1
|
Bersch-Ferreira ÂC, Weschenfelder C, Waclawovsky G, da Silva LR, Stein E, Machado RHV, Figueiro MF, Suzumura EA, Santos RHN, Duarte GBS, Rogero MM, de Abreu-Silva EO, Cavalcanti AB, Marcadenti A. Effect of Nuts on Anthropometric and Glycemic Indexes and Blood Pressure in Secondary Cardiovascular Prevention: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2025; 83:e144-e156. [PMID: 38781314 DOI: 10.1093/nutrit/nuae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
CONTEXT Nut-enriched diets have a positive impact on cardiovascular risk factors, such as body mass, blood pressure, and fasting blood glucose. However, studies in individuals undergoing secondary cardiovascular prevention show controversial results. OBJECTIVE This systematic review with meta-analysis assessed the effect of nut supplementation on anthropometric, glycemic, and blood pressure indices in patients with atherosclerotic cardiovascular disease, as well as the frequency of adverse events. DATA SOURCES Six databases were used for the search-PubMed, Cochrane Library, EMBASE, BVS (Biblioteca Virtual da Saude), Web of Science, and ClinicalTrials.gov-until February 2023, with no language restrictions. DATA EXTRACTION The Cochrane Handbook for Systematic Reviews of Interventions methodology and the PICOS (Population, Intervention, Comparison, Outcome, Setting/design) strategy were used. Seven independent reviewers were involved in data extraction and resolution of disagreements. Certainty of the evidence was evaluated using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. DATA ANALYSIS From 5187 records identified, 6 publications containing data referring to 5 randomized clinical trials (n = 436) were included in the final analyses. The nuts evaluated were almonds, pecans, Brazil nuts, and mixed nuts, with portions that varied between 5 g and 85 g (median: 30 g/day). The intervention period varied between 6 and 12 weeks. The nuts had no effect on fasting glucose and anthropometric indices, although the certainty of the evidence for most of these outcomes was low or very low. They also had no effect on systolic (mean difference [MD]: -1.16 mmHg [95% CI, -5.68 to 3.35], I2 = 0%-moderate certainty of evidence) or diastolic (MD: 0.10 mmHg [95% CI, -2.30 to 2.51], I2 = 0%-high certainty of evidence) blood pressure. It was not possible to aggregate data on adverse events. CONCLUSION Nut supplementation had no effect on blood pressure, fasting glucose, or anthropometric profile in the context of atherosclerotic cardiovascular disease. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020163456.
Collapse
Affiliation(s)
- Ângela C Bersch-Ferreira
- Hcor Teaching Institute, Hcor, São Paulo, São Paulo, 04004-030, Brazil
- PROADI-SUS Office, Real e Benemérita Associação Portuguesa de Beneficência, São Paulo, São Paulo, 01323-001, Brazil
| | - Camila Weschenfelder
- Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia/Fundação Universitária de Cardiologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90040-371, Brazil
| | - Gustavo Waclawovsky
- Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia/Fundação Universitária de Cardiologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90040-371, Brazil
| | - Lucas R da Silva
- Hcor Teaching Institute, Hcor, São Paulo, São Paulo, 04004-030, Brazil
| | - Elana Stein
- Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia/Fundação Universitária de Cardiologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90040-371, Brazil
| | | | - Mabel F Figueiro
- Hcor Teaching Institute, Hcor, São Paulo, São Paulo, 04004-030, Brazil
| | - Erica A Suzumura
- Preventive Medicine Department, School of Medicine, University of Sao Paulo, São Paulo, São Paulo, 01246-903, Brazil
| | - Renato H N Santos
- Hcor Research Institute, Hcor, São Paulo, São Paulo, 04004-030, Brazil
| | - Graziela Biude Silva Duarte
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, São Paulo, 01246-904, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, São Paulo, 01246-904, Brazil
| | | | | | - Aline Marcadenti
- Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia/Fundação Universitária de Cardiologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90040-371, Brazil
- Hcor Research Institute, Hcor, São Paulo, São Paulo, 04004-030, Brazil
- Graduate Program in Epidemiology, School of Public Health, University of Sao Paulo, São Paulo, São Paulo, 01246-904, Brazil
| |
Collapse
|
2
|
Nunes YC, Santos GDO, Machado NM, Otoboni AMMB, Laurindo LF, Bishayee A, Fimognari C, Bishayee A, Barbalho SM. Corrigendum to Peanut (Arachis hypogaea L.) seeds and by-products in metabolic syndrome and cardiovascular disorders: A systematic review of clinical studies Phytomedicine 123 (2024) 155170. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:155870. [PMID: 39592301 DOI: 10.1016/j.phymed.2024.155870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading causes of death worldwide. The main risk factors are hypertension, diabetes, obesity, and increased serum lipids. The peanut (Arachis hypogaea L.), also known as the groundnut, goober, pindar, or monkey nut, belongs to the Fabaceae family and is the fourth most cultivated oilseed in the world. The seeds and skin of peanuts possess a rich phytochemical profile composed of antioxidants, such as phenolic acids, stilbenes, flavonoids, and phytosterols. Peanut consumption can provide numerous health benefits, such as anti-obesity, antidiabetic, antihypertensive, and hypolipidemic effects. Accordingly, peanuts have the potential to treat CVD and counteract its risk factors. PURPOSE This study aims to critically evaluate the effects of peanuts on metabolic syndrome (MetS) and CVD risk factors based on clinical studies. METHOD This review includes studies indexed in MEDLINE-PubMed, COCHRANE, and EMBASE, and the Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were adhered to. RESULTS Nineteen studies were included and indicated that the consumption of raw peanuts or differing forms of processed foods containing peanut products and phytochemicals could improve metabolic parameters, such as glycemia, insulinemia, glycated hemoglobin, lipids, body mass index, waist circumference, atherogenic indices, and endothelial function. CONCLUSION We propose that this legume and its products be used as a sustainable and low-cost alternative for the prevention and treatment of MetS and CVD. However, further research with larger sample sizes, longer intervention durations, and more diverse populations is needed to understand the full benefit of peanut consumption in MetS and CVD.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Gian de Oliveira Santos
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nathália Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Alda M M B Otoboni
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil.
| |
Collapse
|
3
|
Basu A. Tree Nuts and Macular Pigment Optical Density: Visual Effects of the Carotenoids Lutein and Zeaxanthin. J Nutr 2025; 155:7-8. [PMID: 39536970 DOI: 10.1016/j.tjnut.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, United States.
| |
Collapse
|
4
|
Huang LC, Henderson GC, Mattes RD. Effects of daily almond consumption on glycaemia in adults with elevated risk for diabetes: a randomised controlled trial. Br J Nutr 2024; 132:1289-1299. [PMID: 39431574 PMCID: PMC11646672 DOI: 10.1017/s0007114524001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 10/22/2024]
Abstract
The purpose of this study was to examine the potential for sustained almond consumption to reduce HbA1c concentrations among individuals with elevated values. A 16-week randomised, parallel-arm, controlled trial was conducted. Eighty-one adults with elevated HbA1c concentrations (> 5·7 %) were randomly assigned to incorporate 2 oz of raw almonds (A: n 39) or energy-matched snacks (C: n 42) into their daily diets. Body weight, body composition, plasma lipids, HbA1c, plasma vitamin E, glycaemia (by meal tolerance test and continuous glucose monitoring), dietary intake and hedonic responses to test foods were measured at stipulated time points. Participants consuming almonds ingested 253 kcal/d more than participants in the control group (P = 0·02), but this did not result in a significant difference in body weight. No statistically significant differences were observed in HbA1c concentrations, blood chemistries, body composition or glycaemia over time or between groups. However, Healthy Eating Index scores improved within the almond group as compared with the control group (P < 0·001). Additionally, the hedonic rating of almonds within the almond group did not decline as markedly as the control group's reduced liking of the pretzel snack. Alpha-tocopherol increased significantly, and gamma tocopherol tended to decrease in the almond group, indicating compliance with the dietary intervention. Overall, daily ingestion of 2 oz of raw almonds in a self-selected diet for 16 weeks did not alter short-term or longer-term glycaemia or HbA1c concentrations in adults with elevated HbA1c concentrations, but they were well-tolerated hedonically and improved diet quality without promoting weight gain.
Collapse
Affiliation(s)
- Li-Chu Huang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Richard D. Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Nikodijevic CJ, Probst YC, Tan SY, Neale EP. Metabolisable energy from nuts and patterns of nut consumption in the Australian population: a secondary analysis of the 2011-12 National Nutrition and Physical Activity Survey. J Hum Nutr Diet 2024; 37:538-549. [PMID: 38238999 DOI: 10.1111/jhn.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/17/2023] [Indexed: 03/23/2024]
Abstract
BACKGROUND Nut intake is not associated with increased body weight, which may be explained by their metabolisable energy, among other factors. Therefore, total energy intake may be overestimated among nut consumers. This study aimed to describe the metabolisable energy from nuts and nut consumption patterns in the Australian population. METHODS A nut-specific database was expanded to include metabolisable energy of nuts (based on nut type and form) and applied to the 2011-12 National Nutrition and Physical Activity Survey (NNPAS). Participants were Australians aged 2 years and older from the 2011-12 NNPAS (n = 12,153, with n = 4,765 nut consumers). Mean metabolisable energy intake was compared with mean energy intake using Atwater factors in nut consumers. Additionally, nut consumption patterns were explored, including the proportion of nuts consumed at meals and snacks. RESULTS Among nut consumers, mean metabolisable energy from nuts based only on nut type was 241.2 (95% confidence interval [CI]: 232.0, 250.5) kJ/day and mean metabolisable energy considering both nut type and form was 260.7 (95% CI: 250.2, 271.2) kJ/day. Energy intake from nuts using Atwater factors was 317.6 (95% CI: 304.8, 330.3) kJ/day. Nuts were more likely to be consumed at snack occasions, with approximately 63% of nut intake occurring as a snack. CONCLUSION Application of metabolisable energy to the 2011-12 NNPAS has a significant impact on calculation of energy intake from nuts. Nut consumption patterns identified a majority of nut consumption occurring as snacks. These findings may inform strategies to support nut consumption in Australia.
Collapse
Affiliation(s)
- Cassandra J Nikodijevic
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine C Probst
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Sze-Yen Tan
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Elizabeth P Neale
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
6
|
Nunes YC, Santos GDO, Machado NM, Otoboni AMMB, Laurindo LF, Bishayee A, Fimognari C, Bishayee A, Barbalho SM. Peanut (Arachis hypogaea L.) seeds and by-products in metabolic syndrome and cardiovascular disorders: A systematic review of clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155170. [PMID: 38000103 DOI: 10.1016/j.phymed.2023.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Cardiovascular disease (CVDs) is the leading cause of death worldwide. The main risk factors are hypertension, diabetes, obesity, and increased serum lipids. The peanut (Arachis hypogaea L.), also known as the groundnut, goober, pindar, or monkey nut, belongs to the Fabaceae family and is the fourth most cultivated oilseed in the world. The seeds and skin of peanuts possess a rich phytochemical profile composed of antioxidants, such as phenolic acids, stilbenes, flavonoids, and phytosterols. Peanut consumption can provide numerous health benefits, such as anti-obesity, antidiabetic, antihypertensive, and hypolipidemic effects. Accordingly, peanuts have the potential to treat CVD and counteract its risk factors. PURPOSE This study aims to critically evaluate the effects of peanuts on metabolic syndrome (MetS) and CVD risk factors based on clinical studies. METHOD This review includes studies indexed in MEDLINE-PubMed, COCHRANE, and EMBASE, and the Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were adhered to. RESULTS Nineteen studies were included and indicated that the consumption of raw peanuts or differing forms of processed foods containing peanut products and phytochemicals could improve metabolic parameters, such as glycemia, insulinemia, glycated hemoglobin, lipids, body mass index, waist circumference, atherogenic indices, and endothelial function. CONCLUSION We propose that this legume and its products be used as a sustainable and low-cost alternative for the prevention and treatment of MetS and CVD. However, further research with larger sample sizes, longer intervention durations, and more diverse populations is needed to understand the full benefit of peanut consumption in MetS and CVD.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Gian de Oliveira Santos
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nathália Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Alda M M B Otoboni
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil.
| |
Collapse
|
7
|
Carter S, Hill AM, Mead LC, Wong HY, Yandell C, Buckley JD, Tan SY, Rogers GB, Fraysse F, Coates AM. Almonds vs. carbohydrate snacks in an energy-restricted diet: Weight and cardiometabolic outcomes from a randomized trial. Obesity (Silver Spring) 2023; 31:2467-2481. [PMID: 37621033 DOI: 10.1002/oby.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE This study evaluated weight and cardiometabolic outcomes after a 3-month energy-restricted diet (-30%) containing almonds (almond-enriched diet [AED]) or containing carbohydrate-rich snacks (nut-free control diet [NFD]) (Phase 1), followed by 6 months of weight maintenance (Phase 2). METHODS Participants (25-65 years old) with overweight or obesity (BMI 27.5-34.9 kg/m2 ) were randomly allocated to AED (n = 68) or NFD (n = 72). RESULTS Both groups lost weight during Phase 1 (p < 0.001) (mean [SE], -7.0 [0.5] kg AED vs. -7.0 [0.5] kg NFD, p = 0.858) and Phase 2 (p = 0.009) (-1.1 [0.5] kg AED vs. -1.3 [0.6] NFD, p = 0.756), with improvements in percentage lean mass after Phase 2 (4.8% [0.3%], p < 0.001). Reductions occurred in fasting glucose (-0.2 [0.07] mmol/L, p = 0.003), insulin (-8.1 [4.0] pmol/L, p = 0.036), blood pressure (-4.9 [0.8] mm Hg systolic, -5.0 [0.5] mm Hg diastolic, p < 0.001), total cholesterol (-0.3 [0.1] mmol/L), low-density lipoprotein (LDL) (-0.2 [0.1] mmol/L), very low-density lipoprotein (-0.1 [0.03] mmol/L), and triglycerides (-0.3 [0.06] mmol/L) (all p < 0.001), and high-density lipoprotein increased (0.1 [0.02] mmol/L, p = 0.011) by the end of Phase 2 in both groups. There were group by time interactions for lipoprotein particle concentrations: very small triglyceride-rich (-31.0 [7.7] nmol/L AED vs. -4.8 [7.9] nmol/L NFD, p = 0.007), small LDL (-109.3 [40.5] nmol/L AED vs. -20.7 [41.6] nmol/L NFD, p = 0.017), and medium LDL (-24.4 [43.4] nmol/L AED vs. -130.5 [44.4] nmol/L NFD, p = 0.045). CONCLUSIONS An energy-restricted AED resulted in weight loss and weight loss maintenance comparable to an energy-restricted NFD, and both diets supported cardiometabolic health. The AED resulted in greater improvements in some lipoprotein subfractions, which may enhance reductions in cardiovascular risk.
Collapse
Affiliation(s)
- Sharayah Carter
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Hill
- Clinical and Health Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Lauren C Mead
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Hoi Y Wong
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Catherine Yandell
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Jonathan D Buckley
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Sze-Yen Tan
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, Australia
| | - Geraint B Rogers
- Microbiome Research, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Francois Fraysse
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Coates
- Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Wong THT, George ES, Abbott G, Daly RM, Georgousopoulou EN, Tan SY. Nut and seed consumption is inversely associated with metabolic syndrome in females but not males: findings from the 2005-2018 NHANES data. Eur J Nutr 2023; 62:2415-2427. [PMID: 37115204 PMCID: PMC10421777 DOI: 10.1007/s00394-023-03157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To assess the association between nut and seed consumption, both combined and separately, and metabolic syndrome and its components, including fasting glucose, triglycerides, high-density lipoprotein (HDL) cholesterol, central obesity, and blood pressure. METHODS This cross-sectional analysis used data from 22,687 adults (aged ≥ 18 years) involved in seven cycles (2005-2018) of the National Health and Nutrition Examination Survey (NHANES). Habitual nut and seed intakes were estimated by the Multiple Source Method using data from two 24-h dietary recalls. Metabolic syndrome was ascertained using biochemical data and self-reported medication use. Sex-specific effect estimates were obtained using logistic and linear regressions adjusting for lifestyle and socioeconomic confounders. RESULTS Compared to non-consumers, female, but not male, habitual consumers of either nuts or seeds had lower odds of having metabolic syndrome (OR: 0.83, 95% CI 0.71, 0.97). Both nut intake alone and seed intake alone were inversely associated with high fasting glucose and low HDL-cholesterol in females compared to non-consumers. When restricted to habitual consumers only, the combined intake of nuts and seeds at 6 g/day was associated with the lowest triglycerides and highest HDL-cholesterol in females. Combined consumption of nuts and seeds up to one ounce-equivalent (15 g) per day, but not in higher intake levels, was inversely associated with metabolic syndrome, high fasting glucose, central obesity, and low HDL-cholesterol in females. CONCLUSIONS Nut and seed consumption, both separately or combined, below 15 g/day was inversely associated with metabolic syndrome and its component conditions in females but not males.
Collapse
Affiliation(s)
- Tommy H T Wong
- School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Elena S George
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3220, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3220, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3220, Australia
| | | | - Sze-Yen Tan
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3220, Australia.
| |
Collapse
|