1
|
Zhu D, Yang J, Zhang M, Han Z, Shao M, Fan Q, Ma Y, Xie D, Xiao W. Identification of neoantigens and immunological subtypes in clear cell renal cell carcinoma for mRNA vaccine development and patient selection. Aging (Albany NY) 2023; 15:204798. [PMID: 37315301 PMCID: PMC10292886 DOI: 10.18632/aging.204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy with diverse histological types. This study aimed to detect neoantigens in ccRCC to develop mRNA vaccines and distinguish between ccRCC immunological subtypes for construction of an immune landscape to select patients suitable for vaccination. Using The Cancer Genome Atlas SpliceSeq database, The Cancer Genome Atlas, and the International Cancer Genome Consortium cohorts, we comprehensively analysed potential tumour antigens of ccRCC associated with aberrant alternative splicing, somatic mutation, nonsense-mediated mRNA decay factors, antigen-presenting cells, and overall survival. Immune subtypes (C1/C2) and nine immune gene modules of ccRCC were identified by consistency clustering and weighted correlation network analysis. The immune landscape as well as molecular and cellular characteristics of immunotypes were assessed. Rho-guanine nucleotide exchange factor 3 (ARHGEF3) was identified as a new ccRCC antigen for development of an mRNA vaccine. A higher tumour mutation burden, differential expression of immune checkpoints, and immunogenic cell death were observed in cases with the C2 immunotype. Cellular characteristics increased the complexity of the immune environment, and worse outcomes were observed in ccRCC cases with the C2 immunotype. We constructed the immune landscape for selecting patients with the C2 immunotype suitable for vaccination.
Collapse
Affiliation(s)
- Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiabin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhongxiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Meng Shao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yun Ma
- Department of pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dandan Xie
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, Guangdong, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
2
|
Abstract
AIMS We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. METHODS Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell's concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature. RESULTS We identified three PMOP-related subtypes and four core modules. The muscle system process, muscle contraction, and actin filament-based movement were more active in the hub genes. We obtained five feature genes related to PMOP. Our analysis verified that the gene signature had good predictive power and applicability. The outcomes of the GSE56815 cohort were found to be consistent with the results of the earlier studies. qRT-PCR results showed that RAB2A and FYCO1 were amplified in clinical samples. CONCLUSION The PMOP-related gene signature we developed and verified can accurately predict the risk of PMOP in patients. These results can elucidate the molecular mechanism of RAB2A and FYCO1 underlying PMOP, and yield new and improved treatment strategies, ultimately helping PMOP monitoring.Cite this article: Bone Joint Res 2022;11(8):548-560.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Agrawal S, Wang M, Klarqvist MDR, Smith K, Shin J, Dashti H, Diamant N, Choi SH, Jurgens SJ, Ellinor PT, Philippakis A, Claussnitzer M, Ng K, Udler MS, Batra P, Khera AV. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat Commun 2022; 13:3771. [PMID: 35773277 PMCID: PMC9247093 DOI: 10.1038/s41467-022-30931-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
For any given level of overall adiposity, individuals vary considerably in fat distribution. The inherited basis of fat distribution in the general population is not fully understood. Here, we study up to 38,965 UK Biobank participants with MRI-derived visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes. Because these fat depot volumes are highly correlated with BMI, we additionally study six local adiposity traits: VAT adjusted for BMI and height (VATadj), ASATadj, GFATadj, VAT/ASAT, VAT/GFAT, and ASAT/GFAT. We identify 250 independent common variants (39 newly-identified) associated with at least one trait, with many associations more pronounced in female participants. Rare variant association studies extend prior evidence for PDE3B as an important modulator of fat distribution. Local adiposity traits (1) highlight depot-specific genetic architecture and (2) enable construction of depot-specific polygenic scores that have divergent associations with type 2 diabetes and coronary artery disease. These results - using MRI-derived, BMI-independent measures of local adiposity - confirm fat distribution as a highly heritable trait with important implications for cardiometabolic health outcomes.
Collapse
Affiliation(s)
- Saaket Agrawal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Kirk Smith
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joseph Shin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hesam Dashti
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathaniel Diamant
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Jurgens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anthony Philippakis
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Melina Claussnitzer
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Verve Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
4
|
Khaliq SA, Umair Z, Yoon MS. Role of ARHGEF3 as a GEF and mTORC2 Regulator. Front Cell Dev Biol 2022; 9:806258. [PMID: 35174167 PMCID: PMC8841341 DOI: 10.3389/fcell.2021.806258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) activate GTPases by stimulating the release of guanosine diphosphate to permit the binding of guanosine triphosphate. ARHGEF3 or XPLN (exchange factor found in platelets, leukemic, and neuronal tissues) is a selective guanine nucleotide exchange factor for Rho GTPases (RhoGEFs) that activates RhoA and RhoB but not RhoC, RhoG, Rac1, or Cdc42. ARHGEF3 contains the diffuse B-cell lymphoma homology and pleckstrin homology domains but lacks similarity with other known functional domains. ARHGEF3 also binds the mammalian target of rapamycin complex 2 (mTORC2) and subsequently inhibits mTORC2 and Akt. In vivo investigation has also indicated the communication between ARHGEF3 and autophagy-related muscle pathologies. Moreover, studies on genetic variation in ARHGEF3 and genome-wide association studies have predicted exciting novel roles of ARHGEF3 in controlling bone mineral density, platelet formation and differentiation, and Hirschsprung disease. In conclusion, we hypothesized that additional biochemical and functional studies are required to elucidate the detailed mechanism of ARHGEF3-related pathologies and therapeutics.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Zobia Umair
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- *Correspondence: Zobia Umair, ; Mee-Sup Yoon,
| | - Mee-Sup Yoon
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- *Correspondence: Zobia Umair, ; Mee-Sup Yoon,
| |
Collapse
|
5
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
6
|
Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int J Mol Sci 2020; 21:ijms21207623. [PMID: 33076329 PMCID: PMC7589419 DOI: 10.3390/ijms21207623] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is the most common chronic metabolic bone disease. It has been estimated that more than 10 million people in the United States and 200 million men and women worldwide have osteoporosis. Given that the aging population is rapidly increasing in many countries, osteoporosis could become a global challenge with an impact on the quality of life of the affected individuals. Osteoporosis can be defined as a condition characterized by low bone density and increased risk of fractures due to the deterioration of the bone architecture. Thus, the major goal of treatment is to reduce the risk for fractures. There are several treatment options, mostly medications that can control disease progression in risk groups, such as postmenopausal women and elderly men. Recent studies on the basic molecular mechanisms and clinical implications of osteoporosis have identified novel therapeutic targets. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for osteoporosis management in the future. Here, we review the etiology of osteoporosis and the molecular mechanism of bone remodeling, present current pharmacological options, and discuss emerging therapies targeting novel mechanisms, investigational treatments, and new promising therapeutic approaches.
Collapse
|
7
|
Wang Y, Zhang M, Qin Q, Peng Y, Huang X, Wang C, Cao L, Li W, Tao M, Zhang C, Liu S. Transcriptome Profile Analysis on Ovarian Tissues of Autotetraploid Fish and Diploid Red Crucian Carp. Front Genet 2019; 10:208. [PMID: 30941161 PMCID: PMC6434244 DOI: 10.3389/fgene.2019.00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Polyploidization can significantly alter the size of animal gametes. Autotetraploid fish (RRRR, 4nRR = 200) (4nRR) possessing four sets of chromosomes were derived from whole-genome duplication in red crucian carp (RR, 2n = 100) (RCC). The diploid eggs of the 4nRR fish were significantly larger than the eggs of RCC. To explore the differences between the ovaries of these two ploidies of fishes at the molecular level, we compared the ovary transcriptome profiles of 4nRR fish and RCC and identified differentially expressed genes (DEGs). A total of 19,015 unigenes were differentially expressed between 4nRR fish and RCC, including 12,591 upregulated and 6,424 downregulated unigenes in 4nRR fish. Functional analyses revealed that eight genes (CDKL1, AHCY, ARHGEF3, TGFβ, WNT11, CYP27A, GDF7, and CKB) were involved in the regulation of cell proliferation, cell division, gene transcription, ovary development and energy metabolism, suggesting that these eight genes were related to egg size in 4nRR fish and RCC. We validated the expression levels of these eight DEGs in 4nRR fish and RCC using quantitative PCR. The study results provided insights into the regulatory mechanisms underlying the differences in crucian carp egg sizes.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Liu TH, Zheng F, Cai MY, Guo L, Lin HX, Chen JW, Liao YJ, Kung HF, Zeng YX, Xie D. The putative tumor activator ARHGEF3 promotes nasopharyngeal carcinoma cell pathogenesis by inhibiting cellular apoptosis. Oncotarget 2017; 7:25836-48. [PMID: 27028992 PMCID: PMC5041948 DOI: 10.18632/oncotarget.8283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/06/2016] [Indexed: 11/28/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most prevalent forms of highly invasive malignancy in Southern China and Southeast Asia. The pathogenesis of NPC is a multistep process driven by the acquisition of numerous genetic abnormalities. We investigated the potential oncogenic role of the Rho-guanine nucleotide exchange factor 3 gene, ARHGEF3, in NPC pathogenesis. Expression levels of ARHGEF3 were frequently up-regulated in NPC cell lines and tissues. In a large cohort of clinical NPC tissues high expression of ARHGEF3 was positively associated with an increased T status, distant metastasis, and a more advanced clinical stage (P < 0.05). Survival analysis revealed that ARHGEF3 expression was a significant and independent prognosis factor for NPC patients. In NPC cell lines, knockdown of ARHGEF3 was sufficient to inhibit cell growth, motility, and invasion in vitro, whereas ectopic overexpression of ARHGEF3 substantially enhanced NPC cells tumorigenesis and metastasis in vivo. Depletion of ARHGEF3 in NPC cells dramatically promoted caspase-3 induced apoptosis and an anti-apoptosis factor, BIRC8, was identified as a critical downstream target of the ARHGEF3. Our findings suggest that increased expression of ARHGEF3 plays a critical oncogenic role in NPC pathogenesis by preventing cell apoptosis through the up-regulation of BIRC8, and ARHGEF3 might be employed as a novel prognostic marker and effective therapeutic target for human NPC.
Collapse
Affiliation(s)
- Tian-Hao Liu
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fang Zheng
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mu-Yan Cai
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Guo
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huan-Xin Lin
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie-Wei Chen
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Ji Liao
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hsiang-Fu Kung
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Xin Zeng
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dan Xie
- Sun Yat-Sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
McMichael BK, Jeong YH, Auerbach JA, Han CM, Sedlar R, Shettigar V, Bähler M, Agarwal S, Kim DG, Lee BS. The RhoGAP Myo9b Promotes Bone Growth by Mediating Osteoblastic Responsiveness to IGF-1. J Bone Miner Res 2017; 32:2103-2115. [PMID: 28585695 DOI: 10.1002/jbmr.3192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022]
Abstract
The Ras homolog A (RhoA) subfamily of Rho guanosine triphosphatases (GTPases) regulates actin-based cellular functions in bone such as differentiation, migration, and mechanotransduction. Polymorphisms or genetic ablation of RHOA and some of its regulatory guanine exchange factors (GEFs) have been linked to poor bone health in humans and mice, but the effects of RhoA-specific GTPase-activating proteins (GAPs) on bone quality have not yet been identified. Therefore, we examined the consequences of RhoGAP Myo9b gene knockout on bone growth, phenotype, and cellular activity. Male and female mice lacking both alleles demonstrated growth retardation and decreased bone formation rates during early puberty. These mice had smaller, weaker bones by 4 weeks of age, but only female KOs had altered cellular numbers, with fewer osteoblasts and more osteoclasts. By 12 weeks of age, bone quality in KOs worsened. In contrast, 4-week-old heterozygotes demonstrated bone defects that resolved by 12 weeks of age. Throughout, Myo9b ablation affected females more than males. Osteoclast activity appeared unaffected. In primary osteogenic cells, Myo9b was distributed in stress fibers and focal adhesions, and its absence resulted in poor spreading and eventual detachment from culture dishes. Similarly, MC3T3-E1 preosteoblasts with transiently suppressed Myo9b levels spread poorly and contained decreased numbers of focal adhesions. These cells also demonstrated reduced ability to undergo IGF-1-induced spreading or chemotaxis toward IGF-1, though responses to PDGF and BMP-2 were unaffected. IGF-1 receptor (IGF1R) activation was normal in cells with diminished Myo9b levels, but the activated receptor was redistributed from stress fibers and focal adhesions into nuclei, potentially affecting receptor accessibility and gene expression. These results demonstrate that Myo9b regulates a subset of RhoA-activated processes necessary for IGF-1 responsiveness in osteogenic cells, and is critical for normal bone formation in growing mice. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Yong-Hoon Jeong
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | | - Cheol-Min Han
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ryan Sedlar
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Vikram Shettigar
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Universität Münster, Münster, Germany
| | - Sudha Agarwal
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Do-Gyoon Kim
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Beth S Lee
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun 2017; 8:13700. [PMID: 28102206 PMCID: PMC5253683 DOI: 10.1038/ncomms13700] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Many positive signalling pathways of osteoclastogenesis have been characterized, but negative signalling pathways are less well studied. Here we show by microarray and RNAi that guanine nucleotide-binding protein subunit α13 (Gα13) is a negative regulator of osteoclastogenesis. Osteoclast-lineage-specific Gna13 conditional knockout mice have a severe osteoporosis phenotype. Gna13-deficiency triggers a drastic increase in both osteoclast number and activity (hyper-activation), mechanistically through decreased RhoA activity and enhanced Akt/GSK3β/NFATc1 signalling. Consistently, Akt inhibition or RhoA activation rescues hyper-activation of Gna13-deficient osteoclasts, and RhoA inhibition mimics the osteoclast hyperactivation resulting from Gna13-deficiency. Notably, Gα13 gain-of-function inhibits Akt activation and osteoclastogenesis, and protects mice from pathological bone loss in disease models. Collectively, we reveal that Gα13 is a master endogenous negative switch for osteoclastogenesis through regulation of the RhoA/Akt/GSK3β/NFATc1 signalling pathway, and that manipulating Gα13 activity might be a therapeutic strategy for bone diseases.
Collapse
|
11
|
Li XJ, Zhu Z, Han SL, Zhang ZL. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice. Int J Mol Med 2016; 38:1661-1672. [PMID: 27840967 PMCID: PMC5117769 DOI: 10.3892/ijmm.2016.2794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/08/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetes, as a serious metobolic disorder, poses global threat to human health. It is estimated that over 50 million individuals are already affected by diabetes. Currently, diabetes-related osteoporosis has been a research hotspot due to its high incidence rate in older individuals. Osteoprotegerin, as an important protein for the prevention of osteoporosis, has been proven to be key to the suppression of osteoporosis. Hence, the loss of function of osteoprotegerin may promote the development of osteoporosis. Bergapten, as a natural anti-inflammatory and anti-tumor agent isolated from bergamot essential oil, other citrus essential oils, and grapefruit juice, has been proven to have the ability to attenuate a number of metabolic disorders. In view of these findings, in this study, we used a high-fat diet to construct a mouse model of diabetes-related osteoporosis and a mouse model of diabetes-related osteoporosis using osteoprotegerin knockout mice. Enzyme-linked immunosorbent assay (ELISA), qPCR, western blot analysis, immunohistochemical assay, H&E staining, Oil Red O staining, Masson's staining and other biochemical analyses were used to evaluate the related signaling pathways involved in the development of diabetes-related osteoporosis. We also examined the role of osteoprotegerin in the activation of these pathways and in the development of osteoporosis, as well as the protective effects of bergapten against diabetes-related osteoporosis and on the activation of related signaling pathways. Our results revealed that in diabetes-related osteoporosis, the phosphoinositide 3-kinase (PI3K)/AKT, c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways were activated and the expression levels of related indicators were increased. At the same time, osteoprotegerin knockout further promoted the activation of these pathways. By contrast, bergapten exerted effects similar to those of osteoprotegerin. Bergapten exhibited the ability to significantly inhibit RANKL-RANK signaling transduction, and to suppress the activation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways, thus protecting trabecular structure and decreasing osteoclastogenic differentiation.
Collapse
Affiliation(s)
- Xue-Ju Li
- Department of Orthopaedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Zhe Zhu
- Department of Orthopaedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Si-Lin Han
- Department of Orthopaedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Zi-Long Zhang
- Department of Orthopaedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
12
|
Mullin BH, Walsh JP, Zheng HF, Brown SJ, Surdulescu GL, Curtis C, Breen G, Dudbridge F, Richards JB, Spector TD, Wilson SG. Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density. BMC Genomics 2016; 17:136. [PMID: 26911590 PMCID: PMC4766752 DOI: 10.1186/s12864-016-2481-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Background Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits. Results We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 × 10−09). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034–1.19 × 10−23). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 × 10−06, 2.0 × 10−06 and 2.0 × 10−06 respectively). Conclusions Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia.
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia.
| | - Hou-Feng Zheng
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia.
| | - Gabriela L Surdulescu
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Charles Curtis
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Gerome Breen
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - J Brent Richards
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK. .,Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, Canada.
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia. .,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
13
|
Liu Y, Wang Y, Yang N, Wu S, Lv Y, Xu L. In silico analysis of the molecular mechanism of postmenopausal osteoporosis. Mol Med Rep 2015; 12:6584-90. [PMID: 26329309 PMCID: PMC4626159 DOI: 10.3892/mmr.2015.4283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 06/09/2015] [Indexed: 01/08/2023] Open
Abstract
Postmenopausal osteoporosis (PO) is a common disease in females >50 years of age worldwide and is becoming an increasing burden to society. The present study aimed to assess the molecular mechanism of PO using bioinformatic methods. The gene expression data from patients with PO and normal controls were downloaded from the ArrayExpress database provided by European Bioinformatics Institute. Following the screening of the differentially expressed genes (DEGs) using the Limma package in R language, Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery online tools. Sequentially, modulators of the DEGs, including transcription factors (TFs) and microRNAs, were predicted by the ChIP Enrichment Analysis databases and WEB-based GEne SeT AnaLysis Toolkit system, respectively. In addition, the protein-protein interaction network of DEGs was constructed via the search tool for the retrieval of interacting genes and then the functional modules were further analyzed via the cluster-Maker package and The Biological Networks Gene Ontology package within the Cytoscape software. A total of 482 DEGs, including 279 upregulated and 203 downregulated DEGs, were screened out. DEGs were predominantly enriched in the pathways of fatty acid metabolism, cardiac muscle contraction and DNA replication. TFs, including SMAD4, in addition to microRNAs, including the microRNA-125 (miR-125) family, miR-331 and miR-24, may be the modulators of the DEGs in PO. In addition, the five largest modules were identified with TTN, L1G1, ACADM, UQCRC2 and TRIM63 as the hub proteins, and they were associated with the biological processes of muscle contraction, DNA replication initiation, lipid modification, generation of precursor metabolites and energy, and regulation of acetyl-CoA biosynthetic process, respectively. SMAD4, CACNG1 and TRIM63 are suggested to be important factors in the molecular mechanisms of PO, and miR-331 may be novel potential biomarker for PO.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Geriatric Medicine, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yueqiu Wang
- Department of Joint Brach, Jining No. 2 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Nailong Yang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Suning Wu
- Department of Geriatric Medicine, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yanhua Lv
- Department of Obstertrics and Gynecology, The Affiliated Hospital of Jining Medical College, Jining, Shandong 272000, P.R. China
| | - Lili Xu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
14
|
D'Amato L, Dell'Aversana C, Conte M, Ciotta A, Scisciola L, Carissimo A, Nebbioso A, Altucci L. ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias. Epigenetics 2015; 10:6-18. [PMID: 25494542 DOI: 10.4161/15592294.2014.988035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Altered expression and activity of histone deacetylases (HDACs) have been correlated with tumorigenesis. Inhibitors of HDACs (HDACi) induce acetylation of histone and non-histone proteins affecting gene expression, cell cycle progression, cell migration, terminal differentiation and cell death. Here, we analyzed the regulation of ARHGEF3, a RhoA-specific guanine nucleotide exchange factor, by the HDACi MS275 (entinostat). MS275 is a well-known benzamide-based HDACi, which induces differentiation of the monoblastic-like human histiocytic lymphoma cell line U937 to monocytes/macrophages. Incubation of U937 cells with MS275 resulted in an up regulation of ARHGEF3, followed by a significant enhancement of the marker of macrophage differentiation CD68. ARHGEF3 protein is primarily nuclear, but MS275 treatment rapidly induced its translocation into the cytoplasm. ARHGEF3 cytoplasmic localization is associated with activation of the RhoA/Rho-associated Kinase (ROCK) pathway. In addition to cytoskeletal rearrangements orchestrated by RhoA, we showed that ARHGEF3/RhoA-dependent signals involve activation of SAPK/JNK and then Elk1 transcription factor. Importantly, MS275-induced CD68 expression was blocked by exposure of U937 cells to exoenzyme C3 transferase and Y27632, inhibitors of Rho and ROCK respectively. Moreover, ARHGEF3 silencing prevented RhoA activation leading to a reduction in SAPK/JNK phosphorylation, Elk1 activation and CD68 expression, suggesting a crucial role for ARHGEF3 in myeloid differentiation. Taken together, our results demonstrate that ARHGEF3 modulates acute myeloid leukemia differentiation through activation of RhoA and pathways directly controlled by small GTPase family proteins. The finding that GEF protein modulation by HDAC inhibition impacts on cell differentiation may be important for understanding the antitumor mechanism(s) by which HDACi treatment stimulates differentiation in cancer.
Collapse
Affiliation(s)
- Loredana D'Amato
- a Dipartimento di Biochimica, Biofisica e Patologia Generale ; Seconda Università di Napoli ; Napoli , Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mullin BH, Mamotte C, Prince RL, Wilson SG. Influence of ARHGEF3 and RHOA knockdown on ACTA2 and other genes in osteoblasts and osteoclasts. PLoS One 2014; 9:e98116. [PMID: 24840563 PMCID: PMC4026532 DOI: 10.1371/journal.pone.0098116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/29/2014] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003–0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism.
Collapse
Affiliation(s)
- Benjamin H. Mullin
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
- * E-mail:
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Richard L. Prince
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Scott G. Wilson
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
- Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG. Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal. BMC Genet 2013; 14:107. [PMID: 24176111 PMCID: PMC3818969 DOI: 10.1186/1471-2156-14-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. RESULTS Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 - 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 - 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. CONCLUSIONS The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Richard L Prince
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim D Spector
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| | - Frank Dudbridge
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| |
Collapse
|
17
|
Csépányi-Kömi R, Lévay M, Ligeti E. Small G proteins and their regulators in cellular signalling. Mol Cell Endocrinol 2012; 353:10-20. [PMID: 22108439 DOI: 10.1016/j.mce.2011.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/27/2011] [Accepted: 11/07/2011] [Indexed: 01/04/2023]
Abstract
Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.
Collapse
Affiliation(s)
- Roland Csépányi-Kömi
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | | | | |
Collapse
|
18
|
Kim K, Yang YJ, Kim K, Kim MK. Interactions of single nucleotide polymorphisms with dietary calcium intake on the risk of metabolic syndrome. Am J Clin Nutr 2012; 95:231-40. [PMID: 22170361 DOI: 10.3945/ajcn.111.022749] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gene-nutrient interactions may be important in modulating susceptibility to metabolic disorders. OBJECTIVES The objectives of this study were to assess the association of dietary calcium intake with the risk of metabolic syndrome and to investigate the interaction effects between dietary calcium intake and candidate gene polymorphisms. DESIGN Subjects were participants in the Korea Association Resource project, which was initiated in 2007 as a large-scale, genomewide association analysis. A total of 8031 subjects were included in the study. Associations were assessed by using multivariable-adjusted logistic regression analyses. RESULTS High calcium intake appeared to be associated with a low risk of metabolic syndrome after covariates in both men (P-trend = 0.03) and women (P-trend = 0.0002) were controlled for. Among 27 single nucleotide polymorphisms (SNPs) selected as possible candidate gene polymorphisms affecting the risk of metabolic syndrome, 3 SNPs [rs6445834 in Rho guanine nucleotide exchange factor 3 (ARHGEF3), rs10850335 in T-box 5 (TBX5), rs180349 in BUD13 homolog (Saccaromyces cerevisiae) (BUD13)] showed significant interaction effects with calcium intake tertiles or sufficiency in both men and women. Subjects with major allele homozygotes of these gene polymorphisms and high calcium intakes generally had a lower risk of metabolic syndrome than did those with minor allele homozygotes and low calcium intakes. CONCLUSION Dietary calcium intake appears to be inversely associated with the risk of metabolic syndrome and may modulate susceptibility to the syndrome in subjects who are minor allele carriers of rs6445834 in ARHGEF3, rs10850335 in TBX5, or rs180349 in BUD13.
Collapse
Affiliation(s)
- Kirang Kim
- Department of Preventive Medicine, Hanyang University, College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
19
|
Serbanovic-Canic J, Cvejic A, Soranzo N, Stemple DL, Ouwehand WH, Freson K. Silencing of RhoA nucleotide exchange factor, ARHGEF3, reveals its unexpected role in iron uptake. Blood 2011; 118:4967-76. [PMID: 21715309 PMCID: PMC3208301 DOI: 10.1182/blood-2011-02-337295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/13/2011] [Indexed: 11/20/2022] Open
Abstract
Genomewide association meta-analysis studies have identified > 100 independent genetic loci associated with blood cell indices, including volume and count of platelets and erythrocytes. Although several of these loci encode known regulators of hematopoiesis, the mechanism by which most sequence variants exert their effect on blood cell formation remains elusive. An example is the Rho guanine nucleotide exchange factor, ARHGEF3, which was previously implicated by genomewide association meta-analysis studies in bone cell biology. Here, we report on the unexpected role of ARHGEF3 in regulation of iron uptake and erythroid cell maturation. Although early erythroid differentiation progressed normally, silencing of arhgef3 in Danio rerio resulted in microcytic and hypochromic anemia. This was rescued by intracellular supplementation of iron, showing that arhgef3-depleted erythroid cells are fully capable of hemoglobinization. Disruption of the arhgef3 target, RhoA, also produced severe anemia, which was, again, corrected by iron injection. Moreover, silencing of ARHGEF3 in erythromyeloblastoid cells K562 showed that the uptake of transferrin was severely impaired. Taken together, this is the first study to provide evidence for ARHGEF3 being a regulator of transferrin uptake in erythroid cells, through activation of RHOA.
Collapse
Affiliation(s)
- Jovana Serbanovic-Canic
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
20
|
Insights into the genetics of osteoporosis from recent genome-wide association studies. Expert Rev Mol Med 2011; 13:e28. [PMID: 21867596 DOI: 10.1017/s1462399411001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis, which is characterised by reduced bone mineral density (BMD) and an increased risk of fragility fractures, is the result of a complex interaction between environmental factors and genetic variants that confer susceptibility. Heritability studies have shown that BMD and other osteoporosis-related traits such as ultrasound properties of bone, skeletal geometry and bone turnover have significant inheritable components. Although previous linkage and candidate gene studies have provided few replicated loci for osteoporosis, genome-wide association approaches have produced clear and reproducible findings. To date, 20 genome-wide association studies (GWASs) for osteoporosis and related traits have been conducted, identifying dozens of genes. Further meta-analyses of GWAS data and deep resequencing of rare variants will uncover more novel susceptibility loci and ultimately provide possible therapeutic targets for fracture prevention.
Collapse
|
21
|
Dudbridge F, Holmans PA, Wilson SG. A flexible model for association analysis in sibships with missing genotype data. Ann Hum Genet 2011; 75:428-38. [PMID: 21241274 DOI: 10.1111/j.1469-1809.2010.00636.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A common design in family-based association studies consists of siblings without parents. Several methods have been proposed for analysis of sibship data, but they mostly do not allow for missing data, such as haplotype phase or untyped markers. On the other hand, general methods for nuclear families with missing data are computationally intensive when applied to sibships, since every family has missing parents that could have many possible genotypes. We propose a computationally efficient model for sibships by conditioning on the sets of alleles transmitted into the sibship by each parent. This means that the likelihood can be written only in terms of transmitted alleles and we do not have to sum over all possible untransmitted alleles when they cannot be deduced from the siblings. The model naturally accommodates missing data and admits standard theory of estimation, testing, and inclusion of covariates. Our model is quite robust to population stratification and can test for association in the presence of linkage. We show that our model has similar power to FBAT for single marker analysis and improved power for haplotype analysis. Compared to summing over all possible untransmitted alleles, we achieve similar power with considerable reductions in computation time.
Collapse
|
22
|
Wang J, Stern PH. Osteoclastogenic activity and RANKL expression are inhibited in osteoblastic cells expressing constitutively active Gα(12) or constitutively active RhoA. J Cell Biochem 2010; 111:1531-6. [PMID: 20872746 PMCID: PMC3478942 DOI: 10.1002/jcb.22883] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gα(12)-RhoA signaling is a parathyroid hormone (PTH)-stimulated pathway that mediates effects in bone and may influence genetic susceptibility to osteoporosis. To further elucidate effects of the pathway in osteoblasts, UMR-106 osteoblastic cells were stably transfected with constitutively active (ca) Gα(12) or caRhoA or dominant negative (dn) RhoA and co-cultured with RAW 264.7 cells to determine effects on hormone-stimulated osteoclastogenesis. Whereas PTH and calcitriol-stimulated osteoclastogenesis in co-cultures with UMR-106 cells expressing pcDNA or dominant negative RhoA, the osteoclastogenic effects of PTH and calcitriol were significantly attenuated when the UMR-106 cells expressed either caRhoA or caGα(12). These inhibitory effects were partially reversed by the Rho kinase inhibitor Y27632. None of the constructs affected osteoclastogenesis in untreated co-cultures, and the constructs did not inhibit the osteoclastogenic responses to receptor activator of NFκB ligand (RANKL). To investigate the mechanism of the inhibitory effects of caGα(12) and caRhoA, expression of RANKL, osteoprotegerin (OPG), osteopontin (OPN), and intercellular adhesion molecule-1 (ICAM) in response to PTH or calcitriol was examined in the UMR-106 cells. In the cells expressing pcDNA or dnRhoA, PTH and calcitriol increased RANKL mRNA and decreased OPG mRNA, whereas these effects were absent in the cells expressing caGα(12) or caRhoA. Basal expression of RANKL and OPG was unaffected by the constructs. The results suggest that Gα(12)-RhoA signaling can inhibit hormone-stimulated osteoclastogenesis by effects on expression of RANKL and OPG. Since PTH can stimulate the Gα(12)-RhoA pathway, the current findings could represent a homeostatic mechanism for regulating osteoclastogenic action.
Collapse
Affiliation(s)
- Jun Wang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Paula H. Stern
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
23
|
Abstract
Osteoporosis is an important and complex disorder that is highly prevalent worldwide. This disease poses a major challenge to modern medicine and its treatment is associated with high costs. Numerous studies have endeavored to decipher the pathogenesis of this disease. The clinical assessment of patients often incorporates information about a family history of osteoporotic fractures. Indeed, the observation of an increased risk of fracture in an individual with a positive parental history of hip fracture provides strong evidence for the heritability of osteoporosis. The onset and progression of osteoporosis are generally controlled by multiple genetic and environmental factors, as well as interactions between them, with rare cases determined by a single gene. In an attempt to identify the genetic markers of complex diseases such as osteoporosis, there has been a move away from traditional linkage mapping studies and candidate gene association studies to higher-density genome-wide association studies. The advent of high-throughput technology enables genotyping of millions of DNA markers in the human genome, and consequently the identification and characterization of causal variants and loci that underlie osteoporosis. This Review presents an overview of the major findings since 2007 and clinical applications of these genome-wide linkage and association studies.
Collapse
|
24
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li GHY, Kung AWC, Huang QY. Common variants in FLNB/CRTAP, not ARHGEF3 at 3p, are associated with osteoporosis in southern Chinese women. Osteoporos Int 2010; 21:1009-20. [PMID: 19727905 PMCID: PMC2946578 DOI: 10.1007/s00198-009-1043-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/27/2009] [Indexed: 01/30/2023]
Abstract
SUMMARY We performed an association study of five candidate genes within chromosome 3p14-25 in 1,080 Chinese female subjects. Polymorphisms in FLNB/CRTAP are associated with bone mineral density (BMD) in Chinese. INTRODUCTION Chromosomal region 3p14-25 has shown strong evidence of linkage to BMD in genome-wide linkage scans. The variants responsible for this linkage signal, nonetheless, remain obscure. METHODS Thirty SNPs in five positional and functional candidate genes within 3p14-25 (PPARG, CRTAP, TDGF1, PTHR1, and FLNB) and rs7646054 in the ARHGEF3 gene were genotyped in a case-control cohort of 1,080 Chinese females. Allelic and haplotypic association were tested using logistic regression analysis implemented in PLINK software. Potential transcription factor binding sites were predicted with MatInspector. RESULTS Multiple SNPs and haplotypes in FLNB were significantly associated with BMDs, with the strongest association between lumbar spine BMD and rs9828717 (p = 0.005). SNP rs7623768 and the haplotype G-C of rs4076086-rs7623768 in CRTAP were associated with femoral neck BMD (p = 0.009 and p = 0.003, respectively). PTHR1 showed haplotypic associations with lumbar spine and femoral neck BMD (p = 0.02 and p = 0.044, respectively). Nevertheless, the association between rs7646054 in ARHGEF3 and BMD observed in Caucasians was not replicated in our samples. Comparative genomics analysis indicated that rs9828717 is located within a highly conserved region. The minor T allele at rs9828717 may lead to loss of binding site for nuclear factor of activated T cells which binds and triggers the transcriptional program of osteoblasts. CONCLUSIONS Our data suggest that variants in FLNB and CRTAP at 3p are involved in BMD regulation in southern Chinese.
Collapse
Affiliation(s)
- G H Y Li
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
26
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
27
|
Wilson SG, Jones MR, Mullin BH, Dick IM, Richards JB, Pastinen TM, Grundberg E, Ljunggren O, Surdulescu GL, Dudbridge F, Elliott KS, Cervino ACL, Spector TD, Prince RL. Common sequence variation in FLNB regulates bone structure in women in the general population and FLNB mRNA expression in osteoblasts in vitro. J Bone Miner Res 2009; 24:1989-97. [PMID: 19453265 DOI: 10.1359/jbmr.090530] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous data from our group indicate that BMD is linked to chromosome 3p14-p21. Because the filamin B (FLNB gene resides in this region, is the cause of skeletal dysplasias, and was identified among the top genes in our bioinformatics analysis, we hypothesized a role for FLNB in the regulation of bone structure in the general population. Using a tag single nucleotide polymorphism (SNP) approach, a family study of 767 female sibs in which the 3p14-p21 linkage with BMD was previously shown was examined. FLNB variants showing a BMD association were tested in two additional data sets, a study of 1085 UK female twins and a population study (CAIFOS) of 1315 Australian women. Genotype-expression studies were performed in 96 human osteoblast lines to examine the variants in vitro. rs7637505, rs9822918, rs2177153, and rs2001972 showed association with femoral neck (p = 0.0002-0.02) in the family-based study. The twin study provided further support for an association between rs7637505 and femoral neck and spine BMD (p = 0.02-0.03). The CAIFOS study further suggested an association between rs2177153 and rs9822918 and femoral neck BMD (p = 0.004-0.03). Prevalent fractures were increased in carriers of the A allele of rs2177153 (p = 0.009). In vitro studies showed association between rs11130605, itself in strong LD with rs7637505, and FLNB mRNA expression. These findings suggest common variants in FLNB have effects on bone structure in women. Although the location of variants having effects is not entirely consistent, variation at the 5' end of the gene may reflect effects on levels of FLNB transcription efficiency.
Collapse
Affiliation(s)
- Scott G Wilson
- School of Medicine and Pharmacology, University of Western Australia, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mullin BH, Prince RL, Mamotte C, Spector TD, Hart DJ, Dudbridge F, Wilson SG. Further genetic evidence suggesting a role for the RhoGTPase-RhoGEF pathway in osteoporosis. Bone 2009; 45:387-91. [PMID: 19427924 DOI: 10.1016/j.bone.2009.04.254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/22/2009] [Accepted: 04/29/2009] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a highly heritable trait that appears to be influenced by multiple genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p21 as a quantitative trait locus for BMD. We have previously published evidence suggesting that the ARHGEF3 gene from this region is associated with BMD in women. The product of this gene activates the RHOA GTPase, the gene for which is also located within this region. The aim of this study was to evaluate the influence of genetic polymorphism in RHOA on bone density in women. Sequence variation within the RHOA gene region was determined using 9 single nucleotide polymorphisms (SNPs) in a discovery cohort of 769 female sibs. Of the 9 SNPs, one was found to be monomorphic with the others representing 3 distinct linkage disequilibrium (LD) blocks. Using FBAT software, significant associations were found between two of these LD blocks and BMD Z-score of the spine and hip (P=0.001-0.036). The LD block tagged by the SNP rs17595772 showed maximal association, with the more common G allele at rs17595772 associated with decreased BMD Z-score. Genotyping for rs17595772 in a replication cohort of 780 postmenopausal women confirmed an association with BMD Z-score (P=0.002-0.036). Again, the G allele was found to be associated with a reduced hip and spine BMD Z-score. These results support the implication of the RhoGTPase-RhoGEF pathway in osteoporosis, and suggest that one or more genes in this pathway may be responsible for the linkage observed between 3p14-p21 and BMD.
Collapse
Affiliation(s)
- Ben H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.
| | | | | | | | | | | | | |
Collapse
|