1
|
Goo D, Ko H, Choi J, Lee J, White DL, Sharma MK, Kim WK. Valine and isoleucine deficiency in necrotic enteritis challenge impact growth performance, intestinal health, and muscle growth in broilers. Poult Sci 2025; 104:105143. [PMID: 40222349 PMCID: PMC12018184 DOI: 10.1016/j.psj.2025.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025] Open
Abstract
Necrotic enteritis (NE), an enteric disease caused by Clostridium perfringens, and antagonistic effects due to dietary branched-chain amino acid (BCAA) imbalance are key factors that negatively affect chicken growth. The current study was conducted to investigate the effects of valine and isoleucine deficiency in NE challenged broilers. A total of 336 seven-d-old male Cobb 500 were allotted to four treatments with six replicates. The four treatments were as follows: (1) non-challenged control (NC; leucine:lysine = 1.31, valine:lysine = 0.73, and isoleucine:lysine = 0.63), (2) NE-challenged group (NE), (3) NE-challenged with 85 % valine deficiency group (NE-VAL; valine:lysine = 0.62), and (4) NE-challenged with 85 % isoleucine deficiency group (NE-ILE; isoleucine:lysine = 0.54). E. maxima and C. perfringens were administered on d 14 and 18, respectively, and the experiment lasted until d 21. The NE-VAL group had the lowest growth performance measurements compared to the other groups (P < 0.001). All NE-challenged groups had significantly reduced overall growth performance measurements compared to the NC group (P < 0.001). The NE-ILE group showed no difference in any of the measurements compared to the NE group. On d 21, the NE group had significantly increased intestinal permeability, jejunal lesion scores, C. perfringens colony counts, and jejunal chemokine and cytokine gene expression levels, along with decreased intestinal morphology compared to the NC group (P < 0.05). The NE-VAL group had significantly decreased breast muscle yield, reduced lean and total tissue weight, and increased expression levels of mechanistic target of rapamycin pathway and BCAA catabolism-related genes compared to the NE group (P < 0.05). This may explain why the NE-VAL group had the lowest growth performance, as the two negative effects of NE infection and valine deficiency are separated. In conclusion, the negative effects of NE challenge and valine deficiency were independent; valine deficiency showed a similar response to that exhibited by high leucine levels, despite reduced feed intake caused by NE challenge.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Dima L White
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States.
| |
Collapse
|
2
|
Zheng K, Ma T, Jia Y, Wang H, Li H. Colorimetric and fluorescence dual-signal sensing of L-Arginine based on TSPP-TA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125505. [PMID: 39626514 DOI: 10.1016/j.saa.2024.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/29/2025]
Abstract
L-Arginine (L-Arg) is an essential basic amino acid for human growth and development. Several health disorders can be caused when the level of L-Arg is too high or weak in the body of a human being. Therefore, the quantification of L-Arg is great importance in the field of life sciences. Based on this, 5,10,15,20-(4-sulphonatophenyl)porphyrin (TSPP) probes with excellent water solubility and high quantum yield were synthesized by one-pot method. It was applied to colorimetric and fluorescence sensing systems. The maximum fluorescence emission wavelength was obtained at 643 nm when the excitation wavelength was set at 515 nm. The fluorescence signal was "ON" state with the purple-red of TSPP solution. The introduction of tannic acid (TA) into the TSPP solution partially converted TSPP to the double protonated form (H2TPPS4-). In the reaction, electron transfer taken place, leading to a decrease in the absorbance and fluorescence emission intensity of TSPP. This resulted in a color shift of the solution from purplish-red to green, effectively turning the fluorescence signal to an "OFF" state. The absorbance and fluorescence emission intensity of the quenched TSPP were significantly recovered due to the acid-base neutralization reaction occurs between alkaline L-Arg and TA when L-Arg was added to the TSPP-TA dual-signal sensing system. The color of the solution transitioned from green to colorless. Concurrently, the fluorescence signal was activated, marking an "ON" state. Therefore, an "ON-OFF-ON" type colorimetric and fluorescence dual-signal sensing system was constructed with TSPP-TA/L-Arg. The results showed that the linear range of L-Arg in the colorimetric sensing was 3.14 μM-145.20 μM with the detection limit (LOD, S/N = 3) of 0.11 μM. In the fluorescent sensing system, the linear range of L-Arg was 1.49 μM-271.74 μM with the detection limit (LOD, S/N = 3) of 0.07 μM. This dual-signal sensing system, which combined colorimetric and fluorescence indicators, has been effectively utilized for the high-precision and sensitive detection of L-Arg in real-world samples.
Collapse
Affiliation(s)
- Kun Zheng
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China
| | - Tianfeng Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China
| | - Yanyan Jia
- QingHai Higher Vocational and Technical Institute, Haidong 810799, China
| | - Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China.
| | - Huye Li
- The 4th People's Hospital of Qinghai Province, Xining 810007, China.
| |
Collapse
|
3
|
Fashogbon RO, Samson OJ, Awotundun TA, Olanbiwoninu AA, Adebayo-Tayo BC. Microbial gamma-aminobutyric acid synthesis: a promising approach for functional food and pharmaceutical applications. Lett Appl Microbiol 2024; 77:ovae122. [PMID: 39673306 DOI: 10.1093/lambio/ovae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is a main inhibitory neurotransmitter in the mammalian central nervous system. This mini-review emphasis on the microbial production of GABA and its potential benefits in various applications. Numerous microorganisms, including lactic acid bacteria, have been identified as efficient GABA producers. These microbes utilize glutamate decarboxylase enzymes to convert L-glutamate to GABA. Notable GABA-producing strains include Lactobacillus brevis, Lactobacillus plantarum, and certain Bifidobacterium species. Microbial GABA production offers numerous benefits over chemical synthesis, including cost-effectiveness, sustainability, and the potential for in situ production in fermented foods. Recent research has optimized fermentation conditions, genetic engineering approaches, and substrate utilization to enhance GABA yields. The benefits of GABA extend beyond its neurotransmitter role. Studies have shown its potential to reduce blood pressure, assuage anxiety, improve sleep quality, and improve cognitive function. These properties make microbial GABA production particularly attractive for developing functional foods, nutraceuticals, and pharmaceuticals. Future research directions include exploring novel GABA-producing strains, improving production efficiency, and investigating additional health benefits of microbially produced GABA.
Collapse
Affiliation(s)
- Racheal Oluwayemisi Fashogbon
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, P.M.B. 1066, Nigeria
| | - Oyindamola John Samson
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, P.M.B. 1066, Nigeria
| | - Theresa Abimbola Awotundun
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, P.M.B. 1066, Nigeria
| | - Afolake Atinuke Olanbiwoninu
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, P.M.B. 1066, Nigeria
| | | |
Collapse
|
4
|
Akbay B, Omarova Z, Trofimov A, Sailike B, Karapina O, Molnár F, Tokay T. Double-Edge Effects of Leucine on Cancer Cells. Biomolecules 2024; 14:1401. [PMID: 39595578 PMCID: PMC11591885 DOI: 10.3390/biom14111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Leucine is an essential amino acid that cannot be produced endogenously in the human body and therefore needs to be obtained from dietary sources. Leucine plays a pivotal role in stimulating muscle protein synthesis, along with isoleucine and valine, as the group of branched-chain amino acids, making them one of the most popular dietary supplements for athletes and gym-goers. The individual effects of leucine, however, have not been fully clarified, as most of the studies so far have focused on the grouped effects of branched-chain amino acids. In recent years, leucine and its metabolites have been shown to stimulate muscle protein synthesis mainly via the mammalian target of the rapamycin complex 1 signaling pathway, thereby improving muscle atrophy in cancer cachexia. Interestingly, cancer research suggests that leucine may have either anti-cancer or pro-tumorigenic effects. In the current manuscript, we aim to review leucine's roles in muscle protein synthesis, tumor suppression, and tumor progression, specifically summarizing the molecular mechanisms of leucine's action. The role of leucine is controversial in hepatocellular carcinoma, whereas its pro-tumorigenic effects have been demonstrated in breast and pancreatic cancers. In summary, leucine being used as nutritional supplement for athletes needs more attention, as its pro-oncogenic effects may have been identified by recent studies. Anti-cancer or pro-tumorigenic effects of leucine in various cancers should be further investigated to achieve clear conclusions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tursonjan Tokay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.A.); (Z.O.); (A.T.); (B.S.); (O.K.); (F.M.)
| |
Collapse
|
5
|
Paditz E. Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review). CHILDREN (BASEL, SWITZERLAND) 2024; 11:1197. [PMID: 39457162 PMCID: PMC11506472 DOI: 10.3390/children11101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Introduction: According to current knowledge, at birth, the pineal gland and melatonin receptors are already present and the suprachiasmatic nucleus is largely functional, and noradrenaline, the key pineal transmitter, can be detected in the early foetal period. It is still unclear why the pineal gland is not able to start its own pulsatile synthesis and secretion of melatonin in the first months of life, and as a result, infants during this time are dependent on an external supply of melatonin. Method: The causes and consequences of this physiological melatonin deficiency in human infancy are examined in a systematic review of the literature, in which 40 of 115 initially selected publications were evaluated in detail. The references of these studies were checked for relevant studies on this topic. References from previous reviews by the author were taken into account. Results: The development and differentiation of the pineal gland, the pinealocytes, as the site of melatonin synthesis, and the development and synaptic coupling of the associated predominantly noradrenergic neural pathways and vessels and the associated Lhx4 homebox only occurs during the first year of life. Discussion: The resulting physiological melatonin deficiency is associated with sleep disorders, infant colic, and increased crying in babies. Intervention studies indicate that this deficiency should be compensated for through breastfeeding, the administration of nonpooled donor milk, or through industrially produced chrononutrition made from nonpooled cow's milk with melatonin-poor day milk and melatonin-rich night milk.
Collapse
Affiliation(s)
- Ekkehart Paditz
- Center for Applied Prevention®, Blasewitzer Str. 41, D-01307 Dresden, Germany
| |
Collapse
|
6
|
Kusy K, Matysiak J, Kokot ZJ, Ciekot-Sołtysiak M, Klupczyńska-Gabryszak A, Zarębska EA, Plewa S, Dereziński P, Zieliński J. Exercise-induced response of proteinogenic and non-proteinogenic plasma free amino acids is sport-specific: A comparison of sprint and endurance athletes. PLoS One 2024; 19:e0309529. [PMID: 39213376 PMCID: PMC11364291 DOI: 10.1371/journal.pone.0309529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Circulating blood is an important plasma free amino acids (PFAAs) reservoir and a pivotal link between metabolic pathways. No comparisons are available between athletes with opposite training adaptations that include a broader spectrum of both proteinogenic and non-proteinogenic amino acids, and that take into account skeletal muscle mass. We hypothesized that the levels of the exercise-induced PFAAs concentration are related to the type of training-related metabolic adaptation. We compared highly trained endurance athletes (n = 11) and sprinters (n = 10) aged 20‒35 years who performed incremental exercise until exhaustion. Venous blood was collected before and during the test and 30-min recovery (12 samples). Forty-two PFAAs were assayed using LC-ESI-MS/MS technique. Skeletal muscle mass was estimated using dual X-ray absorptiometry method. Glutamine and alanine were dominant PFAAs throughout the whole exercise and recovery period (~350‒650 μmol∙L-1). Total, combined proteinogenic, non-essential, and non-proteinogenic PFAAs levels were significantly higher in endurance athletes than sprinters (ANOVA group effects: p = 0.007, η2 = 0.321; p = 0.011, η2 = 0.294; p = 0.003, η2 = 0.376; p = 0.001, η2 = 0.471, respectively). The exercise response was more pronounced in endurance athletes, especially for non-proteinogenic PFAAs (ANOVA interaction effect: p = 0.038, η2 = 0.123). Significant between-group differences were observed for 19 of 33 PFAAs detected, including 4 essential, 7 non-essential, and 8 non-proteinogenic ones. We demonstrated that the PFAAs response to incremental aerobic exercise is associated with the type of training-related metabolic adaptation. A greater turnover and availability of circulating PFAAs for skeletal muscles and other body tissues is observed in endurance- than in sprint-trained individuals. Non-proteinogenic PFAAs, despite low concentrations, also respond to exercise loads, indicating their important, though less understood role in exercise metabolism. Our study provides additional insight into the exercise-induced physiological response of PFAAs, and may also provide a rationale in discussions regarding dietary amino acid requirements in high-performance athletes with respect to sports specialization.
Collapse
Affiliation(s)
- Krzysztof Kusy
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, Kalisz, Poland
| | - Monika Ciekot-Sołtysiak
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| | | | - Ewa Anna Zarębska
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Zieliński
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| |
Collapse
|
7
|
Pires C, Leitão M, Sapatinha M, Gonçalves A, Oliveira H, Nunes ML, Teixeira B, Mendes R, Camacho C, Machado M, Pintado M, Ribeiro AR, Vieira EF, Delerue-Matos C, Lourenço HM, Marques A. Protein Hydrolysates from Salmon Heads and Cape Hake By-Products: Comparing Enzymatic Method with Subcritical Water Extraction on Bioactivity Properties. Foods 2024; 13:2418. [PMID: 39123610 PMCID: PMC11311982 DOI: 10.3390/foods13152418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Fish by-products can be converted into high-value-added products like fish protein hydrolysates (FPHs), which have high nutritional value and are rich in bioactive peptides with health benefits. This study aims to characterise FPHs derived from salmon heads (HPSs) and Cape hake trimmings (HPHs) using Alcalase for enzymatic hydrolysis and Subcritical Water Hydrolysis (SWH) as an alternative method. All hydrolysates demonstrated high protein content (70.4-88.7%), with the degree of hydrolysis (DH) ranging from 10.7 to 36.4%. The peptide profile of FPHs indicated the breakdown of proteins into small peptides. HPSs showed higher levels of glycine and proline, while HPHs had higher concentrations of glutamic acid, leucine, threonine, and phenylalanine. Similar elemental profiles were observed in both HPHs and HPSs, and the levels of Cd, Pb, and Hg were well below the legislated limits. Hydrolysates do not have a negative effect on cell metabolism and contribute to cell growth. HPSs and HPHs exhibited high 2,2'-azino-bis(3 ethylbenzthiazoline-6)-sulfonic acid (ABTS) radical scavenging activity, Cu2+ and Fe2+ chelating activities, and angiotensin-converting enzyme (ACE) inhibitory activity, with HPHs generally displaying higher activities. The α-amylase inhibition of both FPHs was relatively low. These results indicate that HPHs are a promising natural source of nutritional compounds and bioactive peptides, making them potential candidates for use as an ingredient in new food products or nutraceuticals. SWH at 250 °C is a viable alternative to enzymatic methods for producing FPHs from salmon heads with high antioxidant and chelating properties.
Collapse
Affiliation(s)
- Carla Pires
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Matilde Leitão
- Department of Chemistry, Nova School of Science and Technology, Nova University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Maria Sapatinha
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Department of Chemistry, Nova School of Science and Technology, Nova University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Amparo Gonçalves
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Helena Oliveira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Bárbara Teixeira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Rogério Mendes
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Manuela Machado
- Centre for Biotechnology and Fine Chemistry (CBQF), Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.M.); (M.P.)
| | - Manuela Pintado
- Centre for Biotechnology and Fine Chemistry (CBQF), Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.M.); (M.P.)
| | - Ana Rita Ribeiro
- Blue Bioeconomy CoLAB, Av. da Liberdade s/n, 4450-718 Leça da Palmeira, Portugal;
| | - Elsa F. Vieira
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (E.F.V.); (C.D.-M.)
| | - Cristina Delerue-Matos
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (E.F.V.); (C.D.-M.)
| | - Helena Maria Lourenço
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| |
Collapse
|
8
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
9
|
Rafii M, Paoletti A, He H, Porto B, Szwiega S, Pencharz PB, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. Dietary Lysine Requirements of Older Adults Stratified by Age and Sex. J Nutr 2024; 154:2133-2142. [PMID: 38735574 DOI: 10.1016/j.tjnut.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Current recommendation for lysine in older adults, 30 mg/kg/d, is based on young adult data. Evidence suggests that amino acid requirements may differ between young and old adults with both sex and age having an effect in the elderly. OBJECTIVES This study aimed to define the lysine requirements in healthy older adults using the indicator amino acid oxidation (IAAO) method with L-[1-13C] phenylalanine as the indicator and to compare the derived estimates based on age: 60-69 y and >70 y. METHODS Fourteen healthy males and 16 healthy females [>60 y, body mass index (BMI) = 26.3 kg/m2] were randomly assigned to receive 3-7 lysine intakes from 10 to 80 mg/kg/d. Subjects were adapted to a standard liquid diet providing 1.0 g/kg/d protein and adequate energy, for 2 d, with indicator oxidation measurements performed on day 3. The rate of release of 13CO2 from the oxidation of L-[1-13C] phenylalanine was measured in breath. A 2-phase linear mixed-effect model, and parametric bootstrap were used to determine mean lysine requirements and the 95% confidence intervals (CIs). The overlap of the 95% CI between the 2 age groups were used to compare the requirement estimates. The null hypothesis was accepted if the interval contained zero. RESULTS The mean and upper 95% CI of the lysine requirement for females were 32.9 and 40.9 and 46.2 and 53.7 mg/kg/d for those aged 60-69 y and >70 y, respectively. The mean and upper 95% CI of the lysine requirement for the 2 groups of males were not different so was combined to yield a mean and 95% CI of 32.2 and 38.2 mg/kg/d. CONCLUSIONS To our knowledge, this is the first study to report on the lysine requirement in adults aged >60 y. These results provide a basis from which the adequacy of diets to meet lysine needs of older adults can be assessed. The trial was registered at clinicaltrials.gov as NCT02008955 (https://clinicaltrials.gov/study/NCT02008955).
Collapse
Affiliation(s)
- Mahroukh Rafii
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Henry He
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beatriz Porto
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylwia Szwiega
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Jorquera C, Droppelmann G, Pridal P, Faúndez J, Feijoo F. Chilean Market Protein Shakes Composition. Nutrients 2024; 16:1129. [PMID: 38674821 PMCID: PMC11055153 DOI: 10.3390/nu16081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the nutritional content of protein supplements is crucial for optimal nutritional planning among athletes and other people. Distribution of macronutrients and aminograms in the main products available in the national Chilean market remains unknown. A descriptive cross-sectional study was conducted to identify the main protein supplements available in the Chilean market. Information on macronutrients and aminograms from the nutritional labels of each product was extracted. The analysis considered the content per portion and per 100 g. Cluster analysis models and graphical representations were explored. Eighty protein shakes were assessed in the Santiago de Chile market. The median protein dosage was 32 g (range from 25 to 52), and the median energy value stood at 390 kcal (range from 312 to 514). The median protein content per 100 g of product was found to be 75 g (range from 42.5 to 97.2). The combined median concentration of amino acids was 4749.75 mg. Among these, the essential amino acid L-Tryptophan exhibited the lowest concentration at 1591.50 mg, while the conditional amino acid L-Glutamine had the highest median concentration at 17,336 mg. There was a significant prevalence of animal-derived products, placing specific emphasis on protein supplements that feature elevated levels of the amino acids L-Glutamine and L-Leucine.
Collapse
Affiliation(s)
- Carlos Jorquera
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Universidad Mayor, Santiago 8580745, Chile; (C.J.); (P.P.)
| | - Guillermo Droppelmann
- Clínica MEDS, Santiago 7550000, Chile
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Paula Pridal
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Universidad Mayor, Santiago 8580745, Chile; (C.J.); (P.P.)
| | - Javier Faúndez
- Club Social y Deportivo Unión Española, Santiago, Chile;
| | - Felipe Feijoo
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| |
Collapse
|
11
|
Hu X, Yang Y, Chang C, Li J, Su Y, Gu L. The targeted development of collagen-active peptides based on composite enzyme hydrolysis: a study on the structure-activity relationship. Food Funct 2024; 15:401-410. [PMID: 38099483 DOI: 10.1039/d3fo04455f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Fish collagen, derived from sustainable sources, offers a valuable substrate for generating peptides with diverse biofunctionalities. In this study, alkaline, papain, and ginger protease were used to enzymatically hydrolyze fish skin collagen. The peptide molecular weight distribution and sequence were measured using HPLC and ICP-MS-MS, with papain/alkaline protease (AP) and papain/alkaline/ginger protease (APG) hydrolyzed samples compared. As the results showed, the incorporation of ginger protease was useful for increasing the degree of hydrolysis, with the content of <400 Da peptides increasing from 49.82% to 58.56%. The identified peptide sequence in the APG sample had more proline at the C-terminal. The peptides were separated into two components (different in molecular weight) using gel column chromatography. The molecular weight distribution, amino acid composition, ACE inhibitory activity, and fibroblast proliferation activity of the collected components were measured. In comparison, the contents of proline and hydroxyproline in the larger peptides decreased obviously after combined hydrolysis by ginger protease, reflecting the formation of a peptide sequence of smaller molecular weight containing glycine and hydroxyproline. The combined hydrolysis of ginger protease was beneficial for the improvement of the ACE inhibitory activity of the sample. However, the fibroblast proliferation activity of AP was higher than that of APG, indicating that further hydrolysis by ginger protease may destroy the hydroxyproline at the end of the peptide sequence. This study proposed a creative directional hydrolysis method and provided practical guidance for the production of collagen peptides with enhanced functional activity.
Collapse
Affiliation(s)
- Xinnuo Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuihua Chang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junhua Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yujie Su
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Luping Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
12
|
Mei S, He G, Chen Z, Zhang R, Liao Y, Zhu M, Xu D, Shen Y, Zhou B, Wang K, Wang C, Zhu E, Chen C. Probiotic-Fermented Distillers Grain Alters the Rumen Microbiome, Metabolome, and Enzyme Activity, Enhancing the Immune Status of Finishing Cattle. Animals (Basel) 2023; 13:3774. [PMID: 38136811 PMCID: PMC10740804 DOI: 10.3390/ani13243774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
A total of 30 Simmental crossbred cattle (6.50 months old, 265.0 ± 22.48 kg) were randomly divided into three groups, with 10 heads per group, and fed for 45 days. The diet treatments consisted of the Control group without PFDG supplementation, the PFDG-15% group with 15% PFDG substituting for 15% concentrate, and PFDG-30% group with 30% PFDG substituting for 30% concentrate. The results showed that compared with the Control group, the average daily gain (ADG) of the cattle in the PFDG-30% group decreased significantly (0.890 vs. 0.768 kg/d, p = 0.005). The serum malondialdehyde content of cattle in the PFDG-15% and PFDG-30% groups decreased significantly (p = 0.047) compared to that of the Control group. However, the serum superoxide dismutase activity of cattle in the PFDG-30% group was significantly higher than that of the Control group (p = 0.047). Meanwhile, both the PFDG-15% and PFDG-30% groups (1758.47 vs. 2061.30 μg/mL) showed higher serum levels of immunoglobulin G, while the interleukin-10 concentration was lower in the PFDG-30% group (p = 0.027). In addition, the PFDG-15% and PFDG-30% groups shifted the rumen microbiota by improving the abundances of F082 (related to propionic acid production) and fiber-degrading bacteria (Lachnospiraceae_UGG-009 and Prevotellaceae_UCG-001) and reducing the abundance of the disease-associated bacteria Selenomonas. A Kyoto encyclopedia of genes and genomes (KEGG) analysis illustrated that three key metabolic pathways, including phenylalanine metabolism, pyrimidine metabolism, and tryptophan metabolism, were enriched in the PFDG-15% group, but eight key metabolic pathways, including arachidonic acid metabolism, were enriched in the PFDG-30% group. Importantly, both the PFDG-15% and PFDG-30% groups increased (p < 0.01) the activities of cellulase, lipase, and protease in the rumen. Finally, the different bacterial abundance in the rumen was associated with changes in the ADG, serum antioxidant capacity, immune status, rumen enzyme activity, and metabolites. These results suggest that PFDG alters rumen microbiome abundance, metabolome, and enzyme activity for enhancing serum antioxidant capacity and the immune status, but when the supplemental level reaches 30%, it has a negative effect on ADG and the anti-inflammatory factors in finishing cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (S.M.); (G.H.); (Z.C.); (R.Z.); (Y.L.); (M.Z.); (D.X.); (Y.S.); (B.Z.); (K.W.); (C.W.); (E.Z.)
| |
Collapse
|
13
|
Kuramochi Y, Murata M, Sumino A, Sone H, Hayamizu K. Safety assessment of L-Arg oral intake in healthy subjects: a systematic review of randomized control trials. Amino Acids 2023; 55:1949-1964. [PMID: 37947893 PMCID: PMC10724322 DOI: 10.1007/s00726-023-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
L-Arg is a nonessential amino acid but has many physiological roles. Accordingly, L-Arg has been used in various fields, but there is only limited information available about its safety upon overdose. Generally, the no-observed adverse effect level (NOAEL) is used when setting the upper amount for chemical substances. Recently, systematic reviews have been used to assess the safety as well as the effectiveness and usefulness of them. Therefore, we conducted an assessment of the safety of the oral intake of L-Arg in healthy subjects using gastrointestinal symptoms as an index. We limited the study design to only double-blind randomized controlled trials and searched PubMed, Cochrane Library, EBSCOhost, and Ichushi-Web from inception until May 2021. Assessment of the quality of studies was conducted using the Cochrane Collaboration tool and Jadad score, and the random effects model was used for data analysis. Ultimately, 34 studies were selected for inclusion in this work. The dosage of L-Arg used in the studies ranged from 2000 to 30,000 mg/day (or/one-time dose), and the treatment duration was 1-84 days. The increased risk of gastrointestinal symptoms associated with L-Arg intake from 23 studies (647 participants in total) in which such symptoms were reported was 0.01 (95% confidence interval: - 0.02-0.04), which was not significant difference. NOAEL was estimated as 7531 mg/ one-time dose using a weighted change-point regression model (UMIN000046133).Registration and protocol: Umin.ac.jp as UMIN000046133.
Collapse
Affiliation(s)
- Yui Kuramochi
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, 601 Matano-Cho, Totsuka-Ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Mai Murata
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, 601 Matano-Cho, Totsuka-Ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Akihide Sumino
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, 601 Matano-Cho, Totsuka-Ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Hideko Sone
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, 601 Matano-Cho, Totsuka-Ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Kohsuke Hayamizu
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, 601 Matano-Cho, Totsuka-Ku, Yokohama, Kanagawa, 245-0066, Japan.
| |
Collapse
|
14
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|