1
|
Liu X, Liang J, Li S, Yang Y, Zhu Q, Qiu R, Chen ZJ, Yao Y, Ren Q, Yu X, Qu J, Su J, Yuan J. Whole-exome sequencing reveals sex difference in the genetic architecture of high myopia. J Med Genet 2025; 62:358-368. [PMID: 40081872 DOI: 10.1136/jmg-2024-110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. To understand the sex difference in the genetic architecture of HM, which may contribute to understanding HM aetiology and help further the realisation of precision medicine for HM. METHODS We performed sex-stratified exome-wide association studies (ExWAS) with n (males)=7492 and n (females)=8090, along with gene- and pathway-based tests and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to HM in a sex-specific manner. RESULTS In our ExWAS, we identified that a male-specific gene, CHRNB1 (Zfemales=1.382, Pfemales=0.083; Zmales=4.029, Pmales=2.80×10-05; Pdifference=0.003), was associated with higher risk scores of HM in males than in females. Rare variant burden tests showed a significant excess of rare protein-truncating variants among HM males in CHRNB1-related pathways, including cell-cell signalling and muscle structure development. Sex-based differences in gene expression within CHRNB1-enriched ciliary body cells were observed; specifically, increased expression of mitochondrial metabolism-related genes in males and antioxidant genes in females. Functional differences in mitochondrial metabolism were confirmed in male-derived H1 and female-derived H9 human embryonic stem cell lines, with H1 cells specifically exhibiting significant dysregulation of mitochondrial organisation and mitochondrial respiratory chain complex assembly after CHRNB1 knockdown. CONCLUSION Together, our study provides insight into the sex differences in the genetic architecture of HM and highlights CHRNB1's role in HM pathogenesis in males.
Collapse
Affiliation(s)
- Xingchen Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiacheng Liang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinghao Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruowen Qiu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Ji Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinghao Yao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Jian Yuan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Iglesias Pastrana C, Navas González FJ, Macri M, Martínez Martínez MDA, Ciani E, Delgado Bermejo JV. Identification of novel genetic loci related to dromedary camel (Camelus dromedarius) morphometrics, biomechanics, and behavior by genome-wide association studies. BMC Vet Res 2024; 20:418. [PMID: 39294626 PMCID: PMC11409489 DOI: 10.1186/s12917-024-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related to neural development and sensory perception play crucial roles in shaping a dromedary camel's physical characteristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior provides valuable insights into camel domestication. Moreover, the links between these traits and genes related to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse agricultural contexts.
Collapse
Affiliation(s)
| | | | - Martina Macri
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, Spain
- Animal Breeding Consulting S.L, Parque Científico Tecnológico de Córdoba, Córdoba, Spain
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, Faculty of Veterinary Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | |
Collapse
|
3
|
Zhao Y, Li DZ. Prognostic indicators for long-term outcome of non-immune hydrops fetalis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:573-574. [PMID: 38437502 DOI: 10.1002/uog.27618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 03/06/2024]
Abstract
Linked article: This Correspondence comments on Wu et al. Click here to view the article.
Collapse
Affiliation(s)
- Y Zhao
- Prenatal Diagnosis Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, China
| | - D-Z Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Xu Z, Arkudas A, Munawar MA, Schubert DW, Fey T, Weisbach V, Mengen LM, Horch RE, Cai A. Schwann Cells Do Not Promote Myogenic Differentiation in the EPI Loop Model. Tissue Eng Part A 2024; 30:244-256. [PMID: 38063005 DOI: 10.1089/ten.tea.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
In skeletal muscle tissue engineering, innervation and vascularization play an essential role in the establishment of functional skeletal muscle. For adequate three-dimensional assembly, biocompatible aligned nanofibers are beneficial as matrices for cell seeding. The aim of this study was to analyze the impact of Schwann cells (SC) on myoblast (Mb) and adipogenic mesenchymal stromal cell (ADSC) cocultures on poly-ɛ-caprolactone (PCL)-collagen I-nanofibers in vivo. Human Mb/ADSC cocultures, as well as Mb/ADSC/SC cocultures, were seeded onto PCL-collagen I-nanofiber scaffolds and implanted into the innervated arteriovenous loop model (EPI loop model) of immunodeficient rats for 4 weeks. Histological staining and gene expression were used to compare their capacity for vascularization, immunological response, myogenic differentiation, and innervation. After 4 weeks, both Mb/ADSC and Mb/ADSC/SC coculture systems showed similar amounts and distribution of vascularization, as well as immunological activity. Myogenic differentiation could be observed in both groups through histological staining (desmin, myosin heavy chain) and gene expression (MYOD, MYH3, ACTA1) without significant difference between groups. Expression of CHRNB and LAMB2 also implied neuromuscular junction formation. Our study suggests that the addition of SC did not significantly impact myogenesis and innervation in this model. The implanted motor nerve branch may have played a more significant role than the presence of SC.
Collapse
Affiliation(s)
- Zhou Xu
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Muhammad Azeem Munawar
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk W Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lilly M Mengen
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aijia Cai
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Zhang Z, Zhang X, Xue H, Chu L, Hu L, Bi X, Zhu P, Zhang D, Chen J, Cui X, Kong L, Liang B, Wu X. Preimplantation genetic testing as a means of preventing hereditary congenital myasthenic syndrome caused by RAPSN. Mol Genet Genomic Med 2024; 12:e2409. [PMID: 38511267 PMCID: PMC10955331 DOI: 10.1002/mgg3.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Congenital myasthenic syndrome is a heterogeneous group of inherited neuromuscular transmission disorders. Variants in RAPSN are a common cause of CMS, accounting for approximately 14%-27% of all CMS cases. Whether preimplantation genetic testing for monogenic disease (PGT-M) could be used to prevent the potential birth of CMS-affected children is unclear. METHODS Application of WES (whole-exome sequencing) for carrier testing and guidance for the PGT-M in the absence of a genetically characterized index patient as well as assisted reproductive technology were employed to prevent the occurrence of birth defects in subsequent pregnancy. The clinical phenotypes of stillborn fetuses were also assessed. RESULTS The family carried two likely pathogenic variants in RAPSN(NM_005055.5): c.133G>A (p.V45M) and c.280G>A (p.E94K). And the potential birth of CMS-affected child was successfully prevented, allowing the family to have offspring devoid of disease-associated variants and exhibiting a normal phenotype. CONCLUSION This report constitutes the first documented case of achieving a CMS-free offspring through PGT-M in a CMS-affected family. By broadening the known variant spectrum of RAPSN in the Chinese population, our findings underscore the feasibility and effectiveness of PGT-M for preventing CMS, offering valuable insights for similarly affected families.
Collapse
Affiliation(s)
- Zhiping Zhang
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Xueluo Zhang
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Huiqin Xue
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Liming Chu
- Basecare Medical Device Co., LtdSuzhouChina
| | - Lina Hu
- Basecare Medical Device Co., LtdSuzhouChina
| | - Xingyu Bi
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Pengfei Zhu
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Dongdong Zhang
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Jiayao Chen
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Xiangrong Cui
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | | | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xueqing Wu
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| |
Collapse
|
6
|
Al Kaissi A, Ryabykh S, Ochirova P, Bouchoucha S, Kenis V, Shboul M, Ganger R, Grill F, Kircher SG. Arthrogryposis is a descriptive term, not a specific disease entity: Escobar Syndrome is an example. Minerva Pediatr (Torino) 2024; 76:30-36. [PMID: 32536119 DOI: 10.23736/s2724-5276.20.05796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND Children born with multiple congenital contractures have been almost always given the diagnosis of arthrogryposis multiplex congenita. Arthrogryposis is a descriptive term, not a specific disease entity. A heterogeneous group of conditions associated with multiple congenital joint contractures (mostly syndromic) should be considered. METHODS The records of seven children (four boys and three girls aged 6 months - 11 years) of different ethnic origins have been included in this study. The constellation of specific craniofacial dysmorphic features, spine malformation complex, and appendicular skeletal abnormalities in addition to camptodactyly, talipes equinovarus and rocker-bottom feet were a cluster of malformation complex encountered in our patients. Via comprehensive clinical and imaging study (3D reconstruction CT scan), definite diagnosis of Escobar Syndrome has been approached. RESULTS The clinical and imaging phenotype was the key factor towards etiological understanding, treatment and genotype confirmation. We identified compound heterozygous mutations (c.459dupA [p.Val154Serfs*24] and c.794T>G [p.Leu265Serfs*24] of the CHRNG gene in four patients. Bilateral flexion contractures of the knees have been treated by using Iliazarov external fixator. Simultaneous corrections of scoliosis have been achieved by applying either dual traditional growing rods or single growing rods. CONCLUSIONS The clinical and radiological phenotypic characterizations are the fundamental tool in differentiating Escobar from other forms of multiple contractures. The aim of this study are three folds, firstly to demonstrate the importance of detecting the etiological understanding in children presented with multiple contractures, secondly to refute the general conception among the vast majority of pediatricians and orthopedic surgeons that arthrogryposis multiplex is a diagnostic entity. And thirdly, we were able to detect severe spine deformity via 3D reconstruction CT scan, namely unsegmented posterior spinal bar.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Ludwig Boltzmann Institute of Osteology, the Hanusch Hospital of WGKK, Vienna, Austria -
- AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria -
| | - Sergey Ryabykh
- Department of Paediatrics, Orthopedic Hospital of Speising, Vienna, Austria
| | - Polina Ochirova
- Department of Paediatrics, Orthopedic Hospital of Speising, Vienna, Austria
| | - Sami Bouchoucha
- Division Spine Pathology and Rare Diseases, Russian Scientific Ilizarov Center (RISC), Kurgan, Russia
| | - Vladimir Kenis
- Department of Pediatric Orthopedic Surgery, Children Hospital (Becher Hamza), Tunis, Tunisia
| | - Mohammad Shboul
- Department of Foot and Ankle Surgery, Neuro-orthopedics and Systemic Disorders, H. Turner Pediatric Orthopedic Institute, Saint Petersburg, Russia
| | - Rudolf Ganger
- AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria
| | - Franz Grill
- AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria
| | - Susanne G Kircher
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
8
|
Liao X, Wang Y, Lai X, Wang S. The role of Rapsyn in neuromuscular junction and congenital myasthenic syndrome. BIOMOLECULES & BIOMEDICINE 2023; 23:772-784. [PMID: 36815443 PMCID: PMC10494853 DOI: 10.17305/bb.2022.8641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Rapsyn, an intracellular scaffolding protein associated with the postsynaptic membranes in the neuromuscular junction (NMJ), is critical for nicotinic acetylcholine receptor clustering and maintenance. Therefore, Rapsyn is essential to the NMJ formation and maintenance, and Rapsyn mutant is one of the reasons causing the pathogenies of congenital myasthenic syndrome (CMS). In addition, there is little research on Rapsyn in the central nervous system (CNS). In this review, the role of Rapsyn in the NMJ formation and the mutation of Rapsyn leading to CMS will be reviewed separately and sequentially. Finally, the potential function of Rapsyn is prospected.
Collapse
Affiliation(s)
- Xufeng Liao
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Yingxing Wang
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Chung CJ, Hermes BM, Gupta Y, Ibrahim S, Belheouane M, Baines JF. Genome-wide mapping of gene-microbe interactions in the murine lung microbiota based on quantitative microbial profiling. Anim Microbiome 2023; 5:31. [PMID: 37264412 DOI: 10.1186/s42523-023-00250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. Previous research demonstrates that the environment significantly contributes to bacterial community structure in the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe interactions in the mammalian lung. RESULTS Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 knockout mice. CONCLUSIONS Our study provides the first evidence for a role of host genetic variation contributing to variation in the lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment opens new avenues for advancing lung microbiome research using animal models.
Collapse
Affiliation(s)
- C J Chung
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - B M Hermes
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Y Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S Ibrahim
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Research Center Borstel, Evolution of the Resistome, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany.
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
10
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
11
|
Kolesnikova TO, Demin KA, Costa FV, Zabegalov KN, de Abreu MS, Gerasimova EV, Kalueff AV. Towards Zebrafish Models of CNS Channelopathies. Int J Mol Sci 2022; 23:ijms232213979. [PMID: 36430455 PMCID: PMC9693542 DOI: 10.3390/ijms232213979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl- by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.
Collapse
Affiliation(s)
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
| | - Fabiano V. Costa
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | | | - Murilo S. de Abreu
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| | - Elena V. Gerasimova
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Allan V. Kalueff
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 St. Petersburg, Russia
- Ural Federal University, 620002 Yekaterinburg, Russia
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| |
Collapse
|
12
|
Najjar D, Chikhaoui A, Zarrouk S, Azouz S, Kamoun W, Nassib N, Bouchoucha S, Yacoub-Youssef H. Combining Gene Mutation with Expression of Candidate Genes to Improve Diagnosis of Escobar Syndrome. Genes (Basel) 2022; 13:genes13101748. [PMID: 36292632 PMCID: PMC9601381 DOI: 10.3390/genes13101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Escobar syndrome is a rare, autosomal recessive disorder that affects the musculoskeletal system and the skin. Mutations in the CHRNG and TPM2 genes are associated with this pathology. In this study, we conducted a clinical and genetic investigation of five patients and also explored via in silico and gene expression analysis their phenotypic variability. In detail, we identified a patient with a novel composite heterozygous variant of the CHRNG gene and two recurrent mutations in both CHRNG and TPM2 in the rest of the patients. As for the clinical particularities, we reported a list of modifier genes in a patient suffering from myopathy. Moreover, we identified decreased expression of IGF-1, which could be related to the short stature of Escobar patients, and increased expression of POLG1 specific to patients with TPM2 mutation. Through this study, we identified the genetic spectrum of Escobar syndrome in the Tunisian population, which will allow setting up genetic counseling and prenatal diagnosis for families at risk. In addition, we highlighted relevant biomarkers that could differentiate between patients with different genetic defects.
Collapse
Affiliation(s)
- Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Sinda Zarrouk
- Genomics Platform, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis 1002, Tunisia
| | - Saifeddine Azouz
- Genomics Platform, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis 1002, Tunisia
| | - Wafa Kamoun
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Nabil Nassib
- Service Orthopédie Pédiatrique, Hôpital d’Enfant Béchir Hamza, Tunis 1000, Tunisia
| | - Sami Bouchoucha
- Service Orthopédie Pédiatrique, Hôpital d’Enfant Béchir Hamza, Tunis 1000, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- Correspondence:
| |
Collapse
|
13
|
Zhuang J, Wang J, Luo Q, Zeng S, Chen Y, Jiang Y, Chen X, Wang Y, Xie Y, Wang G, Chen C. Case Report: Novel compound heterozygous variants in CHRNA1 gene leading to lethal multiple pterygium syndrome: A case report. Front Genet 2022; 13:964098. [PMID: 36092864 PMCID: PMC9459375 DOI: 10.3389/fgene.2022.964098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Lethal multiple pterygium syndrome (LMPS) is a rare autosomal recessive inherited disorder typically characterized by intrauterine growth retardation, multiple pterygia, and flexion contractures. Case presentation: We herein report a Chinese case with a history of three adverse pregnancies demonstrating the same ultrasonic phenotypes, including increased nuchal translucency, edema, fetal neck cystoma, reduced movement, joint contractures, and other congenital features. Whole-exome sequencing (WES) revealed novel compound heterozygous variants in the CHRNA1 gene NM_000079.4: c.[1128delG (p.Pro377LeufsTer10)]; [505T>C (p.Trp169Arg)] in the recruited individual, and subsequent familial segregation showed that both parents transmitted their respective mutation. Conclusion: For the first time, we identified an association between the CHRNA1 gene and the recurrent lethal multiple pterygium syndrome (LMPS) in a Chinese family. This finding may also enrich the mutation spectrum of the CHRNA1 gene and promote the applications of WES technology in etiologic diagnosis of ultrasound anomalies in prenatal examination.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Junyu Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Qi Luo
- Department of Public Health for Women and Children, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yu’e Chen
- Ultrasonography, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Xinying Chen
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chunnuan Chen, ; Gaoxiong Wang, ; Yingjun Xie,
| | - Gaoxiong Wang
- Quanzhou Women’s and Children’s Hospital, Quanzhou, China
- *Correspondence: Chunnuan Chen, ; Gaoxiong Wang, ; Yingjun Xie,
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Chunnuan Chen, ; Gaoxiong Wang, ; Yingjun Xie,
| |
Collapse
|
14
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
15
|
Dahan-Oliel N, Dieterich K, Rauch F, Bardai G, Blondell TN, Gustafson AG, Hamdy R, Latypova X, Shazand K, Giampietro PF, van Bosse H. The Clinical and Genotypic Spectrum of Scoliosis in Multiple Pterygium Syndrome: A Case Series on 12 Children. Genes (Basel) 2021; 12:genes12081220. [PMID: 34440395 PMCID: PMC8391526 DOI: 10.3390/genes12081220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Multiple pterygium syndrome (MPS) is a genetically heterogeneous rare form of arthrogryposis multiplex congenita characterized by joint contractures and webbing or pterygia, as well as distinctive facial features related to diminished fetal movement. It is divided into prenatally lethal (LMPS, MIM253290) and nonlethal (Escobar variant MPS, MIM 265000) types. Developmental spine deformities are common, may present early and progress rapidly, requiring regular fo llow-up and orthopedic management. Methods: Retrospective chart review and prospective data collection were conducted at three hospital centers. Molecular diagnosis was confirmed with whole exome or whole genome sequencing. Results: This case series describes the clinical features and scoliosis treatment on 12 patients from 11 unrelated families. A molecular diagnosis was confirmed in seven; two with MYH3 variants and five with CHRNG. Scoliosis was present in all but our youngest patient. The remaining 11 patients spanned the spectrum between mild (curve ≤ 25°) and malignant scoliosis (≥50° curve before 4 years of age); the two patients with MYH3 mutations presented with malignant scoliosis. Bracing and serial spine casting appear to be beneficial for a few years; non-fusion spinal instrumentation may be needed to modulate more severe curves during growth and spontaneous spine fusions may occur in those cases. Conclusions: Molecular diagnosis and careful monitoring of the spine is needed in children with MPS.
Collapse
Affiliation(s)
- Noémi Dahan-Oliel
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
- Correspondence: (N.D.-O.); (H.v.B.)
| | - Klaus Dieterich
- Inserm, U1216, Grenoble Institut Neurosciences, Génétique médicale, Université Grenoble Alpes, CHU Grenoble Alpes, 38000 Grenoble, France; (K.D.); (X.L.)
| | - Frank Rauch
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Ghalib Bardai
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | | | - Reggie Hamdy
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Xenia Latypova
- Inserm, U1216, Grenoble Institut Neurosciences, Génétique médicale, Université Grenoble Alpes, CHU Grenoble Alpes, 38000 Grenoble, France; (K.D.); (X.L.)
| | - Kamran Shazand
- Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; (A.G.G.); (K.S.)
| | | | - Harold van Bosse
- Shriners Hospitals for Children, Philadelphia, PA 19140, USA;
- Correspondence: (N.D.-O.); (H.v.B.)
| |
Collapse
|
16
|
Piccolo G, d'Annunzio G, Amadori E, Riva A, Borgia P, Tortora D, Maghnie M, Minetti C, Gitto E, Iacomino M, Baldassari S, Fiorillo C, Zara F, Striano P, Salpietro V. Neuromuscular and Neuroendocrinological Features Associated With ZC4H2-Related Arthrogryposis Multiplex Congenita in a Sicilian Family: A Case Report. Front Neurol 2021; 12:704747. [PMID: 34322088 PMCID: PMC8313121 DOI: 10.3389/fneur.2021.704747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Wieacker-Wolff syndrome (WWS) is an X-linked Arthrogryposis Multiplex Congenita (AMC) disorder associated with broad neurodevelopmental impairment. The genetic basis of WWS lies in hemizygous pathogenic variants in ZC4H2, encoding a C4H2 type zinc-finger nuclear factor abundantly expressed in the developing human brain. The main clinical features described in WWS families carrying ZC4H2 pathogenic variants encompass having a short stature, microcephaly, birth respiratory distress, arthrogryposis, hypotonia, distal muscle weakness, and broad neurodevelopmental delay. We hereby report a Sicilian family with a boy clinically diagnosed with WWS and genetically investigated with exome sequencing (ES), leading to the identification of a c.593G>A (p. R198Q) hemizygous pathogenic variant in the ZC4H2 gene. During the first year of life, the onset of central hypoadrenalism led to recurrent hypoglycemic events, which likely contributed to seizure susceptibility. Also, muscle biopsy studies confirmed a pathology of the muscle tissue and revealed peculiar abnormalities of the neuromuscular junction. In conclusion, we expand the phenotypic spectrum of the WWS-related neurodevelopmental disorders and discuss the role of ZC4H2 in the context of the potential neuroendocrinological and neuromuscular features associated with this condition.
Collapse
Affiliation(s)
- Gianluca Piccolo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Giuseppe d'Annunzio
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Borgia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Eloisa Gitto
- Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, Messina, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
18
|
Lin JB, Kang MQ, Huang LP, Zhuo Y, Li X, Lai FC. CHRNA1 promotes the pathogenesis of primary focal hyperhidrosis. Mol Cell Neurosci 2021; 111:103598. [PMID: 33476802 DOI: 10.1016/j.mcn.2021.103598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the study was to elucidate the involvement of cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) in the pathogenesis of primary focal hyperhidrosis (PFH). The hyperhidrosis mouse model was constructed using pilocarpine injection. The expression levels of CHRNA1 in sweat gland tissues of PFH patients and hyperhidrosis mice were compared using Western blots and quantitative real-time PCR (qRT-PCR) analyses. Sweat secretion in hyperhidrosis mice treated with small-interfering RNA (siRNA) targeting CHRNA1 (si-CHRNA1) or non-specific siRNA were compared. Sweat secretory granules in the sweat gland cells of hyperhidrosis mice were examined using transmission electron microscopy. The serum level of acetylcholine was measured using enzyme-linked immunosorbent assay, while markers associated with PFH, including Aquaporin 5 (AQP5) and Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C), were assessed using immunohistochemical assay and Western blots. Brain-derived neurotrophic factor (BDNF) and Neuregulin 1 (NRG-1) in sympathetic ganglia axons of hyperhidrosis mice were quantified using Western blots. CHRNA1 up-regulation is a characteristic of the sweat glands of PFH patients and Hyperhidrosis mice. Silencing CHRNA1 decreased sweat secretion and the number of sweat secretory granules of hyperhidrosis mice. Serum acetylcholine, as well as AQP5 and CACNA1C expression in the sweat glands, was reduced by siCHRNA1. BDNF1 and NRG-1 levels in the sympathetic ganglia axons were also attenuated by siCHRNA1 treatment. CHRNA1 up-regulation is a potential biomarker of PFH and downregulating CHRNA1 could alleviate the symptoms of PFH through inactivating the sympathetic system.
Collapse
Affiliation(s)
- Jian-Bo Lin
- Department of Thoracic Surgery, Palmar Hyperhidrosis Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China; Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, China
| | - Ming-Qiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, China
| | - Li-Ping Huang
- Pharmaceutical Department, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China
| | - Yi Zhuo
- Department of Thoracic Surgery, Palmar Hyperhidrosis Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, Palmar Hyperhidrosis Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Fan-Cai Lai
- Department of Thoracic Surgery, Palmar Hyperhidrosis Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China.
| |
Collapse
|
19
|
Freed AS, Schwarz AC, Brei BK, Clowes Candadai SV, Thies J, Mah JK, Chabra S, Wang L, Innes AM, Bennett JT. CHRNB1-associated congenital myasthenia syndrome: Expanding the clinical spectrum. Am J Med Genet A 2020; 185:827-835. [PMID: 33296147 DOI: 10.1002/ajmg.a.62011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
CHRNB1 encodes the β subunit of the acetylcholine receptor (AChR) at the neuromuscular junction. Inherited defects in the neuromuscular junction can lead to congenital myasthenia syndrome (CMS), a clinically and genetically heterogeneous group of disorders which includes fetal akinesia deformation sequence (FADS) on the severe end of the spectrum. Here, we report two unrelated families with biallelic CHRNB1 variants, and in each family, one child presented with lethal FADS. We contrast the diagnostic odysseys in the two families, one of which lasted 16 years while the other, utilizing rapid exome sequencing, led to specific treatment in the first 2 weeks of life. Furthermore, we note that CHRNB1 variants may be under-recognized because in both families, one of the variants is a single exon deletion that has been previously described but may not easily be detected in clinically available genetic testing.
Collapse
Affiliation(s)
- Amanda S Freed
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Genetics, SCPMG, Panorama City, California, USA
| | - Anisha C Schwarz
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, USA.,General & Neuromuscular Pediatric Neurology, Mary Bridge Children's Hospital, Tacoma, Washington, USA
| | - Brianna K Brei
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Neonatology, Children's Hospital & Medical Center, Omaha, Nebraska, USA
| | - Sarah V Clowes Candadai
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA.,Patient-Centered Laboratory Utilization Guidance Services (PLUGS), Seattle Children's Hospital, Seattle, Washington, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jean K Mah
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shilpi Chabra
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Leo Wang
- Division of Neuromuscular Neurology, Department of Neurology, University of Washington, Seattle, Washington, USA
| | - A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James T Bennett
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Neonatology, Children's Hospital & Medical Center, Omaha, Nebraska, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
20
|
Jühlen R, Martinelli V, Vinci C, Breckpot J, Fahrenkrog B. Centrosome and ciliary abnormalities in fetal akinesia deformation sequence human fibroblasts. Sci Rep 2020; 10:19301. [PMID: 33168876 PMCID: PMC7652866 DOI: 10.1038/s41598-020-76192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies are clinical disorders of the primary cilium with widely recognised phenotypic and genetic heterogeneity. Here, we found impaired ciliogenesis in fibroblasts derived from individuals with fetal akinesia deformation sequence (FADS), a broad spectrum of neuromuscular disorders arising from compromised foetal movement. We show that cells derived from FADS individuals have shorter and less primary cilia (PC), in association with alterations in post-translational modifications in α-tubulin. Similarly, siRNA-mediated depletion of two known FADS proteins, the scaffold protein rapsyn and the nucleoporin NUP88, resulted in defective PC formation. Consistent with a role in ciliogenesis, rapsyn and NUP88 localised to centrosomes and PC. Furthermore, proximity-ligation assays confirm the respective vicinity of rapsyn and NUP88 to γ-tubulin. Proximity-ligation assays moreover show that rapsyn and NUP88 are adjacent to each other and that the rapsyn-NUP88 interface is perturbed in the examined FADS cells. We suggest that the perturbed rapsyn-NUP88 interface leads to defects in PC formation and that defective ciliogenesis contributes to the pleiotropic defects seen in FADS.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Chiara Vinci
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium. .,Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
21
|
Xing G, Xiong WC, Mei L. Rapsyn as a signaling and scaffolding molecule in neuromuscular junction formation and maintenance. Neurosci Lett 2020; 731:135013. [DOI: 10.1016/j.neulet.2020.135013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
|
22
|
Vogt J, Al-Saedi A, Willis T, Male A, McKie A, Kiely N, Maher ER. A recurrent pathogenic variant in TPM2 reveals further phenotypic and genetic heterogeneity in multiple pterygium syndrome-related disorders. Clin Genet 2020; 97:908-914. [PMID: 32092148 DOI: 10.1111/cge.13728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
Multiple pterygium syndrome (MPS) disorders are a phenotypically and genetically heterogeneous group of conditions characterized by multiple joint contractures (arthrogryposis), pterygia (joint webbing) and other developmental defects. MPS is most frequently inherited in an autosomal recessive fashion but X-linked and autosomal dominant forms also occur. Advances in genomic technologies have identified many genetic causes of MPS-related disorders and genetic diagnosis requires large targeted next generation sequencing gene panels or genome-wide sequencing approaches. Using the Illumina TruSightOne clinical exome assay, we identified a recurrent heterozygous missense substitution in TPM2 (encoding beta tropomyosin) in three unrelated individuals. This was confirmed to have arisen as a de novo event in the two patients with parental samples. TPM2 mutations have previously been described in association with a variety of dominantly inherited neuromuscular phenotypes including nemaline myopathy, congenital fibre-type disproportion, distal arthrogryposis and trismus pseudocamptodactyly, and in a patient with autosomal recessive Escobar syndrome and a nemaline myopathy. The three cases reported here had overlapping but variable features. Our findings expand the range of TMP2-related phenotypes and indicate that de novo TMP2 mutations should be considered in isolated cases of MPS-related conditions.
Collapse
Affiliation(s)
- Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Atif Al-Saedi
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Birmingham, UK
| | - Tracey Willis
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Alison Male
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Arthur McKie
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Nigel Kiely
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Birmingham, UK.,Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| |
Collapse
|
23
|
Geremek M, Dudarewicz L, Obersztyn E, Paczkowska M, Smyk M, Sobecka K, Nowakowska B. Null variants in AGRN cause lethal fetal akinesia deformation sequence. Clin Genet 2019; 97:634-638. [PMID: 31730230 DOI: 10.1111/cge.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/19/2023]
Abstract
We present a case of lethal fetal akinesia deformation sequence (FADS) caused by a frameshift variant in trans with a 148 kbp deletion encompassing 3-36 exons of AGRN. Pathogenic variants in AGRN have been described in families with a form of congenital myasthenic syndrome (CMS), manifesting in the early childhood with variable fatigable muscle weakness. To the best of our knowledge, this is the first case of FADS caused by defects in AGRN gene. FADS has been reported to be caused by pathogenic variants in genes previously associated with CMS including these involved in endplate development and maintenance: MuSK, DOK7, and RAPSN. FADS seems to be the most severe form of CMS. None of the reported in the literature CMS cases associated with AGRN had two null variants, like the case presented herein. This indicates a strong genotype-phenotype correlation.
Collapse
Affiliation(s)
- Maciej Geremek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Lech Dudarewicz
- Department of Medical Genetics, Polish Mother's Memorial Hospital, Łódź, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Marta Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Katarzyna Sobecka
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
24
|
Abstract
The peripheral nervous system (PNS) is composed of motor neurons, nerve roots, plexuses, peripheral nerves (motor, sensory and autonomic), neuromuscular junction, and skeletal muscles. Disorders of the PNS in neonates most frequently cause weakness, hypotonia, and contractures, which may be generalized or focal. Since these findings may also occur with brain and spinal cord lesions, key features of the history and neurologic exam, together with diagnostic testing, are helpful in reaching a diagnosis. This review covers the diagnostic approach to PNS disorders in the neonate and includes a discussion of representative diseases of the motor neuron, brachial plexus, peripheral nerves, neuromuscular junction, and muscles. The importance of reaching a precise genetic diagnosis is highlighted with a discussion of current and emerging treatments for neonatal PNS diseases, particularly spinal muscular atrophy.
Collapse
Affiliation(s)
- Alex J Fay
- Department of Neurology, University of California, San Francisco, San Francisco, CA.
| |
Collapse
|
25
|
Li N, Qiao C, Lv Y, Yang T, Liu H, Yu WQ, Liu CX. Compound heterozygous mutation of MUSK causing fetal akinesia deformation sequence syndrome: A case report. World J Clin Cases 2019; 7:3655-3661. [PMID: 31750350 PMCID: PMC6854405 DOI: 10.12998/wjcc.v7.i21.3655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fetal akinesia deformation sequence (FADS) is a broad spectrum disorder with absent fetal movements as the unifying feature. The etiology of FADS is heterogeneous and mostly still unknown. A prenatal diagnosis of FADS relies on clinical features obtained by ultrasound and fetal muscle pathology. However, the recent advances of next-generation sequencing (NGS) can effectively provide a definitive molecular diagnosis.
CASE SUMMARY A fetus presented after 24 wk and 6 d of gestation with absent fetal movements and multiple abnormal ultrasonographic signs. The mother had had a previous abortion due to a similarly affected fetus a year before. A clinical diagnosis of FADS was made. The parents refused cord blood examination and chose abortion. A molecular diagnosis of fetal muscle using NGS of genes found a compound heterozygous mutation in the MUSK gene: c.220C > T (chr9: 113449410 p.R74W) and c.421delC (chr9: 113457745 p.P141fs).
CONCLUSION To our knowledge, this is the first report in China showing that a mutation in MUSK is associated with FADS. This supports previous finding that a lethal mutation of MUSK will cause FADS. A precise molecular diagnosis for genetic counseling and options for a prenatal diagnosis of FADS are very important, especially for recurrent FADS; this may also provide evidence for both prenatal and preimplantation genetic diagnoses.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| | - Yuan Lv
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| | - Tian Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| | - Wen-Qian Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| | - Cai-Xia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
26
|
Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 2019; 320:112961. [PMID: 31136762 DOI: 10.1016/j.expneurol.2019.112961] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Xiuna Yang
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| |
Collapse
|
27
|
Abstract
Multiple pterygium syndrome of lethal type is a very rare genetic condition affecting the skin, muscles and skeleton. It is characterised by minor facial abnormalities, prenatal growth deficiency, spine defects, joint contractures, and webbing (pterygia) of the neck, elbows, back of the knees, armpits and fingers. We present a case of lethal multiple pterygium syndrome born at our hospital proven by the genetic analysis showing a double homozygous mutation.
Collapse
Affiliation(s)
- Farzeen Shuaib Mohtisham
- Department of Pediatrics, Neonatology Division, National Guard Hospital Affairs, King AbdulAziz Medical City, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Adel Sallam
- Department of Pediatrics, Neonatology Division, National Guard Hospital Affairs, King AbdulAziz Medical City, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Aiman Shawli
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,Department of Pediatrics, Clinical Genetics, National Guard Hospital Affairs, King AbdulAziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Hakonen AH, Polvi A, Saloranta C, Paetau A, Heikkilä P, Almusa H, Ellonen P, Jakkula E, Saarela J, Aittomäki K. SLC18A3 variants lead to fetal akinesia deformation sequence early in pregnancy. Am J Med Genet A 2019; 179:1362-1365. [PMID: 31059209 DOI: 10.1002/ajmg.a.61186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 11/10/2022]
Abstract
Fetal akinesia deformation sequence (FADS) and lethal multiple pterygium syndrome (LMPS) are clinically overlapping syndromes manifesting with reduced or absent fetal movement, arthrogryposis, and several anomalies during fetal life. The etiology of these syndromes is heterogeneous, and in many cases it remains unknown. In order to determine the genetic etiology of FADS in two fetuses with fetal akinesia, arthrogryposis, edema, and partial cleft palate, we utilized exome sequencing. Our investigations revealed a homozygous nonsense variant [c.1116C>A, p.(Cys372Ter)] in the SLC18A3 gene, which encodes for the vesicular acetylcholine transporter (VAChT) responsible for active transport of acetylcholine in the neuromuscular junction. This is the first description of a nonsense variant in the SLC18A3 gene, as only missense variants and whole gene deletions have been previously identified in patients. The previously detected SLC18A3 defects have been associated with congenital myasthenic syndromes, and therefore our findings extend the clinical spectrum of SLC18A3 defects to severe prenatal phenotypes. Our findings suggest that nonsense variants in SLC18A3 cause a more severe phenotype than missense variants and are in line with previous studies showing a lethal phenotype in VAChT knockout mice. Our results underline the importance of including SLC18A3 sequencing in the differential diagnostics of fetuses with arthrogryposis, FADS, or LMPS of unknown etiology.
Collapse
Affiliation(s)
- Anna H Hakonen
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Polvi
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Carola Saloranta
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Eveliina Jakkula
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
29
|
Gonorazky HD, Dowling JJ, Volpatti JR, Vajsar J. Signs and Symptoms in Congenital Myopathies. Semin Pediatr Neurol 2019; 29:3-11. [PMID: 31060723 DOI: 10.1016/j.spen.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital myopathies (CM) represent a continuously growing group of disorders with a wide range of clinical and histopathologic presentations. The refinement and application of new technologies for genetic diagnosis have broadened our understanding of the genetic causes of CM. Our growing knowledge has revealed that there are no clear limits between each subgroup of CM, and thus the clinical overlap between genes has become more evident. The implementation of next generation sequencing has produced vast amounts of genomic data that may be difficult to interpret. With an increasing number of reports revealing variants of unknown significance, it is essential to support the genetic diagnosis with a well characterized clinical description of the patient. Phenotype-genotype correlation should be a priority at the moment of disclosing the genetic results. Thus, a detailed physical examination can provide us with subtle differences that are not only key in order to arrive at a correct diagnosis, but also in the characterization of new myopathies and candidate genes.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James J Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Volpatti
- Department of Molecular Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiri Vajsar
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Pingel J, Andersen JD, Christiansen SL, Børsting C, Morling N, Lorentzen J, Kirk H, Doessing S, Wong C, Nielsen JB. Sequence variants in muscle tissue-related genes may determine the severity of muscle contractures in cerebral palsy. Am J Med Genet B Neuropsychiatr Genet 2019; 180:12-24. [PMID: 30467950 DOI: 10.1002/ajmg.b.32693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022]
Abstract
Muscle contractures are a common complication to cerebral palsy (CP). The purpose of this study was to evaluate whether individuals with CP carry specific gene variants of important structural genes that might explain the severity of muscle contractures. Next-generation-sequencing (NGS) of 96 candidate genes associated with muscle structure and metabolism were analyzed in 43 individuals with CP (Gross Motor Function classification system [GMFCS] I, n=10; GMFCS II, n=14; GMFCS III, n=19) and four control participants. In silico analysis of the identified variants was performed. The variants were classified into four categories ranging from likely benign (VUS0) to highly likely functional effect (VUS3). All individuals with CP were classified and grouped according to their GMFCS level: Statistical comparisons were made between GMFCS groups. Kruskal-Wallis tests showed significantly more VUS2 variants in the genes COL4 (GMFCS I-III; 1, 1, 5, respectively [p < .04]), COL5 (GMFCS I-III; 1, 1, 5 [p < .04]), COL6 (GMFCS I-III; 0, 4, 7 [p < .003]), and COL9 (GMFCS I-III; 1, 1, 5 [p < .04]), in individuals with CP within GMFCS Level III when compared to the other GMFCS levels. Furthermore, significantly more VUS3 variants in COL6 (GMFCS I-III; 0, 5, 2 [p < .01]) and COL7 (GMFCS I-III; 0, 3, 0 [p < .04]) were identified in the GMFCS II level when compared to the other GMFCS levels. The present results highlight several candidate gene variants in different collagen types with likely functional effects in individuals with CP.
Collapse
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Lindgren Christiansen
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Helene Elsass Center, Charlottenlund, Denmark
| | - Henrik Kirk
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Helene Elsass Center, Charlottenlund, Denmark
| | - Simon Doessing
- Department of Orthopedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Christian Wong
- Department of Orthopedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Helene Elsass Center, Charlottenlund, Denmark
| |
Collapse
|
31
|
Italian recommendations for diagnosis and management of congenital myasthenic syndromes. Neurol Sci 2018; 40:457-468. [PMID: 30554356 DOI: 10.1007/s10072-018-3682-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders due to mutations in genes encoding proteins involved in the neuromuscular junction structure and function. CMS usually present in young children, but perinatal and adult onset has been reported. Clinical presentation is highly heterogeneous, ranging from mild symptoms to severe manifestations, sometimes with life-threatening respiratory episodes, especially in the first decade of life. Although considered rare, CMS are probably underestimated due to diagnostic difficulties. Because of the several therapeutic opportunities, CMS should be always considered in the differential diagnosis of neuromuscular disorders. The Italian Network on CMS proposes here recommendations for proper CMS diagnosis and management, aiming to guide clinicians in their practical approach to CMS patients.
Collapse
|
32
|
Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet 2018; 14:e1007845. [PMID: 30543681 PMCID: PMC6307818 DOI: 10.1371/journal.pgen.1007845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS. Fetal movement is a prerequisite for normal fetal development and growth. Fetal akinesia deformation sequence (FADS) is the result of decreased fetal movement coinciding with congenital malformations related to impaired fetal movement. FADS may be caused by heterogenous defects at any point along the motor system pathway and genes encoding components critical to the neuromuscular junction and acetylcholine receptor clustering represent a major class of FADS disease genes. We report here biallelic, loss-of-function mutations in the nucleoporin NUP88 that result in lethal FADS and with this the first lethal human developmental disorder due to mutations in a nucleoporin gene. We show that loss of Nup88 in zebrafish results in defects reminiscent of those seen in affected human fetuses and loss of NUP88 affects distinct developmental stages, both during human and zebrafish development. Consistent with the notion that a primary cause for FADS is impaired formation of the neuromuscular junction, loss of Nup88 in zebrafish coincides with abnormalities in acetylcholine receptor clustering, suggesting that defective NUP88 function in FADS impairs neuromuscular junction formation.
Collapse
|
33
|
Sher G, Naeem M. Molecular Diagnosis of Rare Autosomal Recessive Escobar Syndrome in a Consanguineous Pakistani Family. Genet Test Mol Biomarkers 2018; 22:714-718. [PMID: 30461311 DOI: 10.1089/gtmb.2018.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Escobar syndrome, a nonlethal variant of multiple pterygium syndromes (MPS), is a rare autosomal recessive disorder characterized by pterygia and multiple joint contractures along with other anomalies. Variants in cholinergic receptor nicotinic gamma subunit (CHRNG) have been previously reported in patients with Escobar syndrome. Objective: We studied a consanguineous Pakistani family affected with Escobar syndrome to identify the underlying genetic defect through short tandem repeat (STR) genotyping and direct DNA sequencing. Results: Genotyping with microsatellite markers (D2S427, D2S2344, and D2S206) revealed linkage of the disease phenotype in the family to the CHRNG locus. Using Sanger sequencing, we identified a homozygous nonsense CHRNG variant c.136C>T (p.R46*), predicted to produce a truncated protein that leads to acetylcholine receptor deficiency, causing MPS. The unaffected parents and siblings in the family were heterozygous carriers of this disease-causing variant. Conclusion: We report the identification of a nonsense CHRNG variant in a consanguineous Pakistani family affected with Escobar syndrome.
Collapse
Affiliation(s)
- Gulab Sher
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naeem
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
34
|
Adam S, Coetzee M, Honey EM. Pena-Shokeir syndrome: current management strategies and palliative care. APPLICATION OF CLINICAL GENETICS 2018; 11:111-120. [PMID: 30498368 PMCID: PMC6207248 DOI: 10.2147/tacg.s154643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pena-Shokeir syndrome (PSS) type 1, also known as fetal akinesia deformation sequence, is a rare genetic syndrome that almost always results in intrauterine or early neonatal death. It is characterized by markedly decreased fetal movements, intrauterine growth restriction, joint contractures, short umbilical cord, and features of pulmonary hypoplasia. Antenatal diagnosis can be difficult. Ultrasound features are varied and may overlap with those of Trisomy 18. The poor prognosis of PSS is due to pulmonary hypoplasia, which is an important feature that distinguishes PSS from arthrogryposis multiplex congenital without pulmonary hypoplasia, which has a better prognosis. If diagnosed in the antenatal period, a late termination of pregnancy can be considered following ethical discussion (if the law allows). In most cases, a diagnosis is only made in the neonatal period. Parents of a baby affected with PSS require detailed counseling that includes information on the imprecise recurrence risks and a plan for subsequent pregnancies.
Collapse
Affiliation(s)
- Sumaiya Adam
- Department of Obstetrics and Gynaecology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Melantha Coetzee
- Division of Neonatology, Department of Pediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Engela Magdalena Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years. RECENT FINDINGS Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter. Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
37
|
Affiliation(s)
- Lei Li
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | - Lin Mei
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
38
|
Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:565-589. [PMID: 29478601 DOI: 10.1016/b978-0-444-64076-5.00037-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. The disease proteins reside in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region, or at multiple sites at the neuromuscular junction as well as in other tissues. Targeted mutation analysis by Sanger or exome sequencing has been facilitated by characteristic phenotypic features of some CMS. No fewer than 20 disease genes have been recognized to date. In one-half of the currently identified probands, the disease stems from mutations in genes encoding subunits of the muscle form of the acetylcholine receptor (CHRNA1, CHRNB, CHRNAD1, and CHRNE). In 10-14% of the probands the disease is caused by mutations in RAPSN, DOK 7, or COLQ, and in 5% by mutations in CHAT. Other less frequently identified disease genes include LAMB2, AGRN, LRP4, MUSK, GFPT1, DPAGT1, ALG2, and ALG 14 as well as SCN4A, PREPL, PLEC1, DNM2, and MTM1. Identification of the genetic basis of each CMS is important not only for genetic counseling and disease prevention but also for therapy, because therapeutic agents that benefit one type of CMS can be harmful in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States.
| |
Collapse
|
39
|
Ahmed AA, Skaria P, Safina NP, Thiffault I, Kats A, Taboada E, Habeebu S, Saunders C. Arthrogryposis and pterygia as lethal end manifestations of genetically defined congenital myopathies. Am J Med Genet A 2017; 176:359-367. [DOI: 10.1002/ajmg.a.38577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Atif A. Ahmed
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Priya Skaria
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Nicole P. Safina
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
- Division of Clinical GeneticsChildren's Mercy HospitalKansas CityMissouri
| | - Isabelle Thiffault
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
| | - Alex Kats
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Eugenio Taboada
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Sultan Habeebu
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Carol Saunders
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
| |
Collapse
|
40
|
Winters L, Van Hoof E, De Catte L, Van Den Bogaert K, de Ravel T, De Waele L, Corveleyn A, Breckpot J. Massive parallel sequencing identifies RAPSN and PDHA1 mutations causing fetal akinesia deformation sequence. Eur J Paediatr Neurol 2017; 21:745-753. [PMID: 28495245 DOI: 10.1016/j.ejpn.2017.04.641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Fetal akinesia deformation sequence (FADS) or arthrogryposis multiplex congenita (AMC) is characterized by clinical ambiguity and genetic heterogeneity, hampering genetic diagnosis via traditional sequencing methods. Next generation sequencing (NGS) of all known disease-causing genes offers an elegant solution to identify the genetic etiology of AMC/FADS in a diagnostic setting. METHODS An in-house developed disease-associated gene panel was conducted in two unrelated fetuses with FADS. First, a de novo analysis was performed on the entire disease-associated gene panel. If no pathogenic mutation was identified, analysis of variants retained in a specific subpanel with arthrogryposis/fetal akinesia-causing genes was performed. RESULTS In the first family, FADS relates to a homozygous c.484G > A (p.Glu162Lys) mutation in the gene RAPSN. The second case concerns a sporadic patient with brain anomalies and arthrogryposis due to a de novo hemizygous c.498C > T splice-site mutation in the pyruvate dehydrogenase-alpha 1 (PDHA1) gene. DISCUSSION NGS facilitated genetic diagnosis, and hence genetic counseling, for both families with AMC/FADS. Biallelic RAPSN mutations typically result in congenital myasthenia syndrome, or occasionally in FADS. This is the first report attributing the RAPSN mutation c.484G > A, identified in a homozygous state in patient 1, to FADS. The second patient represents the first case of AMC due to a PDHA1 mutation, advocating that pyruvate dehydrogenase deficiency should be considered in the differential diagnosis of fetal akinesia. This study illustrates the relevance of a disease-associated-gene panel as a diagnostic tool in pregnancies complicated by this genetically heterogeneous condition.
Collapse
Affiliation(s)
- Lore Winters
- Department of Pediatrics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Luc De Catte
- Division of Woman and Child, Clinical Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospitals Leuven, Leuven, Belgium
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Abdalla E, Ravenscroft G, Zayed L, Beecroft SJ, Laing NG. Lethal multiple pterygium syndrome: A severe phenotype associated with a novel mutation in the nebulin gene. Neuromuscul Disord 2017; 27:537-541. [DOI: 10.1016/j.nmd.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/21/2016] [Accepted: 01/15/2017] [Indexed: 11/27/2022]
|
42
|
Li L, Cao Y, Wu H, Ye X, Zhu Z, Xing G, Shen C, Barik A, Zhang B, Xie X, Zhi W, Gan L, Su H, Xiong WC, Mei L. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation. Neuron 2016; 92:1007-1019. [PMID: 27839998 DOI: 10.1016/j.neuron.2016.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/21/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022]
Abstract
Neurotransmission is ensured by a high concentration of neurotransmitter receptors at the postsynaptic membrane. This is mediated by scaffold proteins that bridge the receptors with cytoskeleton. One such protein is rapsyn (receptor-associated protein at synapse), which is essential for acetylcholine receptor (AChR) clustering and NMJ (neuromuscular junction) formation. We show that the RING domain of rapsyn contains E3 ligase activity. Mutation of the RING domain that abolishes the enzyme activity inhibits rapsyn- as well as agrin-induced AChR clustering in heterologous and muscle cells. Further biological and genetic studies support a working model where rapsyn, a classic scaffold protein, serves as an E3 ligase to induce AChR clustering and NMJ formation, possibly by regulation of AChR neddylation. This study identifies a previously unappreciated enzymatic function of rapsyn and a role of neddylation in synapse formation, and reveals a potential target of therapeutic intervention for relevant neurological disorders.
Collapse
Affiliation(s)
- Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haitao Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xinchun Ye
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhihui Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guanglin Xing
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chengyong Shen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bin Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoling Xie
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lin Gan
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| |
Collapse
|
43
|
Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, Rudnik-Schöneborn S, Orgeur M, Zerres K, Vogt S, van Riesen A, Gill E, Seifert F, Zwirner A, Kirschner J, Goebel HH, Hübner C, Stricker S, Meierhofer D, Stenzel W, Schuelke M. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am J Hum Genet 2016; 98:473-489. [PMID: 26924529 DOI: 10.1016/j.ajhg.2016.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.
Collapse
Affiliation(s)
- Ellen Knierim
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan; Center for Frontier Research, National Institute of Genetics, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Mishima 411-8540, Japan.
| | - Nicole I Wolf
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Tanaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Sabine Rudnik-Schöneborn
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany; Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Mickael Orgeur
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Klaus Zerres
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Stefanie Vogt
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, 44137 Dortmund, Germany
| | - Anne van Riesen
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Esther Gill
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Franziska Seifert
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Angelika Zwirner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Hans Hilmar Goebel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
44
|
Kariminejad A, Ghaderi-Sohi S, Hossein-Nejad Nedai H, Varasteh V, Moslemi AR, Tajsharghi H. Lethal multiple pterygium syndrome, the extreme end of the RYR1 spectrum. BMC Musculoskelet Disord 2016; 17:109. [PMID: 26932181 PMCID: PMC4774121 DOI: 10.1186/s12891-016-0947-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Lethal multiple pterygium syndrome (LMPS, OMIM 253290), is a fatal disorder associated with anomalies of the skin, muscles and skeleton. It is characterised by prenatal growth failure with pterygium present in multiple areas and akinesia, leading to muscle weakness and severe arthrogryposis. Foetal hydrops with cystic hygroma develops in affected foetuses with LMPS. This study aimed to uncover the aetiology of LMPS in a family with two affected foetuses. Methods and results Whole exome sequencing studies have identified novel compound heterozygous mutations in RYR1 in two affected foetuses with pterygium, severe arthrogryposis and foetal hydrops with cystic hygroma, characteristic features compatible with LMPS. The result was confirmed by Sanger sequencing and restriction fragment length polymorphism analysis. Conclusions RYR1 encodes the skeletal muscle isoform ryanodine receptor 1, an intracellular calcium channel with a central role in muscle contraction. Mutations in RYR1 have been associated with congenital myopathies, which form a continuous spectrum of pathological features including a severe variant with onset in utero with fetal akinesia and arthrogryposis. Here, the results indicate that LMPS can be considered as the extreme end of the RYR1-related neonatal myopathy spectrum. This further supports the concept that LMPS is a severe disorder associated with defects in the process known as excitation-contraction coupling.
Collapse
Affiliation(s)
| | | | | | - Vahid Varasteh
- Division of Thoracic Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Homa Tajsharghi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden. .,Department of Clinical and Medical Genetics, University of Gothenburg, SE-405 30, Gothenburg, Sweden. .,Systems Biology Research Centre, School of Biomedicine, University of Skövde, SE-541 28, Skövde, Sweden.
| |
Collapse
|
45
|
Chong J, Burrage L, Beck A, Marvin C, McMillin M, Shively K, Harrell T, Buckingham K, Bacino C, Jain M, Alanay Y, Berry S, Carey J, Gibbs R, Lee B, Krakow D, Shendure J, Nickerson D, Bamshad MJ, Bamshad M, Shendure J, Nickerson D, Abecasis G, Anderson P, Blue E, Annable M, Browning B, Buckingham K, Chen C, Chin J, Chong J, Cooper G, Davis C, Frazar C, Harrell T, He Z, Jain P, Jarvik G, Jimenez G, Johanson E, Jun G, Kircher M, Kolar T, Krauter S, Krumm N, Leal S, Luksic D, Marvin C, McMillin M, McGee S, O’Reilly P, Paeper B, Patterson K, Perez M, Phillips S, Pijoan J, Poel C, Reinier F, Robertson P, Santos-Cortez R, Shaffer T, Shephard C, Shively K, Siegel D, Smith J, Staples J, Tabor H, Tackett M, Underwood J, Wegener M, Wang G, Wheeler M, Yi Q. Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3. Am J Hum Genet 2015; 96:841-9. [PMID: 25957469 DOI: 10.1016/j.ajhg.2015.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022] Open
Abstract
Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development.
Collapse
|
46
|
Wilbe M, Ekvall S, Eurenius K, Ericson K, Casar-Borota O, Klar J, Dahl N, Ameur A, Annerén G, Bondeson ML. MuSK: a new target for lethal fetal akinesia deformation sequence (FADS). J Med Genet 2015; 52:195-202. [PMID: 25612909 DOI: 10.1136/jmedgenet-2014-102730] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. METHODS AND RESULTS We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. CONCLUSIONS To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.
Collapse
Affiliation(s)
- Maria Wilbe
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Ekvall
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Eurenius
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Katharina Ericson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Olivera Casar-Borota
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Joakim Klar
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Tan-Sindhunata MB, Mathijssen IB, Smit M, Baas F, de Vries JI, van der Voorn JP, Kluijt I, Hagen MA, Blom EW, Sistermans E, Meijers-Heijboer H, Waisfisz Q, Weiss MM, Groffen AJ. Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence. Eur J Hum Genet 2014; 23:1151-7. [PMID: 25537362 PMCID: PMC4538208 DOI: 10.1038/ejhg.2014.273] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 01/11/2023] Open
Abstract
Fetal akinesia deformation sequence (FADS) refers to a clinically and genetically heterogeneous group of disorders with congenital malformations related to impaired fetal movement. FADS can result from mutations in CHRNG, CHRNA1, CHRND, DOK7 and RAPSN; however, these genes only account for a minority of cases. Here we identify MUSK as a novel cause of lethal FADS. Fourteen affected fetuses from a Dutch genetic isolate were traced back to common ancestors 11 generations ago. Homozygosity mapping in two fetuses revealed MUSK as a candidate gene. All tested cases carried an identical homozygous variant c.1724T>C; p.(Ile575Thr) in the intracellular domain of MUSK. The carrier frequency in the genetic isolate was 8%, exclusively found in heterozygous carriers. Consistent with the established role of MUSK as a tyrosine kinase that orchestrates neuromuscular synaptogenesis, the fetal myopathy was accompanied by impaired acetylcholine receptor clustering and reduced tyrosine kinase activity at motor nerve endings. A functional assay in myocytes derived from human fetuses confirmed that the variant blocks MUSK-dependent motor endplate formation. Taken together, the results strongly support a causal role of this founder mutation in MUSK, further expanding the gene set associated with FADS and offering new opportunities for prenatal genetic testing.
Collapse
Affiliation(s)
| | - Inge B Mathijssen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Margriet Smit
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Johanna I de Vries
- Department of Obstetrics and Gynaecology, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Irma Kluijt
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Marleen A Hagen
- Department of Obstetrics and Gynaecology, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - Eveline W Blom
- Department of Clinical Genetics, MUMC, Maastricht, The Netherlands
| | - Erik Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- 1] Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands [2] Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander J Groffen
- 1] Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands [2] Department of Functional Genomics, Center for Neurogenomics and Cognition Research, VU University, Amsterdam, The Netherlands
| |
Collapse
|
48
|
McKie AB, Alsaedi A, Vogt J, Stuurman KE, Weiss MM, Shakeel H, Tee L, Morgan NV, Nikkels PGJ, van Haaften G, Park SM, van der Smagt JJ, Bugiani M, Maher ER. Germline mutations in RYR1 are associated with foetal akinesia deformation sequence/lethal multiple pterygium syndrome. Acta Neuropathol Commun 2014; 2:148. [PMID: 25476234 PMCID: PMC4271450 DOI: 10.1186/s40478-014-0148-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/06/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Foetal akinesia deformation sequence syndrome (FADS) is a genetically heterogeneous disorder characterised by the combination of foetal akinesia and developmental defects which may include pterygia (joint webbing). Traditionally multiple pterygium syndrome (MPS) has been divided into two forms: prenatally lethal (LMPS) and non-lethal Escobar type (EVMPS) types. Interestingly, FADS, LMPS and EVMPS may be allelic e.g. each of these phenotypes may result from mutations in the foetal acetylcholine receptor gamma subunit gene (CHRNG). Many cases of FADS and MPS do not have a mutation in a known FADS/MPS gene and we undertook molecular genetic studies to identify novel causes of these phenotypes. RESULTS After mapping a novel locus for FADS/LMPS to chromosome 19, we identified a homozygous null mutation in the RYR1 gene in a consanguineous kindred with recurrent LMPS pregnancies. Resequencing of RYR1 in a cohort of 66 unrelated probands with FADS/LMPS/EVMPS (36 with FADS/LMPS and 30 with EVMPS) revealed two additional homozygous mutations (in frame deletions). The overall frequency of RYR1 mutations in probands with FADS/LMPS was 8.3%. CONCLUSIONS Our findings report, for the first time, a homozygous RYR1 null mutation and expand the range of RYR1-related phenotypes to include early lethal FADS/LMPS. We suggest that RYR1 mutation analysis should be performed in cases of severe FADS/LMPS even in the absence of specific histopathological indicators of RYR1-related disease.
Collapse
Affiliation(s)
- Arthur B McKie
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Atif Alsaedi
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, B15 2TG, UK.
| | - Kyra E Stuurman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Hassan Shakeel
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Louise Tee
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Neil V Morgan
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Gijs van Haaften
- Department of Medical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| | - Soo-Mi Park
- Department of Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jasper J van der Smagt
- Department of Medical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands.
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Department of Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Box 238, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
49
|
Robinson KG, Viereck MJ, Margiotta MV, Gripp KW, Abdul-Rahman OA, Akins RE. Neuromotor synapses in Escobar syndrome. Am J Med Genet A 2013; 161A:3042-8. [PMID: 24038971 DOI: 10.1002/ajmg.a.36154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/10/2013] [Indexed: 11/10/2022]
Abstract
The Escobar variant of multiple pterygium syndrome (OMIM #265000) is a rare, autosomal recessive disorder associated with mutations in the γ-subunit of the nicotinic acetylcholine receptor (CHRNG). CHRNG is expressed in fetal muscle during motor development and contributes to the formation of neuromuscular junctions (NMJs). Anomalies in NMJ structure and function have not been investigated in patients with Escobar syndrome. We report five patients identified as having Escobar syndrome, from four families. In three families, the same mutation (c.459dupA) was identified in CHRNG. A biopsy from brachioradialis muscle was collected from a patient from one of these families and analyzed for NMJ organization using fluorescence microscopy. Compared to spinalis muscle from control patients with idiopathic scoliosis or cerebral palsy (CP), the patient with Escobar syndrome had a significantly higher degree of acetylcholine receptor present outside acetylcholinesterase and significantly less acetylcholinesterase outside acetylcholine receptors. Given the role of the acetylcholine receptor γ-subunit in fetal neuromuscular signal transduction and in establishing the primary encounter of muscle and motor nerve terminal, the CHRNG mutations described in Escobar syndrome may cause a broader disruption of postsynaptic proteins and result in aberrant development of the NMJ due to impaired prenatal neuromuscular transmission and/or abnormal neuromuscular synaptogenesis.
Collapse
Affiliation(s)
- Karyn G Robinson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | | | | |
Collapse
|
50
|
Eymard B, Ferreiro A, Ben Yaou R, Stojkovic T. Muscle diseases with prominent joint contractures: Main entities and diagnostic strategy. Rev Neurol (Paris) 2013; 169:546-63. [DOI: 10.1016/j.neurol.2013.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/13/2023]
|