amyloid and tau proteins. Similarly, TMAO affects alpha-synuclein conformation and aggregation, a hallmark of PD. TMAO also activates pro-inflammatory pathways such as NF-kB signaling, exacerbating neuroinflammation further. Moreover, TMAO modulates the expression of various miRNAs that are involved in neurodegenerative processes. Thus, the gut microbiome-miRNA-brain axis represents a newly discovered mechanistic link between gut dysbiosis and neurodegeneration. MiRNAs regulate the key pathways involved in neuroinflammation, oxidative stress, and neuronal death, contributing to disease progression. As a direct consequence, specific miRNA signatures may serve as potential biomarkers for the early detection and monitoring of AD and PD progression. This review aims to elucidate the complex interrelationships between the gut microbiota, trimethylamine-N-oxide (TMAO), microRNAs (miRNAs), and the central nervous system, and the implications of these connections in neurodegenerative diseases. In this context, an overview of the current neuroradiology techniques available for studying neuroinflammation and of the animal models used to investigate these intricate pathologies will also be provided. In summary, a bulk of evidence supports the concept that modulating the gut-brain communication pathway through dietary changes, the manipulation of the microbiome, and/or miRNA-based therapies may offer novel approaches for implementing the treatment of debilitating neurological disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| | - Raffaello Nemni
- Unit of Neurology, Centro Diagnostico Italiano S.p.A., Milan Fondazione Crespi Spano, 20011 Milan, Italy;
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Patrizia Gandolfo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Luca Giordano
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Elisabetta Mormone
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Anna Macula
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Colleretto Giacosa, 10010 Turin, Italy;
- Department of Physics, University of Torino, 10124 Torino, Italy
| | - Mariarosa Cuomo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Camilla Vanoli
- Department of Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| |
Collapse
|
8
|
Madhubala D, Patra A, Khan MR, Mukherjee AK. Phytomedicine for neurodegenerative diseases: The road ahead. Phytother Res 2024; 38:2993-3019. [PMID: 38600725 DOI: 10.1002/ptr.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
9
|
Zeini S, Davoodian N, Kazemi H, Shareghi Brojeni M, Ghani E, Arab Firouzjaei M, Atashabparvar A. Resveratrol prevents cognitive impairment and hippocampal inflammatory response induced by lipopolysaccharide in a mouse model of chronic neuroinflammation. Physiol Behav 2024; 278:114508. [PMID: 38460779 DOI: 10.1016/j.physbeh.2024.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Neurodegenerative disorders are associated with chronic neuroinflammation, which contributes to their pathogenesis and progression. Resveratrol (RSV) is a polyphenolic compound with strong antioxidant and anti-inflammatory properties. In the present study, we investigated whether RSV could protect against cognitive impairment and inflammatory response in a mouse model of chronic neuroinflammation induced by lipopolysaccharide (LPS). METHOD Mice received oral RSV (30 mg/kg) or vehicle for two weeks, and injected with LPS (0.75 mg/kg) or saline daily for the last seven days. After two weeks, mice were subjected to behavioral assessments using the Morris water maze and Y-maze. Moreover, mRNA expression of several inflammatory markers, neuronal loss, and glial density were evaluated in the hippocampus of treated mice. RESULTS Our findings showed that RSV treatment effectively improved spatial and working memory impairments induced by LPS. In addition, RSV significantly reduced hippocampal glial densities and neuronal loss in LPS-injected mice. Moreover, RSV treatment suppressed LPS-induced upregulation of NF-κB, IL-6, IL-1β, and GFAP in the hippocampus of treated mice. CONCLUSION Taken together, our results highlight the detrimental effect of systemic inflammation on the hippocampus and the potential of natural products with anti-inflammatory effects to counteract this impact.
Collapse
Affiliation(s)
- Shiva Zeini
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haniyeh Kazemi
- Department of Physiology, The Medical School, Shiraz Medical University, of Medical Sciences, Shiraz, Iran
| | - Masoud Shareghi Brojeni
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Arab Firouzjaei
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Atashabparvar
- Department of Pathology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
10
|
Azargoonjahromi A, Abutalebian F. Unraveling the therapeutic efficacy of resveratrol in Alzheimer's disease: an umbrella review of systematic evidence. Nutr Metab (Lond) 2024; 21:15. [PMID: 38504306 PMCID: PMC10953289 DOI: 10.1186/s12986-024-00792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
CONTEXT Resveratrol (RV), a natural compound found in grapes, berries, and peanuts, has been extensively studied for its potential in treating Alzheimer's disease (AD). RV has shown promise in inhibiting the formation of beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs), protecting against neuronal damage and oxidative stress, reducing inflammation, promoting neuroprotection, and improving the function of the blood-brain barrier (BBB). However, conflicting results have been reported, necessitating a comprehensive umbrella review of systematic reviews to provide an unbiased conclusion on the therapeutic effectiveness of RV in AD. OBJECTIVE The objective of this study was to systematically synthesize and evaluate systematic and meta-analysis reviews investigating the role of RV in AD using data from both human and animal studies. DATA SOURCES AND EXTRACTION Of the 34 systematic and meta-analysis reviews examining the association between RV and AD that were collected, six were included in this study based on specific selection criteria. To identify pertinent studies, a comprehensive search was conducted in English-language peer-reviewed journals without any restrictions on the publication date until October 15, 2023. The search was carried out across multiple databases, including Embase, MEDLINE (PubMed), Cochrane Library, Web of Science, and Google Scholar, utilizing appropriate terms relevant to the specific research field. The AMSTAR-2 and ROBIS tools were also used to evaluate the quality and risk of bias of the included systematic reviews, respectively. Two researchers independently extracted and analyzed the data, resolving any discrepancies through consensus. Of note, the study adhered to the PRIOR checklist. DATA ANALYSIS This umbrella review presented robust evidence supporting the positive impacts of RV in AD, irrespective of the specific mechanisms involved. It indeed indicated that all six systematic and meta-analysis reviews unanimously concluded that the consumption of RV can be effective in the treatment of AD. CONCLUSION RV exhibits promising potential for benefiting individuals with AD through various mechanisms. It has been observed to enhance cognitive function, reduce Aβ accumulation, provide neuroprotection, protect the BBB, support mitochondrial function, facilitate synaptic plasticity, stabilize tau proteins, mitigate oxidative stress, and reduce neuroinflammation commonly associated with AD.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| |
Collapse
|
11
|
Kiene M, Zaremba M, Januschewski E, Juadjur A, Jerz G, Winterhalter P. Sustainable In Silico-Supported Ultrasonic-Assisted Extraction of Oligomeric Stilbenoids from Grapevine Roots Using Natural Deep Eutectic Solvents (NADES) and Stability Study of Potential Ready-to-Use Extracts. Foods 2024; 13:324. [PMID: 38275691 PMCID: PMC10815275 DOI: 10.3390/foods13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Grapevine roots, as a side-stream of a vineyard, are a sustainable resource for the recovery of oligomeric stilbenoids, such as the bioactive r-viniferin. The aim of this study is to evaluate an in silico-supported method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS), for selection of environmentally friendly natural deep eutectic solvents (NADES) with regard to the extraction of grapevine roots. The most suitable NADES system for ultrasonic-assisted extraction of r-viniferin was choline chloride/1,2-propanediol. The optimal extraction parameters for r-viniferin were determined using single-factor experiments as follows: choline chloride/1,2-propanediol 1/2 mol/mol, 10 wt% H2O, biomass/NADES ratio 1/10 g/g, and 10 min extraction time. Under optimized conditions, the extraction yield of r-viniferin from grapevine roots reached 76% of the total r-viniferin content. Regarding stability, stilbenoids in choline chloride/1,2-propanediol remained stable during 128 days of storage at ambient temperature. However, fructose/lactic acid-based NADES were observed to degrade stilbenoids; therefore, the removal of the NADES will be of interest, with a suitable method implemented using Amberlite® XAD-16N resin. As green solvents, the NADES have been used as effective and environmentally friendly extractants of stilbenoid-containing extracts from grapevine roots for potential applications in the cosmetic and pharmaceutical industry or as nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Mats Kiene
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (G.J.)
| | - Malte Zaremba
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (G.J.)
| | - Edwin Januschewski
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (G.J.)
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Andreas Juadjur
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (G.J.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (G.J.)
| |
Collapse
|
12
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
13
|
Koc S, Aktas A, Sahin B, Ozer H, Zararsiz GE. Protective effect of ursodeoxycholic acid and resveratrol against tacrolimus induced hepatotoxicity. Biotech Histochem 2023; 98:471-478. [PMID: 37381715 DOI: 10.1080/10520295.2023.2228697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Tacrolimus (TAC) is a potent and well-tolerated immunosuppressive drug, but serious side effects including nephrotoxicity and hepatotoxicity have been reported. Ursodeoxycholic acid (UDCA) and resveratrol (RSV) exhibit hepatoprotective effects in liver diseases. We investigated the hepatoprotective effect of UDCA and RSV against TAC induced hepatotoxicity. We divided 40 male rats into five equal groups: A) control group, B) TAC group, C) TAC + UDCA group, D) TAC + RSV group, E) TAC + UDCA + RSV group. We administered 0.5 mg/kg TAC once daily, 25 mg/kg UDCA twice daily and 10 mg/kg RSV once daily. The drugs in the experimental groups were given by gavage from the first day of the study and continued for 21 days. Histopathologic and biochemical analyses were performed on day 22. In group B, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-alpha (TNF), interleukin-1 (IL-1), interleukin-6 (IL-6), total oxidative status (TOS) and malondialdehyde (MDA) levels were higher compared to group A, and catalase (CAT), superoxide dismutase (SOD) levels and total antioxidant status (TAS) were lower compared to group A. Severe cellular swelling, degeneration and focal necrosis were more evident in group B than in groups C-E. Histopathological improvement was observed in groups C-E, where UDCA and RSV were combined, compared to group B. We found that UDCA and RSV, together or separately, protected the liver against oxidative stress damage caused by TAC.
Collapse
Affiliation(s)
- Suleyman Koc
- Department of General Surgery, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet Aktas
- Department of İnternal Medicine, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Bilal Sahin
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hatice Ozer
- Department of Pathology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Gozde Erturk Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Liu N, Ruan J, Li H, Fu J. Nanoparticles loaded with natural medicines for the treatment of Alzheimer's disease. Front Neurosci 2023; 17:1112435. [PMID: 37877008 PMCID: PMC10590901 DOI: 10.3389/fnins.2023.1112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that disrupts cognitive function and severely affects the quality of life. Existing drugs only improve cognitive function and provide temporary relief of symptoms but do not stop or delay disease progression. Recently, natural medicines, especially Chinese herbal medicines, have gained attention in the treatment of AD due to their antioxidant, anti-inflammatory, and neuroprotective effects. However, conventional oral dosage forms lack brain specificity and have side effects that lead to poor patient compliance. Utilizing nanomedicine is a promising approach to improve brain specificity, bioavailability, and patient compliance. This review evaluates recent advances in the treatment of AD with nanoparticles containing various natural medicines. This review highlights that nanoparticles containing natural medicines are a promising strategy for the treatment of AD. It is believed that this technology can be translated into the clinic, thereby providing opportunities for AD patients to participate in social activities.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanjuan Ruan
- Department of Geriatrics, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan Province, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhua Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Grabowska AD, Wątroba M, Witkowska J, Mikulska A, Sepúlveda N, Szukiewicz D. Interplay between Systemic Glycemia and Neuroprotective Activity of Resveratrol in Modulating Astrocyte SIRT1 Response to Neuroinflammation. Int J Mol Sci 2023; 24:11640. [PMID: 37511397 PMCID: PMC10380505 DOI: 10.3390/ijms241411640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The flow of substances between the blood and the central nervous system is precisely regulated by the blood-brain barrier (BBB). Its disruption due to unbalanced blood glucose levels (hyper- and hypoglycemia) occurring in metabolic disorders, such as type 2 diabetes, can lead to neuroinflammation, and increase the risk of developing neurodegenerative diseases. One of the most studied natural anti-diabetic, anti-inflammatory, and neuroprotective compounds is resveratrol (RSV). It activates sirtuin 1 (SIRT1), a key metabolism regulator dependent on cell energy status. The aim of this study was to assess the astrocyte SIRT1 response to neuroinflammation and subsequent RSV treatment, depending on systemic glycemia. For this purpose, we used an optimized in vitro model of the BBB consisting of endothelial cells and astrocytes, representing microvascular and brain compartments (MC and BC), in different glycemic backgrounds. Astrocyte-secreted SIRT1 reached the highest concentration in hypo-, the lowest in normo-, and the lowest in hyperglycemic backgrounds. Lipopolysaccharide (LPS)-induced neuroinflammation caused a substantial decrease in SIRT1 in all glycemic backgrounds, as observed earliest in hyperglycemia. RSV partially counterbalanced the effect of LPS on SIRT1 secretion, most remarkably in normoglycemia. Our results suggest that abnormal glycemic states have a worse prognosis for RSV-therapy effectiveness compared to normoglycemia.
Collapse
Affiliation(s)
- Anna D. Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Joanna Witkowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Agnieszka Mikulska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Nuno Sepúlveda
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| |
Collapse
|
16
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
17
|
Zhang B, Zhao Y, Guo K, Tian H, Wang C, Wang R, Chen Y, Chen X, Zheng H, Gao B, Shen J, Tian W. Macromolecular nanoparticles to attenuate both reactive oxygen species and inflammatory damage for treating Alzheimer's disease. Bioeng Transl Med 2023; 8:e10459. [PMID: 37206236 PMCID: PMC10189435 DOI: 10.1002/btm2.10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Prevention and early intervention are the current focus of treatment for Alzheimer's disease (AD). An increase in reactive oxygen species (ROS) is a feature of the early stages of AD, thus suggesting that the removal of excess ROS can be a viable method of improving AD. Natural polyphenols are able to scavenge ROS and thus promising for treating AD. However, some issues need to be addressed. Among them, important are that most polyphenols are hydrophobic, have low bioavailability in the body, are easily degraded, and that single polyphenols have insufficient antioxidant capacity. In this study, we employed two polyphenols, resveratrol (RES) and oligomeric proanthocyanidin (OPC), and creatively grafted them with hyaluronic acid (HA) to form nanoparticles to address the aforementioned issues. Meanwhile, we strategically grafted the nanoparticles with the B6 peptide, enabling the nanoparticles to cross the blood-brain barrier (BBB) and enter the brain for AD treatment. Our results illustrate that B6-RES-OPC-HA nanoparticles can significantly scavenge ROS, reduce brain inflammation, and improve learning and memory ability in AD mice. B6-RES-OPC-HA nanoparticles have the potential to prevent and alleviate early AD.
Collapse
Affiliation(s)
- Bosong Zhang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yufang Zhao
- Laboratory for Space Environment and Physical SciencesHarbin Institute of TechnologyHarbinChina
| | - Kai Guo
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Hui Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cao Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Ruiqi Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yue Chen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
- Division of Biomedical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
| | | | - Bingxin Gao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Jieyi Shen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Weiming Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
18
|
Resveratrol, Endocrine Disrupting Chemicals, Neurodegenerative Diseases and Depression: Genes, Transcription Factors, microRNAs, and Sponges Involved. Neurochem Res 2023; 48:604-624. [PMID: 36245065 DOI: 10.1007/s11064-022-03787-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
We aimed to examine the molecular basis of the positive effect of resveratrol against amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), cognitive impairment (CI), and depression induced by a mixture of bisphenol A (BPA), BPS, and BPF. The CTD, GeneMania, Metascape, SwissADME, Cytoscape, MIENTURNET, miRNAsong, and Autodock Vina were the fundamental tools for analysis. Resveratrol exerts its protective effects on selected diseases induced by a mixture of BPA, BPS, and BPF through the following genes: PTGS2 and GSR for ALS; INS, IL6, BDNF, and SOD1 for PD; BDNF, CASP3, TNF, INS, IGF1, IL1B for CI; and BDNF, PTGS2, and IL6 for depression. Detoxification was noted as the most important for ALS, dopamine metabolism for PD, apoptosis for CI, and the selenium micronutrient network for depression. hsa-miR-377-3p, hsa-miR-1-3p, hsa-miR-128-3p, and hsa-miR-204-5p were highlighted. We created and tested in silico sponges that inhibited these miRNAs. NFE2L2, BACH1, PPARG, and NR4A3 were listed as the key transcription factors implicated in resveratrol's protective effect against harmful studied chemicals. Furthermore, resveratrol's physicochemical properties and pharmacokinetics are consistent with its therapeutic benefits in ALS, PD, CI, and depression, owing to its high gastrointestinal absorption, drug-likeness, non-P-glycoprotein substrate, and capacity to penetrate the blood-brain barrier.
Collapse
|
19
|
NAUREEN ZAKIRA, DHULI KRISTJANA, MEDORI MARIACHIARA, CARUSO PAOLA, MANGANOTTI PAOLO, CHIURAZZI PIETRO, BERTELLI MATTEO. Dietary supplements in neurological diseases and brain aging. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E174-E188. [PMID: 36479494 PMCID: PMC9710403 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A healthy diet shapes a healthy mind. Diet quality has a strong association with brain health. Diet influences the onset and consequences of neurological diseases, and dietary factors may influence mental health at individual and population level. The link between unhealthy diet, impaired cognitive function and neurodegenerative diseases indicates that adopting a healthy diet would ultimately afford prevention and management of neurological diseases and brain aging. Neurodegenerative diseases are of multifactorial origin and result in progressive loss of neuronal function in the brain, leading to cognitive impairment and motoneuron disorders. The so-called Mediterranean diet (MedDiet) with its healthy ingredients rich in antioxidant, anti-inflammatory, immune, neuroprotective, antidepressant, antistress and senolytic activity plays an essential role in the prevention and management of neurological diseases and inhibits cognitive decline in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. The MedDiet also modulates the gut-brain axis by promoting a diversity of gut microbiota. In view of the importance of diet in neurological diseases management, this review focuses on the dietary components, natural compounds and medicinal plants that have proven beneficial in neurological diseases and for brain health. Among them, polyphenols, omega-3 fatty acids, B vitamins and several ayurvedic herbs have promising beneficial effects.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto, Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - PAOLA CARUSO
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PAOLO MANGANOTTI
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
20
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
21
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13:922232. [PMID: 36188541 PMCID: PMC9523540 DOI: 10.3389/fphar.2022.922232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/25/2022] [Indexed: 12/06/2022] Open
Abstract
Most polyphenols can cross blood-brain barrier, therefore, they are widely utilized in the treatment of various neurodegenerative diseases (ND). Resveratrol, a natural polyphenol contained in blueberry, grapes, mulberry, etc., is well documented to exhibit potent neuroprotective activity against different ND by mitochondria modulation approach. Mitochondrial function impairment is the most common etiology and pathological process in various neurodegenerative disorders, viz. Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Nowadays these ND associated with mitochondrial dysfunction have become a major threat to public health as well as health care systems in terms of financial burden. Currently available therapies for ND are limited to symptomatic cures and have inevitable toxic effects. Therefore, there is a strict requirement for a safe and highly effective drug treatment developed from natural compounds. The current review provides updated information about the potential of resveratrol to target mitochondria in the treatment of ND.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - HariOm Singh
- Department of Molecular Biology, ICMR-National Aids Research Institute, Pune, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
23
|
Neuroprotective Effects of Resveratrol by Modifying Cholesterol Metabolism and Aβ Processing in SAMP8 Mice. Int J Mol Sci 2022; 23:ijms23147580. [PMID: 35886936 PMCID: PMC9324102 DOI: 10.3390/ijms23147580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol metabolism seems dysregulated and linked to amyloid-β (Aβ) formation in neurodegeneration, but the underlying mechanisms are poorly known. Resveratrol (RSV) is a polyphenol with antioxidant activity and neuroprotective properties. Here, we analyzed the effect of age and RSV supplementation on cholesterol metabolism in the brain and blood serum, and its potential link to Aβ processing, in SAMP8 mice—an animal model of aging and Alzheimer’s disease. In the brain, our results revealed an age-related increase in ApoE and unesterified cholesterol in the plasma membrane whereas LDL receptor, HMG-CoA reductase, HMG-CoA-C1 synthase, and ABCA1 transporter remained unaltered. Furthermore, BACE-1 and APP gene expression was decreased. This dysregulation could be involved in the amyloidogenic processing pathway of APP towards Aβ formation. In turn, RSV exhibited an age-dependent effect. While levels of unesterified cholesterol in the plasma membrane were not affected by RSV, several participants in cholesterol uptake, release, and de novo synthesis differed, depending on age. Thus, RSV supplementation exhibited a different neuroprotective effect acting on Aβ processing or cholesterol metabolism in the brain at earlier or later ages, respectively. In blood serum, HDL lipoprotein and free cholesterol were increased by age, whereas VLDL and LDL lipoproteins remained unaltered. Again, the protective effect of RSV by decreasing the LDL or increasing the HDL levels also seems to depend on the intervention’s moment. In conclusion, age is a prominent factor for cholesterol metabolism dysregulation in the brain of SAMP8 mice and influences the protective effects of RSV through cholesterol metabolism and Aβ processing.
Collapse
|
24
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
25
|
Sajad M, Kumar R, Thakur SC. History in Perspective: The Prime Pathological Players and Role of Phytochemicals in Alzheimer’s Disease. IBRO Neurosci Rep 2022; 12:377-389. [PMID: 35586776 PMCID: PMC9108734 DOI: 10.1016/j.ibneur.2022.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease is a steadily progressive, irreversible neurological disorder that is most frequently categorized under the umbrella term "neurodegeneration". Several attempts are underway to clarify the pathogenic mechanisms, identify the aetiologies, and determine a pathway by which the therapeutic steps can be implemented. Oxidative stress is one of the pathogenic processes, which is commonly believed to be associated with neurodegenerative diseases. Accumulation of extracellular amyloid-β protein (Aβ), hyperphosphorylation of tau, initiation of neurometabolic reactions characterized by the loss of neuronal function and synaptic failure, and decreased or lost learning capability and memory function are the most central neuropathological characteristics of AD. According to the amyloid cascade hypothesis, the enhanced deposition of Aβ deposits and neurofibrillary tangles due to hyperphosphorylation of Tau activates the cascade reactions in the brain. These reactions affect the synaptic activity and activation of microglia, which results in neuroinflammation due to enhanced immune function. Plant-based phytochemicals have also been used long ago against several diseases. Phytoconstituents play a significant neuroprotective property by preventing the pathophysiology of the disease. In this review, we have discussed the formation and crosstalk between amyloid and tau pathologies as well as the effect of neuroinflammation on the progression of AD. We have specifically focused on the formation of NFT, β-amyloids, inflammation, and pathophysiology of AD and the role of phytochemicals in the prevention of AD. AD is an insidious, slowly progressive, and neurodegenerative disorder. Common symptoms are memory loss, difficulty in recalling, and understanding. β-amyloids and Neurofibrillary tangles are the main factors in AD pathogenesis. Activated microglia and oxidative stress have different effects on AD progression. Phytochemicals show a key role against AD by inhibiting several pathways.
Collapse
|
26
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
27
|
Klein RS, Taniguchi MM, Dos Santos PD, Bonafe EG, Martins AF, Monteiro JP. Trans-resveratrol electrochemical detection using portable device based on unmodified screen-printed electrode. J Pharm Biomed Anal 2022; 207:114399. [PMID: 34653743 DOI: 10.1016/j.jpba.2021.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Trans-resveratrol (t-RESV) is an important and natural polyphenolic antioxidant generally found in grapes and in its derivatives such as red wine and grape juices. The t-RESV has been explored in the pharmaceutical industry for its anti-inflammatory, anti-cancer, and neuroprotective properties. The t-RESV electrochemical determination has basically been carried out using modified electrodes-based sensors. Although these devices show good analytical performance, the electrode preparation can be laborious, and the devices may lack reproducibility. In this sense, it was proposed here a new methodology for the t-RESV electrochemical detection using unmodified screen-printed electrodes and differential pulse voltammetry (DPV). The response of the anodic signal has optimized varying the most important parameters of DPV (pulse time, pulse potential, and pulse step) using the response surface methodology. We showed based on analysis of variance that the new mathematical model developed can predict responses for the t-RESV using DPV. Furthermore, the new analytical method was validated from the limits of detection and quantification. We have still shown that t-RESV can be quantified in commercial drug using DPV with the optimized parameters. The selectivity test also showed that the sensor can be used to determine the antioxidant in other more complex matrices. Additionally, the proposed electrochemical system is completely portable and can work with its own energy, which facilitates point-of-care analysis.
Collapse
Affiliation(s)
- Rosecler Scacchetti Klein
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900, Maringá, PR, Brazil
| | - Maiara Mitiko Taniguchi
- Laboratório de Materiais e Sensores (LMSEN), Universidade Estadual de Maringá (UEM), Av colombo 5790, 87020-900, Maringá, State of Paraná, Brazil
| | - Patricia Daniele Dos Santos
- Grupo Aple-A, Programa de Pós-Graduação em Química, Universidade Estadual de Maringá (UEM), Ac Colombo 5790, 87020-900, Maringá, State of Paraná, Brazil
| | - Elton Guntendorfer Bonafe
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil
| | - Alessandro Francisco Martins
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil
| | - Johny Paulo Monteiro
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil.
| |
Collapse
|
28
|
The Tragedy of Alzheimer's Disease: Towards Better Management via Resveratrol-Loaded Oral Bilosomes. Pharmaceutics 2021; 13:pharmaceutics13101635. [PMID: 34683928 PMCID: PMC8538342 DOI: 10.3390/pharmaceutics13101635] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease where oxidative stress plays a major role as a key pathologic factor. The study aims to develop resveratrol (RES)-loaded bilosomes for oral use, aiming to enhance RES bioavailability. RES-loaded bilosomes were prepared using the thin-film hydration technique. The effect of different formulation variables viz. the number of extrusion cycles, drug concentration and the effect of pH of the medium and cholesterol addition on the physicochemical properties of the prepared bilosomes was investigated. Results revealed the successful entrapment of RES into bilosomes. An optimized formula was selected, showing the lowest particle size (189 ± 2.14), acceptable PDI (0.116) and entrapment efficiency (76.2 ± 1.36). In vivo studies on a streptozotocin-induced animal model of AD showed the preeminence of bilosomes over traditional drug suspension to enhance mice memory via Y-maze and Morris water maze tests. Moreover, mice treated with the optimized formula exhibited decreased COX2, IL-6, amyloid-beta peptide and Tau protein levels compared to the drug suspension. Immuno-histochemical analysis revealed a significant decrease of glial fibrillary acidic protein values and microglial cell count in mice treated with bilosomes. Finally, it could be advocated that RES-loaded bilosomes could be a promising drug delivery system to control AD.
Collapse
|
29
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
30
|
Dwibedi V, Saxena S. Effect of precursor feeding, dietary supplementation, chemical elicitors and co-culturing on resveratrol production by Arcopilus aureus. Prep Biochem Biotechnol 2021; 52:404-412. [PMID: 34374634 DOI: 10.1080/10826068.2021.1955709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resveratrol is an important stilbene, initially identified from red wine possessing immense therapeutic, cosmeceutical and nutraceutical applications. In the present study, endophytic fungus Arcopilus aureus(#12VVLMP) which produces resveratrol extracellularly was selected as a candidate for epigenetic modulation using natural supplements, precursor feeding, chemical elicitors and co-culturing to enhance resveratrol production. The present study highlighted the role of natural supplements i.e. grape seed extract and grape skin extract which constitute grape pomace to enhance resveratrol production by 27.7 and 13.65% respectively. Co-culturing also impacted the resveratrol production by A. aureus, enhancing it by 9.4%. Chemical elicitors and precursor feeding did not induce significant enhancement in resveratrol production. Enhancement of anti-oxidant effect was also observed in the case of use of natural supplements assayed by DPPH and ABTS• radical scavenging assays. Similarly anti-staphylococcal and anti-candida activities were potentially higher when natural supplements were used followed by co-culturing. These findings indicate that the use of natural supplement which is a by-product of wine industry may be used as a modulator of resveratrol production by A. aureus. This shall lead to a cost-effective fermentation process of resveratrol production, the global demand of which is continuously increasing.
Collapse
Affiliation(s)
- Vagish Dwibedi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
31
|
Mountaki C, Dafnis I, Panagopoulou EA, Vasilakopoulou PB, Karvelas M, Chiou A, Karathanos VT, Chroni A. Mechanistic insight into the capacity of natural polar phenolic compounds to abolish Alzheimer's disease-associated pathogenic effects of apoE4 forms. Free Radic Biol Med 2021; 171:284-301. [PMID: 34019932 DOI: 10.1016/j.freeradbiomed.2021.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Polar phenols found in plant foods have been suggested to act protectively against pathogenic processes underlying Alzheimer's disease (AD), such as oxidative stress. The major risk factor for AD is apolipoprotein E4 (apoE4) and apoE4 forms can affect AD-related processes. It was shown previously that the hereditary apoE4 mutant apoE4[L28P], as well as the apoE4 fragment apoE4-165, induce neuronal oxidative stress. The effect of polar phenols on AD-related pathogenic functions of apoE4 forms is largely unexplored. The aim was to examine the effect of Corinthian currant polar phenolic extract and specific polar phenols resveratrol, quercetin, kaempferol and epigallocatechin gallate on AD-related functions of apoE4 forms. The polar phenolic extract and the individual compounds restored the viability of human neuroblastoma SK-N-SH cells in the presence of lipoprotein-associated apoE4[L28P] and prevented changes in cellular redox status. Furthermore, resveratrol, quercetin, kaempferol and epigallocatechin gallate prevented redox status changes induced by Aβ42 uptake in SK-N-SH cells treated with lipid-free apoE4[L28P] or apoE4-165. Investigation of the molecular mechanism of action of these polar phenols showed that resveratrol prevented cellular Aβ42 uptake via changes in cell membrane fluidity. Interestingly, kaempferol prevented cellular Aβ42 uptake by apoE4[L28P], but not by apoE4-165, due to a modulating effect on apoE4[L28P] secondary structure and stability. The action of quercetin and epigallocatechin gallate could be attributed to free radical-scavenging or other protective activity. Overall, it is shown for the first time that natural compounds could modify the structure of apoE4 forms and ameliorate AD-related pathogenic effects of apoE4 forms.
Collapse
Affiliation(s)
- Christina Mountaki
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Eirini A Panagopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Paraskevi B Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Michalis Karvelas
- Research and Development Department, Agricultural Cooperatives' Union of Aeghion, Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece; Research and Development Department, Agricultural Cooperatives' Union of Aeghion, Aeghion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
32
|
Resveratrol influences the pathogenesis of Aeromonas hydrophila by inhibiting production of aerolysin and biofilm. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ahmadi A, Hayes AW, Karimi G. Resveratrol and endoplasmic reticulum stress: A review of the potential protective mechanisms of the polyphenol. Phytother Res 2021; 35:5564-5583. [PMID: 34114705 DOI: 10.1002/ptr.7192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that performs a set of essential functions in cellular biology. These include synthesis of lipids, homeostasis of calcium, and controlling the folding of proteins. Inflammation and oxidative stress are two important reasons behind the accumulation of misfolded or unfolded proteins in the ER. In such circumstances, a series of measures are undertaken in the cell which are collectively called unfolded protein response (UPR). The aim of UPR is to reduce the burden of protein aggregates and promote survival. However, extended and unrestricted ER stress (ERS) can induce further inflammation and apoptosis. ERS and the UPR are involved in different diseases such as neurodegenerative and cardiovascular diseases. Resveratrol (RSV), a natural polyphenol, has well-documented evidence supporting its numerous biological properties including antioxidant, antiinflammatory, antiobesity, antidiabetic, and antiischemic activities. The compound is also known for its potential beneficial effects on cognitive function and liver, kidney, and lung health. In this review, the role of ERS in several pathological conditions and the potential protective effects of RSV are discussed. However, the scarcity of clinical data means that more research needs to be conducted to gain a lucid understanding of RSV's effects on endoplasmic reticulum stress (ERS) in humans.
Collapse
Affiliation(s)
- Ali Ahmadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL USA and Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Majchrzak-Celińska A, Zielińska-Przyjemska M, Wierzchowski M, Kleszcz R, Studzińska-Sroka E, Kaczmarek M, Paluszczak J, Cielecka-Piontek J, Krajka-Kuźniak V. Methoxy-stilbenes downregulate the transcription of Wnt/β-catenin-dependent genes and lead to cell cycle arrest and apoptosis in human T98G glioblastoma cells. Adv Med Sci 2021; 66:6-20. [PMID: 33238230 DOI: 10.1016/j.advms.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Glioblastoma is the most common and the deadliest brain cancer. The aim of this study was to analyze the impact of resveratrol and its five analogs: 3,4,4'-trimethoxy, 3,4,2'-trimethoxy, 3,4,2',4'-tetramethoxy, 3,4,2',6'-tetramethoxy and 3,4,2',4',6'-pentamethoxy-trans-stilbenes (MS) on human glioblastoma T98G cells. MATERIALS AND METHODS The Parallel Artificial Membrane Permeation Assay (PAMPA) was used for the prediction of blood-brain barrier penetration ability of the tested stilbenes (PAMPA-BBB). MTT test was applied to analyze the cytotoxicity of the compounds, whereas their ability to inhibit Wnt/β-catenin target genes expression was verified using qPCR. The potential DNA demethylating properties of the analyzed compounds were tested by Methylation-Sensitive High Resolution Melting (MS-HRM). Cell cycle distribution was tested using Fluorescence-Activated Cell Sorting (FACS), whereas apoptosis was analyzed using FITC Annexin V/propidium iodide double staining assay and Western blot. RESULTS High blood-brain barrier permeability coefficient was obtained for both resveratrol as well as methoxy-stilbenes. Their ability to downregulate the expression of Wnt/β-catenin pathway-related genes was confirmed. The 4'-methoxy substituted derivatives showed higher activity, whereas 3,4,4'-tri-MS was the most potent Wnt/β-catenin pathway inhibitor. None of the compounds affected DNA methylation level of MGMT, SFRP1, or RUNX3, despite inducing moderate changes in the level of expression of epigenetic modifiers DNMT3B and TET1-3. Importantly, treatment with 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS led to cycle arrest in the S phase and induced apoptosis. CONCLUSIONS Both, resveratrol, as well as its synthetic methoxy-derivatives, should be further studied as promising adjuvants in glioblastoma treatment.
Collapse
|
35
|
Izquierdo V, Palomera-Ávalos V, Pallàs M, Griñán-Ferré C. Resveratrol Supplementation Attenuates Cognitive and Molecular Alterations under Maternal High-Fat Diet Intake: Epigenetic Inheritance over Generations. Int J Mol Sci 2021; 22:1453. [PMID: 33535619 PMCID: PMC7867164 DOI: 10.3390/ijms22031453] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors such as maternal high-fat diet (HFD) intake can increase the risk of age-related cognitive decline in adult offspring. Epigenetic mechanisms are a possible link between diet effect and neurodegeneration across generations. Here, we found a significant decrease in triglyceride levels in a high-fat diet with resveratrol (RSV) HFD + RSV group and the offspring. Firstly, we obtained better cognitive performance in HFD+RSV groups and their offspring. Molecularly, a significant increase in DNA methylation (5-mC) levels, as well as increased gene expression of DNA methyltransferase 1 (Dnmt1) and Dnmt3a in HFD + RSV F1 group, were found. Furthermore, a significant increase of N6-Methyladenosine methylation (m6A) levels in HFD+RSV F1, as well as changes in gene expression of its enzymes Methyltransferase like 3 (Mettl3) and FTO alpha-ketoglutarate dependent dioxygenase (Fto) were found. Moreover, we found a decrease in gene expression levels of pro-inflammatory markers such as Interleukin 1β (Il1-β), Interleukin 6 (Il-6), Tumor necrosis factor-α (Tnf-α), C-X-C motif chemokine ligand 10 (Cxcl-10), the pro-inflammatory factors monocyte chemoattractant protein 1 (Mcp-1) and Tumor growth factor-β1 (Tgf-β1) in HFD+RSV and HFD+RSV F1 groups. Moreover, there was increased gene expression of neurotrophins such as Neural growth factor (Ngf), Neurotrophin-3 (Nt3), and its receptors Tropomyosin receptor kinase TrkA and TrkB. Likewise, an increase in protein levels of brain-derived neurotrophic factor (BDNF) and phospho-protein kinase B (p-Akt) in HFD+RSV F1 was found. These results suggest that maternal RSV supplementation under HFD intake prevents cognitive decline in senescence-accelerated mice prone 8 (SAMP8) adult offspring, promoting a reduction in triglycerides and leptin plasma levels, changes in the pro-inflammatory profile, and restoring the epigenetic landscape as well as synaptic plasticity.
Collapse
Affiliation(s)
- Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| | - Verónica Palomera-Ávalos
- Department of Cellular and Molecular Biology, University Center of Biological and Agricultural Sciences, University of Guadalajara, km 15.5 Guadalajara-Nogales highway, 45110 Zapopan, Jalisco, Mexico;
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| |
Collapse
|
36
|
Yao Q, Wu Q, Xu X, Xing Y, Liang J, Lin Q, Huang M, Chen Y, Lin B, Chen W. Resveratrol Ameliorates Systemic Sclerosis via Suppression of Fibrosis and Inflammation Through Activation of SIRT1/mTOR Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5337-5348. [PMID: 33293795 PMCID: PMC7719308 DOI: 10.2147/dddt.s281209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Purpose Resveratrol (Res) is a natural polyphenolic compound found in several plants and reported as a promising biological molecule with effective anti-fibrosis and anti-inflammatory activities. However, the underlying mechanism of Res on systemic sclerosis (SSc) remains unclear. In the study, we identified the key cellular signaling pathways involved in the Res regulatory process on SSc. Methods Res-targeted genes interaction network was constructed using the STITCH database, and the shared Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in both SSc and Res-targeted genes were then identified. The top five enriched KEGG pathways were visualized by GOplot. KEGG pathways associated with Res-targeted genes were established by Pathway Builder Tool 2.0. Quantitative real-time PCR (qRT-PCR) was used to assess the expression of sirtuin 1 (SIRT1), mammalian targeted of rapamycin (mTOR), and cytokines. Results Enrichment analysis of Res-targeted genes showed 79 associated pathways, 27 of which were also involved in SSc. Particularly, SIRT1/mTOR signaling was found as one of the crucial regulatory pathways. In vitro results suggested that SIRT1-mediated mTOR degradation ameliorated bleomycin (BLM)-induced fibrosis and inflammation. Res was capable of elevating the SIRT1 level in fibroblasts and partially reversing mTOR-dependent induction of fibrosis and inflammation. Conclusion These results indicated that Res is a feasible and effective choice for SSc and therapeutic target of mTOR could be a potential alternative for treatment of SSc.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Qingchao Wu
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Xiayu Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Yixi Xing
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Jin Liang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Qianqi Lin
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Meiqiong Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Yiling Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Bo Lin
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Weifei Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| |
Collapse
|