1
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
2
|
Yıldız F, LeBaron TW, Alwazeer D. A comprehensive review of molecular hydrogen as a novel nutrition therapy in relieving oxidative stress and diseases: Mechanisms and perspectives. Biochem Biophys Rep 2025; 41:101933. [PMID: 39911528 PMCID: PMC11795818 DOI: 10.1016/j.bbrep.2025.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Oxidative stress is responsible for the pathogenesis of many diseases, and antioxidants are commonly included in their treatment protocols. Over the past two decades, numerous biomedical reports have revealed the therapeutic benefits of molecular hydrogen (H2) in relieving oxidation-related diseases. H2 has been found to have selective antioxidant properties against the most dangerous oxidants (hydroxyl radicals and peroxynitrite). H2 demonstrates numerous biologically therapeutic properties, including anti-inflammatory, antioxidant, anti-cancer, anti-stress, anti-apoptotic, anti-allergic effects, signaling molecule functions, regulation of redox balance, modulation of antioxidant enzyme gene expression, improvement of blood vessel function, down-regulation of pro-inflammatory cytokines, stimulation of energy metabolism, and protection of the nervous system. Experimental and clinical studies have shown the potential use of hydrogen nutrition therapy for ameliorating various diseases, including cardiovascular, respiratory, and metabolic disorders, as well as obesity, gastrointestinal disorders, and brain and nervous system disorders. The administration methods of hydrogen include inhalation, hydrogen-rich water, hydrogen-rich saline, hydrogen-rich eye drops, and hydrogen-rich bathing. Hydrogen nutritional therapy can be applied to different diseases, and it offers a natural alternative to chemical and radiation therapies. This review covers the different administration methods and the latest experimental and clinical research on the potential applications of H2 in nutritional therapy for different diseases.
Collapse
Affiliation(s)
- Fatmanur Yıldız
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Türkiye
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000, Iğdır, Türkiye
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, 84720, USA
- Molecular Hydrogen Institute, Cedar City, UT, 84721, USA
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Türkiye
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000, Iğdır, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Türkiye
| |
Collapse
|
3
|
Li L, Xu Z, Ni H, Meng Y, Xu Y, Xu H, Zheng Y, Zhang Y, Xue G, Shang Y. Hydrogen-rich water alleviates asthma airway inflammation by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Free Radic Biol Med 2024; 224:50-61. [PMID: 39147072 DOI: 10.1016/j.freeradbiomed.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hydrogen-rich water (HRW) is a beverage containing a high concentration of hydrogen that has been researched for its antioxidant, anti-apoptotic, and anti-inflammatory properties in asthma. This study investigates the potential therapeutic impact of HRW on the gut-lung axis. Using 16S rRNA and serum metabolomics, we examined changes in gut microbiota and serum metabolites in asthmatic mice after HRW intervention, followed by validation experiments. The findings revealed that HRW influenced gut microbiota by increasing Ligilactobacillus and Bifidobacterium abundance and enhancing the presence of indole-3-acetic acid (IAA), a microbially derived serum metabolite. Both in vivo and in vitro experiments showed that HRW's protective effects against airway inflammation in asthmatic mice may be linked to the gut microbiota, with IAA potentially playing a role in reducing asthmatic airway inflammation through the aryl hydrocarbon receptors (AhR) signaling pathway. In summary, HRW can modify gut microbiota, increase Bifidobacterium abundance, elevate microbial-derived IAA levels, and activate AhR, which could potentially alleviate inflammation in asthma.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Ziqian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Haoran Ni
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yesong Meng
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yongzhuang Xu
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hao Xu
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuyang Zheng
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yi Zhang
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Geng Xue
- Department of Medical Genetics, College of Basic Medical Sciences, Naval Military Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China; Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
4
|
Li L, Sun H, Tan L, Guo H, He L, Chen J, Chen S, Liu D, Zhu M, OuYang Z. Miao sour soup alleviates DSS-induced colitis in mice: modulation of gut microbiota and intestinal barrier function. Food Funct 2024; 15:8370-8385. [PMID: 39023128 DOI: 10.1039/d4fo01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Miao sour soup (MSS), a daily fermented food in Guizhou, China, is rich in microorganisms with various beneficial activities, including anti-inflammatory and antioxidant activities. However, the therapeutic effects of MSS on IBD remain unexplored. This study aimed to investigate the protective effect of MSS against colitis in mice. In this study, we examined the microbial community structure of MSS by metagenomic sequencing and also explored the protective effect of MSS on DSS-induced colitis in mice. We investigated the effects of MSS on intestinal inflammatory response and intestinal barrier function in mice. Finally, the changes in intestinal flora were analyzed based on the 16S rRNA gene sequencing results. Significantly, the experiment result shows that MSS ameliorated the severity of DSS-induced disease in mice by mitigating colitis-associated weight loss, reducing the disease activity index of IBD, alleviating colonic hemorrhagic lesions, increasing colon length, and improving colonic tissue damage. Moreover, MSS preserved intestinal barrier integrity and restored intestinal epithelial function in mice. Additionally, MSS modulated the structure and composition of the intestinal flora. Furthermore, MSS downregulated pro-inflammatory factors and attenuated the NF-κB p65 expression, thereby mitigating the inflammatory response. These findings highlight the protective effect of MSS against DSS-induced colitis, providing substantial scientific support for potential applications of MSS as a functional food.
Collapse
Affiliation(s)
- Lincao Li
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Lunbo Tan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hui Guo
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Lisi He
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Jieyu Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Shuting Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Dong Liu
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Mingjun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| | - Zijun OuYang
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| |
Collapse
|
5
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
6
|
Liu M, Li S, Cao S, Liu C, Han Y, Cheng J, Zhang S, Zhao J, Shi Y. Let food be your medicine - dietary fiber. Food Funct 2024; 15:7733-7756. [PMID: 38984439 DOI: 10.1039/d3fo05641d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dietary fiber (DF) cannot be digested and absorbed by the digestive tract, nor can it provide the energy needed to be burned for metabolic activities. Therefore, from the 1950s to the 1980s, DF received little attention in nutrition studies. With in-depth research and developments in global nutrition, people have gradually paid attention to the fact that DF occupies an essential position in the structure of nutrition, and it can ensure the healthy development of human beings. As early as 390 B.C., the ancient Greek physician Hippocrates proposed, "Let your food be your medicine, and your medicine be your food". This concept has been more systematically validated in modern scientific research, with numerous epidemiological studies showing that the dietary intake of DF-rich foods such as whole grains, root vegetables, legumes, and fruits has the potential to regulate the balance of the gut microbiota and thereby prevent diseases. However, the crosstalk between different types of DF and the gut microbiota is quite complex, and the effects on the organism vary. In this paper, we discuss research on DF and the gut microbiota and related diseases, aiming to understand the relationship between all three better and provide a reference basis for the risk reduction of related diseases.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jiawen Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| |
Collapse
|
7
|
Zang Y, Zhang B, Zhang G, Hu J, Shu D, Han J, Hu M, Tu M, Qiao W, Liu R, Zang Y. Effects of combined treatment with hydrogen-rich electrolyzed water and tea polyphenols on oxidative stress, intestinal injury and intestinal flora disruption in heat-stressed mice. J Therm Biol 2024; 123:103921. [PMID: 39032288 DOI: 10.1016/j.jtherbio.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Heat stress (HS) can cause damage to the organism, especially the intestinal tract. In this paper, we investigated the effects of the combined action of tea polyphenols (TP) and hydrogen-rich electrolyzed water (HRW) on HS in mice. The combination of HRW feeding and TP of intraperitoneal injection was screened by in vitro antioxidant activity assay. The results revealed that the combined treatment was more helpful in alleviating the effects of HS on the behavior, growth performance, oxidative damage, and intestinal tract of mice compared with the respective treatments of TP and HRW (P < 0.05). Additionally, the combined treatment could repair HS-induced intestinal dysbiosis in mice, augmenting the number and abundance of bacteria, increasing the number of beneficial genera (Lachnospiraceae_NK4A136_group and Lactobacillus), and decreasing the number of harmful genera (Desulfovibrio and Enterorhabdus), and the effect was significantly better than that of individual treatment (P < 0.05). In conclusion, the combined treatment of TP and HRW effectively mitigates the adverse effects of HS on mouse behavior, growth performance, oxidative damage, and intestinal dysbiosis, surpassing the efficacy of individual treatments with TP or HRW alone.
Collapse
Affiliation(s)
- Yao Zang
- Jiangxi Agricultural University, China
| | | | | | - Jie Hu
- Jiangxi Agricultural University, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mizzoni D, Logozzi M, Di Raimo R, Spada M, Fais S. Hydrogen-Rich Alkaline Water Supplementation Restores a Healthy State and Redox Balance in H 2O 2-Treated Mice. Int J Mol Sci 2024; 25:6736. [PMID: 38928440 PMCID: PMC11203767 DOI: 10.3390/ijms25126736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Water is a major requirement for our bodies, and alkaline water has induced an antioxidant response in a model of natural aging. A series of recent reports have shown that aging is related to reduced water intake. Hydrogen-rich water has been suggested to exert a general antioxidant effect in relation to both improving lifestyle and preventing a series of diseases. Here, we wanted to investigate the effect of the daily intake of hydrogen-rich alkaline water (HAW) in counteracting the redox imbalance induced in a model of H2O2-treated mice. Mice were treated with H2O2 for two weeks and either left untreated or supplied with HAW. The results show that HAW induced a reduction in the ROS plasmatic levels that was consistent with the increase in the circulating glutathione. At the same time, the reduction in plasmatic 8-hydroxy-2'-deoxyguanosine was associated with reduced DNA damage in the whole body. Further analysis of the spleen and bone marrow cells showed a reduced ROS content consistent with a significantly reduced mitochondrial membrane potential and superoxide accumulation and an increase in spontaneous proliferation. This study provides evidence for a clear preventive and curative effect of HAW in a condition of systemic toxic condition and redox imbalance.
Collapse
Affiliation(s)
- Davide Mizzoni
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Rossella Di Raimo
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Massimo Spada
- Department of Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
9
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
10
|
Li J, Huang G, Wang J, Wang S, Yu Y. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment. J Inflamm Res 2024; 17:933-945. [PMID: 38370464 PMCID: PMC10871146 DOI: 10.2147/jir.s445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Juexin Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Zhu C, Wei F, Jiang H, Lin Z, Zhong L, Wu Y, Sun X, Song L. Exploration of the structural mechanism of hydrogen (H 2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int J Biol Macromol 2024; 258:128901. [PMID: 38128803 DOI: 10.1016/j.ijbiomac.2023.128901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Horseradish peroxidase (HRP) is an enzyme that is widely used in various fields. In this study, the effects of molecular hydrogen (H2) on the activity and structural characteristics of HRP were investigated by employing multiple spectroscopic techniques, atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The results demonstrated that H2 could enhance HRP activity, especially in 1.5 mg/L hydrogen-rich water (HRW). The structural analysis results showed that H2 might alter HRP activity by affecting the active sites, secondary structure, hydrogen bonding network, CS groups, and morphological characteristics. The MD results also confirmed that H2 could increase the FeN bond distance in the active site, affect the secondary structure, and increase the number of hydrogen bonds. The MD results further suggested that H2 could increase the number of salt bridges, and lengthen the SS bonds in HRP. This study primarily revealed the mechanism by which H2 enhances the HRP activity, providing insight into the interactions between gas and macromolecular proteins. However, some of the results obtained via MD simulations still need to be verified experimentally. In addition, our study also provided a new convenient strategy to enhance enzyme activity.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Ghasemi‐Dehnoo M, Lorigooini Z, Amini‐Khoei H, Sabzevary‐Ghahfarokhi M, Rafieian‐Kopaei M. Quinic acid ameliorates ulcerative colitis in rats, through the inhibition of two TLR4-NF-κB and NF-κB-INOS-NO signaling pathways. Immun Inflamm Dis 2023; 11:e926. [PMID: 37647443 PMCID: PMC10408368 DOI: 10.1002/iid3.926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE In this study, the therapeutic effect of quinic acid (QA), which has anti-inflammatory activity, was investigated on acetic acid-induced colitis in male Wistar rats. METHODS Ulcerative colitis (UC) was induced in rats by acetic acid intrarectally, and the protective effects of QA in 10, 30, 60, and 100 mg/kg doses were investigated. Rats were treated for 5 days and their colon tissues were dissected out at the end. Macroscopic and histopathological examinations were performed in colon tissues. Also, the expression of inflammatory and apoptotic genes, including TLR4, IL-1β, INOS, IL-6, TNF-α, NF-κB, Caspase-3, Caspase-8, Bax, and Bcl-2, was measured. Biochemistry indices, such as malondialdehyde (MDA) and nitrite oxide (NO) content, in addition to, total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), and enzymes activities were also assessed. RESULTS Colitis increased the levels of MDA and NO, and enhanced the inflammatory and apoptotic gene expressions, while reducing the SOD and CAT enzymes activity, and TAC levels in the colitis rats. Also, results showed that colitis was associated with the infiltration of inflammatory cells, epithelium damage, and edema in colon tissue. QA significantly ameliorated histopathological indices, oxidative stress, inflammation, and apoptosis in colitis rats. CONCLUSION QA ameliorated UC through the inhibition of two TLR4-NF-κB and NF-κB-INOS-NO signaling pathways, which results in the reduction of colitis complications, including oxidative stress, inflammation, apoptosis and histopathological injuries in rats. Therefore it can be concluded, that QA exerts its therapeutic effects through antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Maryam Ghasemi‐Dehnoo
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Hossein Amini‐Khoei
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Milad Sabzevary‐Ghahfarokhi
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Mahmoud Rafieian‐Kopaei
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
13
|
Liu H, Kang X, Ren P, Kuang X, Yang X, Yang H, Shen X, Yan H, Kang Y, Zhang F, Wang X, Guo L, Fan W. Hydrogen gas ameliorates acute alcoholic liver injury via anti-inflammatory and antioxidant effects and regulation of intestinal microbiota. Int Immunopharmacol 2023; 120:110252. [PMID: 37196556 DOI: 10.1016/j.intimp.2023.110252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Alcoholic liver disease (ALD) is a globally prevalent liver-related disorder characterized by severe oxidative stress and inflammatory liver damage, for which no effective treatment is currently available. Hydrogen gas (H2) has been demonstrated to be an efficient antioxidant in various diseases in animals as well as humans. However, the protective effects of H2 on ALD and its underlying mechanisms remain to be elucidated. The present study demonstrated that H2 inhalation ameliorated liver injury, and attenuated liver oxidative stress, inflammation, and steatosis in an ALD mouse model. Moreover, H2 inhalation improved gut microbiota, including increasing the abundance of Lachnospiraceae and Clostridia, and decreasing the abundance of Prevotellaceae and Muribaculaceae, and also improved intestinal barrier integrity. Mechanistically, H2 inhalation blocked activation of the LPS/TLR4/NF-κB pathway in liver. Notably, it was further demonstrated that the reshaped gut microbiota may accelerate alcohol metabolism, regulate lipid homeostasis and maintain immune balance by bacterial functional potential prediction (PICRUSt). Fecal microbiota transplantation from mice that had undergone H2 inhalation significantly alleviated acute alcoholic liver injury. In summary, the present study showed that H2 inhalation alleviated liver injury by reducing oxidative stress and inflammation, while also improving intestinal flora and enhancing the intestinal barrier. H2 inhalation may serve as an effective intervention for preventing and treating ALD in a clinical context.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Huan Yan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Fan Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaohui Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Linzhi Guo
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
14
|
Wang Y, Wang M, Xie B, Wen D, Li W, Zhou M, Wang X, Lu Y, Cong B, Ni Z, Ma C. Effects of molecular hydrogen intervention on the gut microbiome in methamphetamine abusers with mental disorder. Brain Res Bull 2023; 193:47-58. [PMID: 36516898 DOI: 10.1016/j.brainresbull.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Methamphetamine (METH) is a potent and highly addictive psychostimulant and one of the most widely used illicit drugs, the abuse of which has become a severe public health problem worldwide. A growing amount of evidence has indicated potential connections between gut microbiota and mental disorders induced by METH and associations with neural and metabolic pathways. The present study aimed to explore the relationship between fecal microbial alterations and neuropsychiatric diseases in METH addictions. Thus, mental disorders and gut microbial alterations were analyzed by self-rating depression (SDS) and anxiety (SAS) scales and 16 S rRNA gene sequencing, respectively. Our results showed that increased SDS and SAS indices and decreased alpha diversity indicated more serious mental disorders and lower bacterial diversity in METH users than in the age-matched healthy control group. The gut microbial composition in female METH users was also significantly altered, with reductions in hydrogen-producing bacteria, including Bacteroides and Roseburia. Molecular hydrogen (H2) is spontaneously produced by intestinal bacteria in the process of anaerobic metabolism, which is the main pathway for H2 production in vivo. Numerous studies have shown that hydrogen intervention can significantly improve neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease. Our results showed that hydrogen intervention, including drinking and inhaling, significantly alleviated mental disorders induced by METH abuse, and the inhalation of hydrogen also altered gut microbiota profiles in the METH abusers. These results suggest that hydrogen intervention has potential therapeutic applicability in the treatment of mental disorders in METH abusers.
Collapse
Affiliation(s)
- Yong Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Mengmeng Wang
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, Hebei Province 071000, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Wenbo Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Xintao Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, Hebei Province 071000, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
15
|
Bai Y, Wang C, Jiang H, Wang L, Li N, Zhang W, Liu H. Effects of hydrogen rich water and pure water on periodontal inflammatory factor level, oxidative stress level and oral flora: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1120. [PMID: 36388830 PMCID: PMC9652511 DOI: 10.21037/atm-22-4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 04/08/2025]
Abstract
BACKGROUND Hydrogen rich water (HRW) was used as an auxiliary treatment for periodontitis and peri-implantitis due to its good antioxidant properties. However, the stability of artificially added active hydrogen was far less than that of pure natural active hydrogen, which greatly reduced active hydrogen molecules number in HRW. Meanwhile, the effect of HRW was relatively slow. Finally, long-term drinking of HRW may cause abnormal liver function. Hence, this study sought to summarize and analyze the effects of HRW on oral inflammation and oral flora in various studies to determine whether HRW can be used to inhibit dental plaque formation and aliviate oral inflammation. METHODS Randomized controlled trials (RCTs) of HRW and pure water (PW) in the treatment of periodontal diseases published before March 2022 in the PubMed, Web of science, EMBASE, Cochrane, China Knowledge Resource Integrated, Wanfang, and Weipu databases were searched. Changes in the inflammatory factor levels, oxidative stress response, and oral flora were summarized and used as outcome indicators. The quality of included studies was assessed by Cochrane risk of bias assessment tool, and the standardized mean differences (SMD) and the 95% confidence intervals (CIs) were calculated using Review Manager 5.3. RESULTS In total, 17 studies, comprising 304 subjects, were included in this meta-analysis. Among them, 5 studies had a high risk of bias, and the rest had a certain risk of bias, thus, the total risk of bias was medium to low. The levels of interleukin (IL)-1β (SMD =-0.73; 95% CI: -1.29 to -0.18; P=0.009), tumor necrosis factor alpha (SMD =-2.51; 95% CI: -3.56 to -1.46; P<0.00001), IL-6 (SMD =-1.31; 95% CI: -1.96 to -0.67; P<0.0001), 8-hydroxyguanosine (SMD =-1.61; 95% CI: -2.35 to -0.87; P<0.0001), and reactive oxygen metabolites (SMD =-0.49; 95% CI: -0.91 to -0.06; P=0.02) in the HRW group decreased significantly, while the glutathione peroxidase level increased (SMD =2.5; 95% CI: 1.85 to 3.15; P<0.00001). Additionally, HRW was shown to effectively inhibit oral pathogenic bacteria activity (SMD =-0.91; 95% CI: -1.16 to -0.66; P<0.00001). CONCLUSIONS HRW effectively inhibits the inflammatory reaction, oxidative stress level, and bacterial proliferation activity in patients with periodontal disease.
Collapse
Affiliation(s)
- Yang Bai
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenglong Wang
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nan Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongchen Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|