1
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
2
|
Mahakalkar AU, Gianquintieri L, Amici L, Brovelli MA, Caiani EG. Geospatial analysis of short-term exposure to air pollution and risk of cardiovascular diseases and mortality-A systematic review. CHEMOSPHERE 2024; 353:141495. [PMID: 38373448 DOI: 10.1016/j.chemosphere.2024.141495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The cardiovascular risk associated with short-term ambient air pollution exposure is well-documented. However, recent advancements in geospatial techniques have provided new insights into this risk. This systematic review focuses on short-term exposure studies that applied advanced geospatial pollution modelling to estimate cardiovascular disease (CVD) risk and accounted for additional unconventional neighbourhood-level confounders to analyse their modifier effect on the risk. Four databases were investigated to select publications between 2018 and 2023 that met the inclusion criteria of studying the effect of particulate matter (PM2.5 and PM10), SO2, NOx, CO, and O3 on CVD mortality or morbidity, utilizing pollution modelling techniques, and considering spatial and temporal confounders. Out of 3277 publications, 285 were identified for full-text review, of which 34 satisfied the inclusion criteria for qualitative analysis, and 12 of them were chosen for additional quantitative analysis. Quality assessment revealed that 28 out of 34 included articles scored 4 or above, indicating high quality. In 30 studies, advanced pollution modelling techniques were used, while in 4 only simpler methods were applied. The most pertinent confounders identified were socio-demographic variables (e.g., socio-economic status, population percentage by race or ethnicity) and neighbourhood-level built environment variables (e.g., urban/rural area, percentage of green space, proximity to healthcare), which exhibited varying modifier effects depending on the context. In the quantitative analysis, only PM 2.5 showed a significant positive association to all-cause CVD-related hospitalisation. Other pollutants did not show any significant effect, likely due to the high inter-study heterogeneity and a limited number of cases. The application of advanced geospatial measurement and modelling of air pollution exposure, as well as its risk, is increasing. This review underscores the importance of accounting for unconventional neighbourhood-level confounders to enhance the understanding of the CVD risk associated with short-term pollution exposure.
Collapse
Affiliation(s)
- Amruta Umakant Mahakalkar
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; University School for Advanced Studies IUSS, Pavia, Italy
| | - Lorenzo Gianquintieri
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy.
| | - Lorenzo Amici
- Politecnico di Milano, Civil and Environmental Engineering Dpt., Milan, Italy
| | | | - Enrico Gianluca Caiani
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
Raab H, Moyer J, Afrin S, Garcia-Menendez F, Ward-Caviness CK. Prescribed fires, smoke exposure, and hospital utilization among heart failure patients. Environ Health 2023; 22:86. [PMID: 38087300 PMCID: PMC10717133 DOI: 10.1186/s12940-023-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Prescribed fires often have ecological benefits, but their environmental health risks have been infrequently studied. We investigated associations between residing near a prescribed fire, wildfire smoke exposure, and heart failure (HF) patients' hospital utilization. METHODS We used electronic health records from January 2014 to December 2016 in a North Carolina hospital-based cohort to determine HF diagnoses, primary residence, and hospital utilization. Using a cross-sectional study design, we associated the prescribed fire occurrences within 1, 2, and 5 km of the patients' primary residence with the number of hospital visits and 7- and 30-day readmissions. To compare prescribed fire associations with those observed for wildfire smoke, we also associated zip code-level smoke density data designed to capture wildfire smoke emissions with hospital utilization amongst HF patients. Quasi-Poisson regression models were used for the number of hospital visits, while zero-inflated Poisson regression models were used for readmissions. All models were adjusted for age, sex, race, and neighborhood socioeconomic status and included an offset for follow-up time. The results are the percent change and the 95% confidence interval (CI). RESULTS Associations between prescribed fire occurrences and hospital visits were generally null, with the few associations observed being with prescribed fires within 5 and 2 km of the primary residence in the negative direction but not the more restrictive 1 km radius. However, exposure to medium or heavy smoke (primarily from wildfires) at the zip code level was associated with both 7-day (8.5% increase; 95% CI = 1.5%, 16.0%) and 30-day readmissions (5.4%; 95% CI = 2.3%, 8.5%), and to a lesser degree, hospital visits (1.5%; 95% CI: 0.0%, 3.0%) matching previous studies. CONCLUSIONS Area-level smoke exposure driven by wildfires is positively associated with hospital utilization but not proximity to prescribed fires.
Collapse
Affiliation(s)
- Henry Raab
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Human Studies Building, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Joshua Moyer
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Human Studies Building, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Sadia Afrin
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Present address: MIT Laboratory for Aviation and the Environment, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fernando Garcia-Menendez
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Human Studies Building, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
4
|
Aryal A, Noël A, Khachatryan L, Cormier SA, Chowdhury PH, Penn A, Dugas TR, Harmon AC. Environmentally persistent free radicals: Methods for combustion generation, whole-body inhalation and assessing cardiopulmonary consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122183. [PMID: 37442324 PMCID: PMC10528481 DOI: 10.1016/j.envpol.2023.122183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) results from the incomplete combustion of organic wastes which chemisorb to transition metals. This process generates a particle-pollutant complex that continuously redox cycles to produce reactive oxygen species. EPFRs are well characterized, but their cardiopulmonary effects remain unknown. This publication provides a detailed approach to evaluating these effects and demonstrates the impact that EPFRs have on the lungs and vasculature. Combustion-derived EPFRs were generated (EPFR lo: 2.1e-16 radical/g, EPFR hi: 5.5e-17 radical/g), characterized, and verified as representative of those found in urban areas. Dry particle aerosolization and whole-body inhalation were established for rodent exposures. To verify that these particles and exposures recapitulate findings relevant to known PM-induced cardiopulmonary effects, male C57BL6 mice were exposed to filtered air, ∼280 μg/m3 EPFR lo or EPFR hi for 4 h/d for 5 consecutive days. Compared to filtered air, pulmonary resistance was increased in mice exposed to EPFR hi. Mice exposed to EPFR hi also exhibited increased plasma endothelin-1 (44.6 vs 30.6 pg/mL) and reduced nitric oxide (137 nM vs 236 nM), suggesting vascular dysfunction. Assessment of vascular response demonstrated an impairment in endothelium-dependent vasorelaxation, with maximum relaxation decreased from 80% to 62% in filtered air vs EPFR hi exposed mice. Gene expression analysis highlighted fold changes in aryl hydrocarbon receptor (AhR) and antioxidant response genes including increases in lung Cyp1a1 (8.7 fold), Cyp1b1 (9 fold), Aldh3a1 (1.7 fold) and Nqo1 (2.4 fold) and Gclc (1.3 fold), and in aortic Cyp1a1 (5.3 fold) in mice exposed to EPFR hi vs filtered air. We then determined that lung AT2 cells were the predominate locus for AhR activation. Together, these data suggest the lung and vasculature as particular targets for the health impacts of EPFRs and demonstrate the importance of additional studies investigating the cardiopulmonary effects of EPFRs.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana, 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Pratiti H Chowdhury
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
5
|
Ward-Caviness CK, Cascio WE. A Narrative Review on the Impact of Air Pollution on Heart Failure Risk and Exacerbation. Can J Cardiol 2023; 39:1244-1252. [PMID: 37406802 DOI: 10.1016/j.cjca.2023.06.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Air pollution is a risk factor for many cardiovascular diseases, including heart failure (HF). Although the links between air pollution and HF have been explored, the results are scattered and difficult to piece together into a cohesive story. Therefore, we undertook a narrative review of all aspects of the relationship between HF and air pollution exposure, including risks of developing HF when exposed to air pollution, the exacerbation of HF symptoms by air pollution exposure, and the increased susceptibility that individuals with HF have for air pollution-related health risks. We also examined the literature on environmental justice as well as air pollution interventions for HF. We found substantial evidence linking air pollution exposure to HF incidence. There were a limited number of studies that examined air pollution exposure in clearly defined populations with HF to explore exacerbation of HF or the susceptibility of individuals with HF to air pollution health risks. However, there is substantial evidence that HF-related hospitalisations are increased under air pollution exposure and that the air pollution associated increase in HF-related hospitalisations is greater than hospitalisations for other chronic diseases, supporting links between air pollution and both exacerbation of HF and susceptibility of individuals with HF. There is emerging evidence for interventions that can decrease air pollution health risks for individuals with HF, and more studies are needed, particularly randomised controlled trials. Thus, although the air pollution-related health risks for HF incidence and hospitalisations are clear, further studies specifically targeted at identified data gaps will greatly improve our knowledge of the susceptibility of individuals with HF and interventions to reduce risks.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA.
| | - Wayne E Cascio
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Jia Y, Lin Z, He Z, Li C, Zhang Y, Wang J, Liu F, Li J, Huang K, Cao J, Gong X, Lu X, Chen S. Effect of Air Pollution on Heart Failure: Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76001. [PMID: 37399145 PMCID: PMC10317211 DOI: 10.1289/ehp11506] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Heart failure (HF) poses a significant global disease burden. The current evidence on the impact of air pollution on HF remains inconsistent. OBJECTIVES We aimed to conduct a systematic review of the literature and meta-analysis to provide a more comprehensive and multiperspective assessment of the associations between short- and long-term air pollution exposure and HF from epidemiological evidences. METHODS Three databases were searched up to 31 August 2022 for studies investigating the association between air pollutants (PM 2.5 , PM 10 , NO 2 , SO 2 , CO, O 3 ) and HF hospitalization, incidence, or mortality. A random effects model was used to derive the risk estimations. Subgroup analysis was conducted by geographical location, age of participants, outcome, study design, covered area, the methods of exposure assessment, and the length of exposure window. Sensitivity analysis and adjustment for publication bias were performed to test the robustness of the results. RESULTS Of 100 studies covering 20 countries worldwide, 81 were for short-term and 19 were for long-term exposure. Almost all air pollutants were adversely associated with the risk of HF in both short- and long-term exposure studies. For short-term exposures, we found the risk of HF increased by 1.8% [relative risk ( RR ) = 1.018 , 95% confidence interval (CI): 1.011, 1.025] and 1.6% (RR = 1.016 , 95% CI: 1.011, 1.020) per 10 - μ g / m 3 increment of PM 2.5 and PM 10 , respectively. HF was also significantly associated with NO 2 , SO 2 , and CO, but not O 3 . Positive associations were stronger when exposure was considered over the previous 2 d (lag 0-1) rather than on the day of exposure only (lag 0). For long-term exposures, there were significant associations between several air pollutants and HF with RR (95% CI) of 1.748 (1.112, 2.747) per 10 - μ g / m 3 increment in PM 2.5 , 1.212 (1.010, 1.454) per 10 - μ g / m 3 increment in PM 10 , and 1.204 (1.069, 1.356) per 10 -ppb increment in NO 2 , respectively. The adverse associations of most pollutants with HF were greater in low- and middle-income countries than in high-income countries. Sensitivity analysis demonstrated the robustness of our results. DISCUSSION Available evidence highlighted adverse associations between air pollution and HF regardless of short- and long-term exposure. Air pollution is still a prevalent public health issue globally and sustained policies and actions are called for to reduce the burden of HF. https://doi.org/10.1289/EHP11506.
Collapse
Affiliation(s)
- Yanhui Jia
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Zhennan Lin
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Zhi He
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chenyang Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Youjing Zhang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Jingyu Wang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Xinyuan Gong
- Department of Science and Education, Tianjin First Central Hospital, Tianjin, China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
7
|
Cowan KN, Wyatt LH, Luben TJ, Sacks JD, Ward-Caviness C, Rappazzo KM. Effect measure modification of the association between short-term exposures to PM 2.5 and hospitalizations by longs-term PM 2.5 exposure among a cohort of people with Chronic Obstructive Pulmonary Disease (COPD) in North Carolina, 2002-2015. Environ Health 2023; 22:49. [PMID: 37386433 PMCID: PMC10308617 DOI: 10.1186/s12940-023-00999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Approximately nine million adults in the United States are living with chronic obstructive pulmonary disease (COPD), and positive associations between short-term air pollution exposure and increased risk of COPD hospitalizations in older adults are consistently reported. We examined the association between short-term PM2.5 exposure and hospitalizations and assessed if there is modification by long-term exposure in a cohort of individuals with COPD. METHODS In a time-referent case-crossover design, we used a cohort of randomly selected individuals with electronic health records from the University of North Carolina Healthcare System, restricted to patients with a medical encounter coded with a COPD diagnosis from 2004-2016 (n = 520), and estimated ambient PM2.5 concentrations from an ensemble model. Odds ratios and 95% confidence intervals (OR (95%CI)) were estimated with conditional logistic regression for respiratory-related, cardiovascular (CVD), and all-cause hospitalizations. Exposures examined were 0-2 and 0-3 day lags of PM2.5 concentration, adjusting for daily census-tract temperature and humidity, and models were stratified by long-term (annual average) PM2.5 concentration at the median value. RESULTS We observed generally null or low-magnitude negative associations with short-term PM2.5 exposure and respiratory-related (OR per 5 µg/m3 increase in 3-day lag PM2.5: 0.971 (0.885, 1.066)), CVD (2-day lag: 0.976 (0.900, 1.058) and all-cause (3 day lag: 1.003 (0.927, 1.086)) hospitalizations. Associations between short-term PM2.5 exposure and hospitalizations were higher among patients residing in areas with higher levels of annual PM2.5 concentrations (OR per 5 µg/m3 in 3-day lag PM2.5 for all-cause hospitalizations: 1.066 (0.958, 1.185)) than those in areas with lower annual PM2.5 concentrations (OR per 5 µg/m3 in 3-day lag PM2.5 for all-cause hospitalizations: 0.914 (0.804, 1.039)). CONCLUISONS Differences in associations demonstrate that people in areas with higher annual PM2.5 exposure may be associated with higher risk of hospitalization during short-term increases in PM2.5 exposure.
Collapse
Affiliation(s)
- Kristen N Cowan
- Department of Epidemiology, GillingsSchool of Global Public Health, University of North Carolina, Chapel Hill, USA
- Oak Ridge Institute for Science and Education (ORISE) at US EPA, Oak Ridge, USA
| | - Lauren H Wyatt
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Dr, MD 58C, Research Triangle Park, Durham, NC, 27711, USA
| | - Thomas J Luben
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Dr, MD 58C, Research Triangle Park, Durham, NC, 27711, USA
| | - Jason D Sacks
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Dr, MD 58C, Research Triangle Park, Durham, NC, 27711, USA
| | - Cavin Ward-Caviness
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Dr, MD 58C, Research Triangle Park, Durham, NC, 27711, USA
| | - Kristen M Rappazzo
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Dr, MD 58C, Research Triangle Park, Durham, NC, 27711, USA.
| |
Collapse
|
8
|
Iyanna N, Yolton K, LeMasters G, Lanphear BP, Cecil KM, Schwartz J, Brokamp C, Rasnick E, Xu Y, MacDougall MC, Ryan PH. Air pollution exposure and social responsiveness in childhood: The cincinnati combined childhood cohorts. Int J Hyg Environ Health 2023; 251:114172. [PMID: 37116232 PMCID: PMC10682723 DOI: 10.1016/j.ijheh.2023.114172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Autism Spectrum Disorder (ASD) affects about 1 in 44 children and environmental exposures may contribute to disease onset. Air pollution has been associated with adverse neurobehavioral outcomes, yet little research has examined its association with autistic-like behaviors. Therefore, our objective was to examine the association between exposure to air pollution, including NO2 and PM2.5, during pregnancy and the first year of life to ASD-like behaviors during childhood. Participants (n = 435) enrolled in the Cincinnati Childhood Allergy and Air Pollution Study and the Health Outcomes and Measures of the Environment Study were included in the analysis. Daily exposures to NO2 and PM2.5 at the residential addresses of participants were estimated using validated spatiotemporal models and averaged to obtain prenatal and first year exposure estimates. ASD-like behaviors were assessed via the Social Responsiveness Scale (SRS) questionnaire at age 12. Linear regression models adjusting for confounders were applied to estimate the association between pollutants and SRS scores. After adjusting for covariates, the association between NO2 and PM2.5 and SRS scores remained positive but were no longer statistically significant. Prenatal and first year exposure to NO2 were associated with total SRS T-scores with an estimated 0.4 point increase (95% CI: -0.7, 1.6) per 5.2 ppb increase in NO2 exposure and 0.7 point (95% CI: -0.3, 1.6) per 4.2 ppb increase in NO2 exposure, respectively. For PM2.5, a 2.6 μg/m3 increase in prenatal exposure was associated with a 0.1 point increase (95% CI: -1.1, 1.4) in SRS Total T-scores and a 1.3 μg/m3 increase first year of life was associated with a 1 point increase (95% CI: -0.2, 2.3). In summary, exposure to NO2 and PM2.5 during pregnancy and the first year of life were not significantly associated with higher autistic-like behaviors measured with SRS scores after adjustment of covariates. Additional research is warranted given prior studies suggesting air pollution contributes to ASD.
Collapse
Affiliation(s)
- Nidhi Iyanna
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Grace LeMasters
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, USA
| | - Cole Brokamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Rasnick
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Melinda C MacDougall
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick H Ryan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Cascio WE, Ward-Caviness C. Another Call for RCTs of Interventions to Reduce Particulate Matter 2.5 Associated Cardiovascular Health Effects. JACC. ADVANCES 2023; 2:1-4. [PMID: 37475890 PMCID: PMC10355027 DOI: 10.1016/j.jacadv.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Wayne E Cascio
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| | - Cavin Ward-Caviness
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| |
Collapse
|
10
|
Recent Insights into Particulate Matter (PM 2.5)-Mediated Toxicity in Humans: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127511. [PMID: 35742761 PMCID: PMC9223652 DOI: 10.3390/ijerph19127511] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Several epidemiologic and toxicological studies have commonly viewed ambient fine particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm, as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system, reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease, cancers, preterm births, and other illnesses. There has been increased worry in recent years about the negative impacts of this worldwide danger. The causal associations between PM2.5 and human health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been described in this review.
Collapse
|