1
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Elder TR, Turner JR. Nicotine use disorder and Neuregulin 3: Opportunities for precision medicine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:387-404. [PMID: 38467488 DOI: 10.1016/bs.apha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder. This review first highlights the critical neurocircuitry underlying nicotine dependence and withdrawal, and then describes the cellular signaling mechanisms involved. Finally, current genetic, genomic, and transcriptomic evidence for new drug development of smoking cessation aids is discussed, with a focus on the Neuregulin 3 Signaling Pathway.
Collapse
Affiliation(s)
- Taylor R Elder
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States.
| |
Collapse
|
3
|
Lin R, Kos A, Lopez JP, Dine J, Fiori LM, Yang J, Ben-Efraim Y, Aouabed Z, Ibrahim P, Mitsuhashi H, Wong TP, Ibrahim EC, Belzung C, Blier P, Farzan F, Frey BN, Lam RW, Milev R, Muller DJ, Parikh SV, Soares C, Uher R, Nagy C, Mechawar N, Foster JA, Kennedy SH, Chen A, Turecki G. SNORD90 induces glutamatergic signaling following treatment with monoaminergic antidepressants. eLife 2023; 12:e85316. [PMID: 37432876 PMCID: PMC10335830 DOI: 10.7554/elife.85316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Pharmacotherapies for the treatment of major depressive disorder were serendipitously discovered almost seven decades ago. From this discovery, scientists pinpointed the monoaminergic system as the primary target associated with symptom alleviation. As a result, most antidepressants have been engineered to act on the monoaminergic system more selectively, primarily on serotonin, in an effort to increase treatment response and reduce unfavorable side effects. However, slow and inconsistent clinical responses continue to be observed with these available treatments. Recent findings point to the glutamatergic system as a target for rapid acting antidepressants. Investigating different cohorts of depressed individuals treated with serotonergic and other monoaminergic antidepressants, we found that the expression of a small nucleolar RNA, SNORD90, was elevated following treatment response. When we increased Snord90 levels in the mouse anterior cingulate cortex (ACC), a brain region regulating mood responses, we observed antidepressive-like behaviors. We identified neuregulin 3 (NRG3) as one of the targets of SNORD90, which we show is regulated through the accumulation of N6-methyladenosine modifications leading to YTHDF2-mediated RNA decay. We further demonstrate that a decrease in NRG3 expression resulted in increased glutamatergic release in the mouse ACC. These findings support a molecular link between monoaminergic antidepressant treatment and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Rixing Lin
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Julien Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Yair Ben-Efraim
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Pascal Ibrahim
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research CentreMontrealCanada
- Department of Psychiatry, McGill UniversityMontrealCanada
| | - El Cherif Ibrahim
- Aix-Marseille Université, CNRS, INT, Institute Neuroscience TimoneMarseilleFrance
| | - Catherine Belzung
- UMR 1253, iBrain, UFR Sciences et Techniques; Parc GrandmontToursFrance
| | - Pierre Blier
- Mood Disorders Research Unit, University of Ottawa Institute of Mental Health ResearchOntarioCanada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
- Mood Disorders Program, St. Joseph’s Healthcare HamiltonHamiltonCanada
| | - Raymond W Lam
- Department of Psychiatry, University of British ColumbiaColumbiaCanada
| | - Roumen Milev
- Departments of Psychiatry and Psychology, Queens UniversityOntarioCanada
| | - Daniel J Muller
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
- Centre for Addiction and Mental HealthTorontoCanada
| | - Sagar V Parikh
- Department of Psychiatry, University of MichiganAnn ArborUnited States
| | - Claudio Soares
- Departments of Psychiatry and Psychology, Queens UniversityOntarioCanada
| | - Rudolf Uher
- Nova Scotia Health AuthorityHalifaxCanada
- Department of Psychiatry, Dalhousie UniversityHalifaxCanada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
- Mood Disorders Program, St. Joseph’s Healthcare HamiltonHamiltonCanada
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
- St Michael’s Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide StudiesTorontoCanada
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| |
Collapse
|
4
|
Greenwood TA. Genetic Influences on Cognitive Dysfunction in Schizophrenia. Curr Top Behav Neurosci 2022; 63:291-314. [PMID: 36029459 DOI: 10.1007/7854_2022_388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a severe and debilitating psychotic disorder that is highly heritable and relatively common in the population. The clinical heterogeneity associated with schizophrenia is substantial, with patients exhibiting a broad range of deficits and symptom severity. Large-scale genomic studies employing a case-control design have begun to provide some biological insight. However, this strategy combines individuals with clinically diverse symptoms and ignores the genetic risk that is carried by many clinically unaffected individuals. Consequently, the majority of the genetic architecture underlying schizophrenia remains unexplained, and the pathways by which the implicated variants contribute to the clinically observable signs and symptoms are still largely unknown. Parsing the complex, clinical phenotype of schizophrenia into biologically relevant components may have utility in research aimed at understanding the genetic basis of liability. Cognitive dysfunction is a hallmark symptom of schizophrenia that is associated with impaired quality of life and poor functional outcome. Here, we examine the value of quantitative measures of cognitive dysfunction to objectively target the underlying neurobiological pathways and identify genetic variants and gene networks contributing to schizophrenia risk. For a complex disorder, quantitative measures are also more efficient than diagnosis, allowing for the identification of associated genetic variants with fewer subjects. Such a strategy supplements traditional analyses of schizophrenia diagnosis, providing the necessary biological insight to help translate genetic findings into actionable treatment targets. Understanding the genetic basis of cognitive dysfunction in schizophrenia may thus facilitate the development of novel pharmacological and procognitive interventions to improve real-world functioning.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Bajpai M, Panda A, Birudaraju K, Van Gurp J, Chak A, Das KM, Javidian P, Aviv H. Recurring Translocations in Barrett's Esophageal Adenocarcinoma. Front Genet 2021; 12:674741. [PMID: 34178034 PMCID: PMC8220202 DOI: 10.3389/fgene.2021.674741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Barrett's esophagus (BE) is a premalignant metaplasia in patients with chronic gastroesophageal reflux disease (GERD). BE can progress to esophageal adenocarcinoma (EA) with less than 15% 5-year survival. Chromosomal aneuploidy, deletions, and duplication are early events in BE progression to EA, but reliable diagnostic assays to detect chromosomal markers in premalignant stages of EA arising from BE are lacking. Previously, we investigated chromosomal changes in an in vitro model of acid and bile exposure-induced Barrett's epithelial carcinogenesis (BEC). In addition to detecting changes already known to occur in BE and EA, we also reported a novel recurring chromosomal translocation t(10:16) in the BE cells at an earlier time point before they undergo malignant transformation. In this study, we refine the chromosomal event with the help of fluorescence microscopy techniques as a three-way translocation between chromosomes 2, 10, and 16, t(2:10;16) (p22;q22;q22). We also designed an exclusive fluorescent in situ hybridization for esophageal adenocarcinoma (FISH-EA) assay that detects these chromosomal breakpoints and fusions. We validate the feasibility of the FISH-EA assay to objectively detect these chromosome events in primary tissues by confirming the presence of one of the fusions in paraffin-embedded formalin-fixed human EA tumors. Clinical validation in a larger cohort of BE progressors and non-progressors will confirm the specificity and sensitivity of the FISH-EA assay in identifying malignant potential in the early stages of EA.
Collapse
Affiliation(s)
- Manisha Bajpai
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Anshuman Panda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kristen Birudaraju
- Cytogenetics Laboratory, Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| | - James Van Gurp
- Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| | - Amitabh Chak
- Division of Gastroenterology and Hepatology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kiron M Das
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Parisa Javidian
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| | - Hana Aviv
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Cytogenetics Laboratory, Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
6
|
Overexpression of neuregulin 1 in GABAergic interneurons results in reversible cortical disinhibition. Nat Commun 2021; 12:278. [PMID: 33436636 PMCID: PMC7804852 DOI: 10.1038/s41467-020-20552-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cortical disinhibition is a common feature of several neuropsychiatric diseases such as schizophrenia, autism and intellectual disabilities. However, the underlying mechanisms are not fully understood. To mimic increased expression of Nrg1, a schizophrenia susceptibility gene in GABAergic interneurons from patients with schizophrenia, we generated gtoNrg1 mice with overexpression of Nrg1 in GABAergic interneurons. gtoNrg1 mice showed cortical disinhibition at the cellular, synaptic, neural network and behavioral levels. We revealed that the intracellular domain of NRG1 interacts with the cytoplasmic loop 1 of Nav1.1, a sodium channel critical for the excitability of GABAergic interneurons, and inhibits Nav currents. Intriguingly, activation of GABAergic interneurons or restoring NRG1 expression in adulthood could rescue the hyperactivity and impaired social novelty in gtoNrg1 mice. These results identify mechanisms underlying cortical disinhibition related to schizophrenia and raise the possibility that restoration of NRG1 signaling and GABAergic function is beneficial in certain neuropsychiatric disorders. The molecular and cellular mechanisms of cortical disinhibition as a common feature of many psychiatric diseases are not fully understood. The authors identify an interaction between NRG1 and Nav1.1 sodium channel as a mechanism of how NRG1 modulates the excitability of GABAergic interneurons.
Collapse
|
7
|
Li Z, Liu L, Lin W, Zhou Y, Zhang G, Du X, Li Y, Tang W, Zhang X. NRG3 contributes to cognitive deficits in chronic patients with schizophrenia. Schizophr Res 2020; 215:134-139. [PMID: 31753594 DOI: 10.1016/j.schres.2019.10.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive deficit is a fundamental trait of schizophrenia, but its mecwhanisms remain unknown. The neuregulin 3 (NRG3) gene, involving in neuronal function, has been considered to be associated with schizophrenia and cognition. However, no study has investigated the effects of NRG3 polymorphism on cognitive deficits in a large sample of the patients with schizophrenia. METHODS A total of 1112 schizophrenia patients and 423 controls were recruited and genotyped with NRG3 rs10748842. Among them, 864 patients and 403 controls were assessed for cognition through the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). SHEsis was applied and followed by logistic regression analysis. The models of analyses of covariance (ANCOVA) were constructed to examine the effects of NRG3 rs10748842 on cognitive deficits. RESULTS No differences in NRG3 rs10748842 allele and genotype were found between patients and controls (both p > 0.05). With the exception of Visuospatial/construction, the other RBANS scores were significantly lower in patients compared to controls after adjusting for gender and education (all p < 0.001). Interestingly, we found that NRG3 rs10748842 was associated with cognitive deficit in schizophrenia, showing that patients carrying C allele had lower attention and total scores than those with TT genotype (both p < 0.05). CONCLUSION NRG3 rs10748842 may not confer susceptibility to schizophrenia, but may be more closely associated with cognitive deficit, especially attention performance in chronic schizophrenia.
Collapse
Affiliation(s)
- Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Liu
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Wei Lin
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Yongjie Zhou
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China; Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Guangya Zhang
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China; Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Wei Tang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Medical University Wenzhou, Zhejiang, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, Green MF, Light GA, Nievergelt CM, Nuechterlein KH, Radant AD, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Gur RC, Gur RE, Braff DL. Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry 2019; 76:1274-1284. [PMID: 31596458 PMCID: PMC6802253 DOI: 10.1001/jamapsychiatry.2019.2850] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. OBJECTIVE To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). DESIGN, SETTING, AND PARTICIPANTS A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. MAIN OUTCOMES AND MEASURES A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. RESULTS The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. CONCLUSIONS AND RELEVANCE These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California,Sierra Pacific Mental Illness Research Education and Clinical Center, Department of Veterans Affairs (VA) Health Care System, Palo Alto, California
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | | | | | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Department of Biostatistics, UCLA School of Public Health
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla
| |
Collapse
|
9
|
Rahman A, Weber J, Labin E, Lai C, Prieto AL. Developmental expression of Neuregulin‐3 in the rat central nervous system. J Comp Neurol 2018; 527:797-817. [DOI: 10.1002/cne.24559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Afrida Rahman
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Janet Weber
- Department NeuroscienceUniversity of California San Diego San Diego California
| | - Edward Labin
- Department of NeurologyUniversity of Minnesota Minneapolis
| | - Cary Lai
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Anne L Prieto
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| |
Collapse
|
10
|
Müller T, Braud S, Jüttner R, Voigt BC, Paulick K, Sheean ME, Klisch C, Gueneykaya D, Rathjen FG, Geiger JR, Poulet JF, Birchmeier C. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J 2018; 37:embj.201798858. [PMID: 30049711 PMCID: PMC6120667 DOI: 10.15252/embj.201798858] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.
Collapse
Affiliation(s)
- Thomas Müller
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Stephanie Braud
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - René Jüttner
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Birgit C Voigt
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Katharina Paulick
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Maria E Sheean
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Constantin Klisch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilansu Gueneykaya
- Cellular Neuroscience Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Jörg Rp Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James Fa Poulet
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany.,Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
11
|
Avramopoulos D. Neuregulin 3 and its roles in schizophrenia risk and presentation. Am J Med Genet B Neuropsychiatr Genet 2018; 177:257-266. [PMID: 28556469 PMCID: PMC5735014 DOI: 10.1002/ajmg.b.32552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Neuregulins, a four-member family of epidermal growth factor-like signaling molecules, have been studied for over two decades. They were first implicated in schizophrenia in 2002 with the detection of linkage and association at the NRG1 locus followed after a few years by NRG3. However, the associations with disease have not been very consistently observed. In contrast, association of NGR3 variants with disease presentation, specifically the presence of delusions, has been more consistent. This appears to be mediated by quantitative changes in the alternative splicing of the gene, which has also been consistently observed. Additional diseases and phenotypes, psychiatric or not, have also been connected with NRG3. These results demonstrate two important aspects of behavioral genetics research. The first is that if we only consider simple risk and fail to examine the details of each patient's individual phenotype, we will miss important insights on the disease biology. This is an important aspect of the goals of precision medicine. The second is that the functional consequences of variants are often more complex than simple alterations in levels of transcription of a particular gene, including, among others, regulation of alternative splicing. To accurately model and understand the biological consequences of phenotype-associated genetic variants, we need to study the biological consequences of each specific variant. Simply studying the consequences of a null allele of the orthologous gene in a model system, runs the risk of missing the many nuances of hypomorphic and/or gain of function variants in the genome of interest.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Johns Hopkins University, Institute of Genetic Medicine and Department of Psychiatry and Behavioral Sciences, 733 North Broadway - MRB room 507, Baltimore MD 21205
| |
Collapse
|
12
|
Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A 2018; 115:2508-2513. [PMID: 29463705 DOI: 10.1073/pnas.1716322115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuregulin3 (NRG3) is a growth factor of the neuregulin (NRG) family and a risk gene of various severe mental illnesses including schizophrenia, bipolar disorders, and major depression. However, the physiological function of NRG3 remains poorly understood. Here we show that loss of Nrg3 in GFAP-Nrg3f/f mice increased glutamatergic transmission, but had no effect on GABAergic transmission. These phenotypes were observed in Nex-Nrg3f/f mice, where Nrg3 was specifically knocked out in pyramidal neurons, indicating that Nrg3 regulates glutamatergic transmission by a cell-autonomous mechanism. Consequently, in the absence of Nrg3 in pyramidal neurons, mutant mice displayed various behavioral deficits related to mental illnesses. We show that the Nrg3 mutation decreased paired-pulse facilitation, increased decay of NMDAR currents when treated with MK801, and increased minimal stimulation-elicited response, providing evidence that the Nrg3 mutation increases glutamate release probability. Notably, Nrg3 is a presynaptic protein that regulates the SNARE-complex assembly. Finally, increased Nrg3 levels, as observed in patients with severe mental illnesses, suppressed glutamatergic transmission. Together, these observations indicate that, unlike the prototype Nrg1, the effect of which is mediated by activating ErbB4 in interneurons, Nrg3 is critical in controlling glutamatergic transmission by regulating the SNARE complex at the presynaptic terminals, identifying a function of Nrg3 and revealing a pathophysiological mechanism for hypofunction of the glutamatergic pathway in Nrg3-related severe mental illnesses.
Collapse
|
13
|
Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons. Cell Rep 2017; 18:1157-1170. [PMID: 28147272 PMCID: PMC5300889 DOI: 10.1016/j.celrep.2016.12.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3) as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits. Nrg3 acts a short-range chemoattractive molecule for cortical interneurons Nrg3 functions through ErbB4 to attract interneurons into the cortical plate Interneurons prefer Cxcl12 over Nrg3 during tangential migration Disruption of Nrg3 signaling causes abnormal interneuron lamination in the cortex
Collapse
|
14
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
15
|
Marchisella E, Wijnands R, Koopmans B, Spijker S, Loos M. Constitutive loss and acute pharmacological manipulation of ErbB4 signaling do not affect attention and inhibitory control in mice. GENES BRAIN AND BEHAVIOR 2017; 17:56-69. [PMID: 28792672 DOI: 10.1111/gbb.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 02/03/2023]
Abstract
The receptor tyrosine kinase ErbB4 and its ligand trophic factors of the neuregulin (NRG) family have been associated with schizophrenia and other mental disorders in human genetic studies. In vivo studies in mice have shown how abnormal Nrg-ErbB4 signaling leads to deviant behaviors relevant to distinct aspects of schizophrenia, including hyperactivity, sensory gating deficits, working and spatial memory deficits and impaired social behavior. However, so far little is known on the role of ErbB4 in attention and inhibitory control, two aspects of executive functions that are impaired in schizophrenia. Here we investigated the effects of constitutive loss of ErbB4 in the central nervous system of mice on performance in a 5-choice serial reaction time task (5CSRTT) assessing attention and inhibitory control. In this task, ErbB4-/- mice did not show deficits in various parameters of attention, and premature responses as measure of inhibitory control. Nonetheless, ErbB4-/- mice recapitulated a specific set of behavioral phenotypes associated with schizophrenia, including a deficit in spatial learning and memory in the Barnes Maze and in contextual fear learning, and a trend for a deficit in sensorimotor gating. Furthermore, we investigated the effect of acute pharmacological inhibition of ErbB tyrosine kinase receptor using the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ), in an automated version of the 5CSRTT. JNJ did not affect attention and inhibitory control. In conclusion, our data suggest no direct involvement of a classical Nrg-ErbB4 pathway in attention and inhibitory control in mice, while it confirms the involvement of this pathway in other domains relevant to schizophrenia.
Collapse
Affiliation(s)
| | | | | | - S Spijker
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive research, Neuroscience Campus Amsterdam, VU University, De Boelelaan, The Netherlands
| | - M Loos
- Sylics (Synaptologics B.V.), Amsterdam.,Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive research, Neuroscience Campus Amsterdam, VU University, De Boelelaan, The Netherlands
| |
Collapse
|
16
|
Abe H, Aoya D, Takeuchi HA, Inoue-Murayama M. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion. BMC Genet 2017; 18:69. [PMID: 28732471 PMCID: PMC5521077 DOI: 10.1186/s12863-017-0537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/11/2017] [Indexed: 01/21/2023] Open
Abstract
Background Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Results Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. Conclusions A putative frameshift deletion and CNV in chicken NRG3 are structural mutations that occurred before the establishment of commercial chicken lines. Our results further suggest that the putative frameshift deletion in exon 2 may potentially affect the expression level of particular isoforms of chicken NRG3. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0537-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideaki Abe
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.
| | - Daiki Aoya
- Akita Prefectural Livestock Experiment Station, 13-3 Kaisonumayachi, Jinguji, Daisen, Akita, 019-1701, Japan
| | - Hiro-Aki Takeuchi
- Department of Biological Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
17
|
Topa A, Samuelsson L, Lovmar L, Stenman G, Kölby L. On the significance of craniosynostosis in a case of Kabuki syndrome with a concomitant KMT2D mutation and 3.2 Mbp de novo 10q22.3q23.1 deletion. Am J Med Genet A 2017; 173:2219-2225. [PMID: 28590022 DOI: 10.1002/ajmg.a.38296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 11/08/2022]
Abstract
Craniosynostosis has rarely been described in patients with Kabuki syndrome. We report here a boy with facial asymmetry due to combined premature synostosis of the right coronal and sagittal sutures as well as several symptoms reminiscent of Kabuki syndrome (KS). Our case supports previous observations and suggests that craniosynostosis is a part of the KS phenotype. The uniqueness of our case is the sporadic co-occurrence of two genetic disorders, that is, a de novo frameshift variant in the KMT2D gene and a de novo 3.2 Mbp 10q22.3q23.1 deletion. Our findings emphasize the importance of the initial clinical assessment of children with craniosynostosis and that genomic and monogenic disorders, such as Kabuki syndrome, should be considered among the differential diagnoses of syndromic forms of craniosynostosis.
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Pathology and Genetics, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lena Samuelsson
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Pathology and Genetics, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
18
|
Coelho Molck M, Simioni M, Paiva Vieira T, Paoli Monteiro F, Gil-da-Silva-Lopes VL. A New Case of the Rare 10q22.3q23.2 Microdeletion Flanked by Low-Copy Repeats 3/4. Mol Syndromol 2017; 8:161-167. [PMID: 28588438 DOI: 10.1159/000469965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 01/07/2023] Open
Abstract
Deletions in the 10q22.3q23.2 region are rare and mediated by 2 low-copy repeats (LCRs 3 and 4). These deletions have already been recognized as the 10q22q23 deletion syndrome. The phenotype associated with this condition is rather uncharacteristic, and most common features are craniofacial dysmorphisms and developmental delay. We describe a boy with craniofacial dysmorphic features, developmental delay, tetralogy of Fallot, hand/foot abnormalities, and recurrent respiratory tract infections. Chromosomal microarray analysis disclosed a 7.8-Mb microdeletion at 10q22.3q23.2, flanked by LCRs 3/4, and an additional 16q12.1 microdeletion of 189 kb. This article reviews the clinical signs of reported cases with similar deletions and compares them with our patient, contributing to a better understanding of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Miriam Coelho Molck
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Milena Simioni
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Társis Paiva Vieira
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabíola Paoli Monteiro
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
19
|
Yang D, Yang J, Li S, Jiang M, Cao G, Yang L, Zhang X, Zhou Y, Li K, Tang ST. Effects of RET, NRG1 and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. Sci Rep 2017; 7:43222. [PMID: 28256518 PMCID: PMC5335705 DOI: 10.1038/srep43222] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
The RET proto-oncogene was identified as a major locus involved in Hirschsprung disease (HSCR). A genome-wide association study (GWAS) and whole exome sequencing identified NRG1 and NRG3 as additional HSCR susceptibility loci. We investigated the effects of RET (rs2506030 and rs2435357), NRG1 (rs2439302, rs16879552 and rs7835688) and NRG3 (rs10748842, rs10883866 and rs6584400) polymorphisms in a Chinese population with HSCR. We assessed single nucleotide polymorphisms (SNPs) in the RET, NRG1 and NRG3 genes in a cohort of 362 sporadic HSCR patients and 1,448 normal controls using a TaqMan genotyping assay. Significant associations were found between HSCR risk and rs2506030, rs2435357, rs2439302 and rs7835688 (odds ratio [OR] 1.64, P = 1.72E-06; 2.97, P = 5.15E-33; 1.84, P = 9.36E-11; and 1.93, P = 1.88E-12, respectively). Two locus analyses of SNPs indicated increased disease risks of HSCR between NRG1 rs2439302 and RET rs2435357 or rs2506030. RET rs2506030 (GG genotype) and rs2435357 (TT genotype), in combination with NRG1 rs2439302 (GG genotype), were strongly associated with the highest risk of HSCR (OR = 56.53, P = 4.50E-07) compared with the two loci or a single SNP of either RET or NRG1. Our results support the association between genetic variation of RET and NRG1 and susceptibility to HSCR in the Chinese population.
Collapse
Affiliation(s)
- Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Yang
- Department of Pediatric Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Jiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xi Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao-Tao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
20
|
Paterson C, Wang Y, Hyde TM, Weinberger DR, Kleinman JE, Law AJ. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders. Am J Psychiatry 2017; 174:256-265. [PMID: 27771971 PMCID: PMC5892449 DOI: 10.1176/appi.ajp.2016.16060721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I-IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. METHOD NRG3 isoform classes I-IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. RESULTS NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. CONCLUSIONS Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development.
Collapse
Affiliation(s)
- Clare Paterson
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Yanhong Wang
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Thomas M. Hyde
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Daniel R. Weinberger
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Joel E. Kleinman
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Amanda J. Law
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
21
|
Cardoso MABS, do Nascimento TJ, Bernardo GP, Bernardo LP, Barbosa MMFL, Neto PJN, de Sousa DF, Júnior AGT, de Lima MAP, Moreira MM, de Sousa Gregório D, do Nascimento Santos LC, Rolim Neto ML. Are There Schizophrenia Genetic Markers and Mutations? A Systematic Review and Meta-Analyses. Health (London) 2017. [DOI: 10.4236/health.2017.95058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Cagan A, Theunert C, Laayouni H, Santpere G, Pybus M, Casals F, Prüfer K, Navarro A, Marques-Bonet T, Bertranpetit J, Andrés AM. Natural Selection in the Great Apes. Mol Biol Evol 2016; 33:3268-3283. [PMID: 27795229 PMCID: PMC5100057 DOI: 10.1093/molbev/msw215] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh.
Collapse
Affiliation(s)
- Alexander Cagan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christoph Theunert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Hafid Laayouni
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Catalonia, Spain
| | - Gabriel Santpere
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Marc Pybus
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Arcadi Navarro
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Tomas Marques-Bonet
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Jaume Bertranpetit
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Archaeology and Anthropology, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
23
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
24
|
Harvey PD, Aslan M, Du M, Zhao H, Siever LJ, Pulver A, Gaziano JM, Concato J. Factor structure of cognition and functional capacity in two studies of schizophrenia and bipolar disorder: Implications for genomic studies. Neuropsychology 2016; 30:28-39. [PMID: 26710094 DOI: 10.1037/neu0000245] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Impairments in cognition and everyday functioning are common in schizophrenia and bipolar disorder (BPD). In this article, we present factor analyses of cognitive and functional capacity (FC) measures based on 2 studies of schizophrenia (SCZ) and bipolar I disorder (BPI) using similar methods. The overall goal of these analyses was to determine whether performance-based assessments should be examined individually, or aggregated on the basis of the correlational structure of the tests, as well as to evaluate the similarity of factor structures of SCZ and BPI. METHOD Veterans Affairs Cooperative Studies Program Study #572 (Harvey et al., 2014) evaluated cognitive and FC measures among 5,414 BPI and 3,942 SCZ patients. A 2nd study evaluated similar neuropsychological (NP) and FC measures among 368 BPI and 436 SCZ patients. Principal components analysis, as well as exploratory and CFAs, were used to examine the data. RESULTS Analyses in both datasets suggested that NP and FC measures were explained by a single underlying factor in BPI and SCZ patients, both when analyzed separately or as in a combined sample. The factor structure in both studies was similar, with or without inclusion of FC measures; homogeneous loadings were observed for that single factor across cognitive and FC domains across the samples. CONCLUSION The empirically derived factor model suggests that NP performance and FC are best explained as a single latent trait applicable to people with SCZ and BPD. This single measure may enhance the robustness of the analyses relating genomic data to performance-based phenotypes.
Collapse
Affiliation(s)
- Philip D Harvey
- Department of Research Service, Bruce W. Carter Miami Veterans Affairs Medical Center
| | - Mihaela Aslan
- Clinical Epidemiology Research Center, Veterans Affairs Connecticut Healthcare System
| | - Mengtian Du
- Department of Statistics, Yale Graduate School of Arts and Sciences, Yale University
| | - Hongyu Zhao
- Clinical Epidemiology Research Center, Veterans Affairs Connecticut Healthcare System
| | - Larry J Siever
- Department of Psychiatry Service, James J. Peters Veterans Affairs Medical Center
| | - Ann Pulver
- Department of Epidemiology, Bloomberg School of Public Health
| | - J Michael Gaziano
- Massachusetts Veteran Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System
| | - John Concato
- Clinical Epidemiology Research Center, Veterans Affairs Connecticut Healthcare System
| |
Collapse
|
25
|
Hayes LN, Shevelkin A, Zeledon M, Steel G, Chen PL, Obie C, Pulver A, Avramopoulos D, Valle D, Sawa A, Pletnikov MV. Neuregulin 3 Knockout Mice Exhibit Behaviors Consistent with Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:79-87. [PMID: 27606322 PMCID: PMC4996025 DOI: 10.1159/000445836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
Neuregulin 3 (NRG3) is a paralog of NRG1. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, and several intronic single nucleotide polymorphisms in NRG3 are associated with delusions in patients with schizophrenia. In order to gain insights into the biological function of the gene, we generated a novel Nrg3 knockout (KO) mouse model and tested for neurobehavioral phenotypes relevant to psychotic disorders. KO mice displayed novelty-induced hyperactivity, impaired prepulse inhibition of the acoustic startle response, and deficient fear conditioning. No gross cytoarchitectonic or layer abnormalities were noted in the brain of KO mice. Our findings suggest that deletion of the Nrg3 gene leads to alterations consistent with aspects of schizophrenia. We propose that KO mice will provide a valuable animal model to determine the role of the NRG3 in the molecular pathogenesis of schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- Lindsay N. Hayes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Alexey Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Mariela Zeledon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Gary Steel
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan, ROC
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ann Pulver
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Akira Sawa
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
26
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
27
|
Moore RC, Harmell AL, Harvey PD, Bowie CR, Depp CA, Pulver AE, McGrath JA, Patterson TL, Cardenas V, Wolyniec P, Thornquist MH, Luke JR, Palmer BW, Jeste DV, Mausbach BT. Improving the understanding of the link between cognition and functional capacity in schizophrenia and bipolar disorder. Schizophr Res 2015; 169:121-127. [PMID: 26427917 PMCID: PMC4681671 DOI: 10.1016/j.schres.2015.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Deficits in cognitive functioning are related to functional disability in people with serious mental illness. Measures of functional capacity are commonly used as a proxy for functional disabilities for cognitive remediation programs, and robust linear relationships between functional capacity and cognitive deficits are frequently observed. This study aimed to determine whether a curvilinear relationship better approximates the association between cognitive functioning and functional capacity. METHOD Two independent samples were studied. Study 1: participants with schizophrenia (n=435) and bipolar disorder (n=390) aged 18-83 completed a neuropsychological battery and a performance-based measure of functional capacity. Study 2: 205 participants with schizophrenia (age range=39-72) completed a brief neuropsychological screening battery and a performance-based measure of functional capacity. For both studies, linear and quadratic curve estimations were conducted with cognitive performance predicting functional capacity scores. RESULTS Significant linear and quadratic trends were observed for both studies. Study 1: in both the schizophrenia and bipolar participants, when cognitive composite z-scores were >0 (indicating normal to above normal performance), cognition was not related to functional capacity. Study 2: when neuropsychological screening battery z-scores were >-1 (indicating low average to average performance), cognition was not related to functional capacity. CONCLUSIONS These results illustrate that in cognitively normal adults with serious mental illness, the relationship between cognitive function and functional capacity is relatively weak. These findings may aid clinicians and researchers determine who may optimally benefit from cognitive remediation programs, with greater benefits possibly being achieved for individuals with cognitive deficits relative to individuals with normal cognition.
Collapse
Affiliation(s)
- Raeanne C Moore
- Department of Psychiatry, University of California, San Diego, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| | - Alexandrea L Harmell
- Department of Psychiatry, University of California, San Diego, United States; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States.
| | - Philip D Harvey
- University of Miami Miller School of Medicine, United States.
| | | | - Colin A Depp
- Department of Psychiatry, University of California, San Diego, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States; VA San Diego Healthcare System, San Diego, CA, United States.
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States.
| | - John A McGrath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States.
| | - Thomas L Patterson
- Department of Psychiatry, University of California, San Diego, United States.
| | - Veronica Cardenas
- Department of Psychiatry, University of California, San Diego, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| | - Paula Wolyniec
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States.
| | - Mary H Thornquist
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States.
| | - James R Luke
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States.
| | - Barton W Palmer
- Department of Psychiatry, University of California, San Diego, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| | - Dilip V Jeste
- Department of Psychiatry, University of California, San Diego, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| | - Brent T Mausbach
- Department of Psychiatry, University of California, San Diego, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| |
Collapse
|
28
|
Role of the Neuregulin Signaling Pathway in Nicotine Dependence and Co-morbid Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:113-31. [PMID: 26472527 DOI: 10.1016/bs.irn.2015.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smoking is currently the leading cause of preventable death in the United States and is responsible for over four million deaths annually worldwide. Therefore, there is a vast clinical unmet need with regards to therapeutics targeting smoking cessation. This is even more apparent when examining smokers co-morbid with psychiatric illness, as rates of smoking in this population are ~4× higher than in the general population. Examining common genetic and molecular signaling pathways impinging upon both smoking behavior and psychiatric illness will lead to a better understanding of co-morbid disorders and potential development of novel therapeutics. Studies have implicated the Neuregulin Signaling Pathway in the pathophysiology of a number of psychiatric illnesses. Additionally, recent studies have also shown an association between the Neuregulin Signaling Pathway and smoking behaviors. This review outlines basic mechanisms of the Neuregulin Signaling Pathway and how it may be exploited for precision medicine approaches in treating nicotine dependence and mental illness.
Collapse
|
29
|
Zeledón M, Eckart N, Taub M, Vernon H, Szymanski M, Wang R, Chen PL, Nestadt G, McGrath JA, Sawa A, Pulver AE, Avramopoulos D, Valle D. Identification and functional studies of regulatory variants responsible for the association of NRG3 with a delusion phenotype in schizophrenia. MOLECULAR NEUROPSYCHIATRY 2015; 1:36-46. [PMID: 26528484 PMCID: PMC4627703 DOI: 10.1159/000371518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022]
Abstract
We previously reported genetic linkage for Schizophrenia (SZ) (NPL of 4.7) at 10q22 in the Ashkenazi Jewish (AJ) population. In follow up fine mapping we found strong evidence of association between three intronic single nucleotide variants (SNVs) in the 5' end of Neuregulin 3 (NRG3) and the delusion factor score of our phenotypic principal component analysis. Two independent groups replicated these findings, indicating that variants in NRG3 confer risk for a delusion-rich SZ subtype. To identify the causative variants, we sequenced the 162 kb linkage disequilibrium (LD) block covering the NRG3 5' end in 47 AJ SZ patients at the extremes of the delusion factor quantitative trait distribution. Among the identified variants we found 5 noncoding SNVs present on the high delusion factor haplotype and significantly overrepresented in high delusion factor subjects. We tested these for regulatory effects and found that risk alleles of rs10883866 and rs60827755 decreased and increased, respectively, the expression of a reporter gene as compared to the reference allele. In post-mortem brain RNA quantification experiments we found the same variants also perturb relative expression of alternative NRG3 isoforms. In summary, we have identified regulatory SNVs contributing to the association of NRG3 with delusion symptoms in SZ.
Collapse
Affiliation(s)
- Mariela Zeledón
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Nicole Eckart
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Margaret Taub
- Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | - Hilary Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Megan Szymanski
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ruihua Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan, ROC
| | - Gerry Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - John A. McGrath
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Epidemiology-Genetics Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ann E. Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Epidemiology-Genetics Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
30
|
Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, Hatzimanolis A, Goes FS, Nestadt G, Mulle J, Coneely K, Hopkins M, Ruczinski I, Yolken R, Pulver AE. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One 2015; 10:e0116696. [PMID: 25781172 PMCID: PMC4363491 DOI: 10.1371/journal.pone.0116696] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ) and bipolar disorder (BP). It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP), a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively). We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - John McGrath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Paula Wolyniec
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ruihua Wang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nicole Eckart
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alexandros Hatzimanolis
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Fernando S. Goes
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jennifer Mulle
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Karen Coneely
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Myfanwy Hopkins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Ingo Ruczinski
- Bloomberg School of Public Heath, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert Yolken
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ann E. Pulver
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
31
|
Plani-Lam JHC, Chow TC, Siu KL, Chau WH, Ng MHJ, Bao S, Ng CT, Sham P, Shum DKY, Ingley E, Jin DY, Song YQ. PTPN21 exerts pro-neuronal survival and neuritic elongation via ErbB4/NRG3 signaling. Int J Biochem Cell Biol 2015; 61:53-62. [PMID: 25681686 DOI: 10.1016/j.biocel.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Although expression quantitative trait locus, eQTL, serves as an explicit indicator of gene-gene associations, challenges remain to disentangle the mechanisms by which genetic variations alter gene expression. Here we combined eQTL and molecular analyses to identify an association between two seemingly non-associated genes in brain expression data from BXD inbred mice, namely Ptpn21 and Nrg3. Using biotinylated receptor tracking and immunoprecipitation analyses, we determined that PTPN21 de-phosphorylates the upstream receptor tyrosine kinase ErbB4 leading to the up-regulation of its downstream signaling. Conversely, kinase-dead ErbB4 (K751R) or phosphatase-dead PTPN21 (C1108S) mutants impede PTPN21-dependent signaling. Furthermore, PTPN21 also induced Elk-1 activation in embryonic cortical neurons and a novel Elk-1 binding motif was identified in a region located 1919bp upstream of the NRG3 initiation codon. This enables PTPN21 to promote NRG3 expression through Elk-1, which provides a biochemical mechanism for the PTPN21-NRG3 association identified by eQTL. Biologically, PTPN21 positively influences cortical neuronal survival and, similar to Elk-1, it also enhances neuritic length. Our combined approaches show for the first time, a link between NRG3 and PTPN21 within a signaling cascade. This may explain why these two seemingly unrelated genes have previously been identified as risk genes for schizophrenia.
Collapse
Affiliation(s)
| | - Tai-Cheong Chow
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kam-Leung Siu
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Wing Hin Chau
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Ming-Him James Ng
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Poison Treatment Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Suying Bao
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Cheung Toa Ng
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Centre for Genomic Sciences, University of Hong Kong, 5 Sassoon Road, Hong Kong, China
| | - Daisy Kwok-Yan Shum
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - You-Qiang Song
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
32
|
Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling. G3-GENES GENOMES GENETICS 2014; 5:61-72. [PMID: 25416705 PMCID: PMC4291470 DOI: 10.1534/g3.114.015636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous linkage and association studies by our group and others have implicated DPYSL2 at 8p21.2 in schizophrenia. Here we explore DPYSL2 for functional variation that underlies these associations. We sequenced all 14 exons of DPYSL2 as well as 27 conserved noncoding regions at the locus in 137 cases and 151 controls. We identified 120 variants, eight of which we genotyped in an additional 729 cases and 1542 controls. Several were significantly associated with schizophrenia, including a three single-nucleotide polymorphism (SNP) haplotype in the proximal promoter, two SNPs in intron 1, and a polymorphic dinucleotide repeat in the 5′-untranslated region that alters sequences predicted to be involved in translational regulation by mammalian target of rapamycin signaling. The 3-SNP promoter haplotype and the sequence surrounding one of the intron 1 SNPs direct tissue-specific expression in the nervous systems of Zebrafish in a pattern consistent with the two endogenous dpysl2 paralogs. In addition, two SNP haplotypes over the coding exons and 3′ end of DPYSL2 showed association with opposing sex-specific risks. These data suggest that these polymorphic, schizophrenia-associated sequences function as regulatory elements for DPYSL2 expression. In transient transfection assays, the high risk allele of the polymorphic dinucleotide repeat diminished reporter expression by 3- to 4-fold. Both the high- and low-risk alleles respond to allosteric mTOR inhibition by rapamycin until, at high drug levels, allelic differences are eliminated. Our results suggest that reduced transcription and mTOR-regulated translation of certain DPYSL2 isoforms increase the risk for schizophrenia.
Collapse
|
33
|
Loos M, Mueller T, Gouwenberg Y, Wijnands R, van der Loo RJ, Birchmeier C, Smit AB, Spijker S. Neuregulin-3 in the mouse medial prefrontal cortex regulates impulsive action. Biol Psychiatry 2014; 76:648-55. [PMID: 24703509 DOI: 10.1016/j.biopsych.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/24/2014] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND A deficit in impulse control is a prominent, heritable symptom in several psychiatric disorders, such as addiction, attention-deficit/hyperactivity disorder, and schizophrenia. Here, we aimed to identify genes regulating impulsivity, specifically of impulsive action, in mice. METHODS Using the widely used 5-choice serial reaction time task, we measured impulsive action in 1) a panel of 41 BXD recombinant inbred strains of mice (n = 13.7 ± .8 per strain; n = 654 total) to detect underlying genetic loci; 2) congenic mice (n = 23) to replicate the identified locus; 3) mice overexpressing the Nrg3 candidate gene in the medial prefrontal cortex (n = 21); and 4) a Nrg3 loss-of-function mutant (n = 59) to functionally implicate the Nrg3 candidate gene in impulsivity. RESULTS Genetic mapping of impulsive action in the BXD panel identified a locus on chromosome 14 (34.5-41.4 Mb), syntenic with the human 10q22-q23 schizophrenia-susceptibility locus. Congenic mice carrying the impulsivity locus (Impu1) confirmed its influence on impulsive action. Increased impulsivity was associated with increased Nrg3 gene expression in the medial prefrontal cortex (mPFC). Viral overexpression of Nrg3 in the mPFC increased impulsivity, whereas a constitutive Nrg3 loss-of-function mutation decreased it. CONCLUSIONS The causal relation between Nrg3 expression in the mPFC and level of impulsive action shown here provides a mechanism by which polymorphism in NRG3 in humans contributes to a specific cognitive deficit seen in several psychiatric diseases, such as addiction, attention-deficit/hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- Maarten Loos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Thomas Mueller
- Department of Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Yvonne Gouwenberg
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Ruud Wijnands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | | | - Carmen Birchmeier
- Department of Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam.
| |
Collapse
|
34
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
35
|
Paterson C, Law AJ. Transient overexposure of neuregulin 3 during early postnatal development impacts selective behaviors in adulthood. PLoS One 2014; 9:e104172. [PMID: 25093331 PMCID: PMC4122441 DOI: 10.1371/journal.pone.0104172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Neuregulin 3 (NRG3), a specific ligand for ErbB4 and a neuronal-enriched neurotrophin is implicated in the genetic predisposition to a broad spectrum of neurodevelopmental, neurocognitive and neuropsychiatric disorders, including Alzheimer's disease, autism and schizophrenia. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, accompanied by increased expression of prefrontal cortical NRG3. Despite our expanding knowledge of genetic involvement of NRG3 in neurological disorders, little is known about the neurodevelopmental mechanisms of risk. Here we exploited the fact that a paralog of NRG3, NRG1, readily penetrates the murine blood brain barrier (BBB). In this study we synthesized the bioactive epidermal growth factor (EGF) domain of NRG3, and using previously validated in-vivo peripheral injection methodologies in neonatal mice, demonstrate that NRG3 successfully crosses the BBB, where it activates its receptor ErbB4 and downstream Akt signaling at levels of bioactivity comparable to NRG1. To determine the impact of NRG3 overexpression during one critical developmental window, C57BL/6 male mice were subcutaneously injected daily with NRG1-EGF, NRG3-EGF or vehicle from postnatal days 2–10. Mice were tested in adulthood using a comprehensive battery of behavioral tasks relevant to neurocognitive and psychiatric disorders. In agreement with previous studies, developmental overexposure to NRG1 induced multiple non-CNS mediated peripheral effects as well as severely disrupting performance of prepulse inhibition of the startle response. In contrast, NRG3 had no effect on any peripheral measures investigated or sensorimotor gating. Specifically, developmental NRG3 overexposure produced an anxiogenic-like phenotype and deficits in social behavior in adulthood. These results provide primary data to support a role for NRG3 in brain development and function, which appears to be distinct from its paralog NRG1. Furthermore we demonstrate how perturbations in NRG3 expression at distinct developmental stages may contribute to the neurological deficits observed in brain disorders such as schizophrenia and autism.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Amanda J. Law
- Department of Psychiatry, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- Department of Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Turner JR, Ray R, Lee B, Everett L, Xiang J, Jepson C, Kaestner KH, Lerman C, Blendy JA. Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 2014; 19:801-10. [PMID: 23999525 PMCID: PMC3877725 DOI: 10.1038/mp.2013.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Addiction to nicotine and the ability to quit smoking are influenced by genetic factors. We used functional genomic approaches (chromatin immunoprecipitation (ChIP) and whole-genome sequencing) to identify cAMP response element-binding protein (CREB) targets following chronic nicotine administration and withdrawal (WD) in rodents. We found that chronic nicotine and WD differentially modulate CREB binding to the gene for neuregulin 3 (NRG3). Quantitative analysis of saline, nicotine and nicotine WD in two biological replicates corroborate this finding, with NRG3 increases in both mRNA and protein following WD from chronic nicotine treatment. To translate these data for human relevance, single-nucleotide polymorphisms (SNPs) across NRG3 were examined for association with prospective smoking cessation among smokers of European ancestry treated with transdermal nicotine in two independent cohorts. Individual SNP and haplotype analysis support the association of NRG3 SNPs and smoking cessation success. NRG3 is a neural-enriched member of the epidermal growth factor family, and a specific ligand for the receptor tyrosine kinase ErbB4, which is also upregulated following nicotine treatment and WD. Mice with significantly reduced levels of NRG3 or pharmacological inhibition of ErbB4 show similar reductions in anxiety following nicotine WD compared with control animals, suggesting a role for NRG3 in nicotine dependence. Although the function of the SNP in NRG3 in humans is not known, these data suggest that Nrg3/ErbB4 signaling may be an important factor in nicotine dependence.
Collapse
Affiliation(s)
- Jill R. Turner
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Riju Ray
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bridgin Lee
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Logan Everett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Xiang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher Jepson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Klaus H. Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Caryn Lerman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Julie A. Blendy
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Abstract
The neuregulin 3 gene (NRG3) plays pleiotropic roles in neurodevelopment and is a putative susceptibility locus for schizophrenia. Specifically, the T allele of NRG3 rs10748842 has been associated with illness risk, altered cognitive function, and the expression of a novel splice isoform in prefrontal cortex (PFC), but the neural system effects are unexplored. Here, we report an association between rs10748842 and PFC physiology as measured by functional magnetic resonance imaging of human working memory performance, where a convincing link between increased genetic risk for schizophrenia and increased activation in some PFC areas has been established. In 410 control individuals (195 males, 215 females), we detected a highly significant effect of NRG3 genotype manifesting as an unanticipated increase in ventrolateral PFC activation in nonrisk-associated C allele carriers. An additional analysis including 78 patients with schizophrenia spectrum disorders (64 males, 14 females) and 123 unaffected siblings (53 males, 70 females) revealed a whole-brain significant genotype by group interaction in right dorsolateral PFC (DLPFC), manifesting as a relative activation increase in healthy controls and siblings (C > T/T) and as a hypoactivation in patients (T/T > C). These observed genotype-dependent effects in PFC were not explained by task performance and did not conform to established locales of prefrontal inefficiency linked to genetic risk for schizophrenia. Our data indicate a complex modulation of brain physiology by rs10748842, which does not fit the simple inefficiency model of risk association in DLPFC and suggests that other neurobiological mechanisms are involved.
Collapse
|
38
|
Abstract
Regular smoking is the major risk factor for cardiovascular disease and cancers, and thus is one of the most preventable causes of morbidity and mortality worldwide. Intake of nicotine, its central nervous system effects, and its metabolism are regulated by biological pathways; some of these are well known, but others are not. Genetic studies offer a method for developing insights into the genes contributing to those pathways. In recent years, large genome-wide association study (GWAS) meta-analyses have consistently revealed that the strongest genetic contribution to smoking-related traits comes from variation in the nicotinic receptor subunit genes. Many other genes, including those coding for enzymes involved in nicotine metabolism, also have been implicated. However, the proportion of phenotypic variance explained by the identified genetic variants is very modest. This review intends to cover progress made in genetics and genetic epidemiology of smoking behavior in recent years, and focuses on studies revealing the nicotinic receptor gene cluster on chromosome 15q25. Evidence supporting the involvement of a novel pathway in the shared pathophysiology of nicotine dependence and schizophrenia is also briefly reviewed. A summary of the current knowledge on gene-environment interactions involved in smoking behavior is included.
Collapse
|
39
|
Díez A, Cieza-Borrella C, Suazo V, González-Sarmiento R, Papiol S, Molina V. Cognitive outcome and gamma noise power unrelated to neuregulin 1 and 3 variation in schizophrenia. Ann Gen Psychiatry 2014; 13:18. [PMID: 24976857 PMCID: PMC4065086 DOI: 10.1186/1744-859x-13-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/29/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Neuregulins are a family of signalling proteins that orchestrate a broad range of cellular responses. Four genes encoding Neuregulins 1-4 have been identified so far in vertebrates. Among them, Neuregulin 1 and Neuregulin 3 have been reported to contribute to an increased risk for developing schizophrenia. We hypothesized that three specific variants of these genes (rs6994992 and rs3924999 for Neuregulin 1 and rs10748842 for Neuregulin 3) that have been related to this illness may modify information processing capacity in the cortex, which would be reflected in electrophysiological parameters (P3b amplitude or gamma noise power) and/or cognitive performance. METHODS We obtained DNA from 31 patients with schizophrenia and 23 healthy controls and analyzed NRG1 rs6994992, NRG1 rs3924999 and NRG3 rs10748842 promoter polymorphisms by allelic discrimination with real-time polymerase chain reaction (PCR). We compared cognitive outcome, P300 amplitude parameters and an electroencephalographic measure of noise power in the gamma band between the groups dichotomized according to genotype. RESULTS Contrary to our hypothesis, we could not detect any significant influence of variation in Neuregulin 1/Neuregulin 3 polymorphisms on cognitive performance or electrophysiological parameters of patients with schizophrenia. CONCLUSIONS Despite our findings, we cannot discard that other genetic variants and, more likely, interactions between those variants and with genetic variation related to different pathways may still influence cerebral processing in schizophrenia.
Collapse
Affiliation(s)
- Alvaro Díez
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London W1W 7EJ, UK
| | - Clara Cieza-Borrella
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Molecular Medicine Unit, Department of Medicine and Institute of Molecular and Cellular Cancer Biology (IBMCC), University of Salamanca & CSIC, Salamanca 37007, Spain
| | - Vanessa Suazo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Neuroscience Institute of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Molecular Medicine Unit, Department of Medicine and Institute of Molecular and Cellular Cancer Biology (IBMCC), University of Salamanca & CSIC, Salamanca 37007, Spain
| | - Sergi Papiol
- Anthropology Unit, Animal Biology Department, University of Barcelona, Barcelona 08028, Spain ; Clinical Neuroscience Section, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Vicente Molina
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Neuroscience Institute of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain ; Psychiatry Department, School of Medicine, University of Valladolid, Valladolid 47005, Spain ; Psychiatry Service, University Hospital of Valladolid, Avenida Ramón y Cajal, 7, Valladolid 47005, Spain
| |
Collapse
|
40
|
Ryu S, Won HH, Oh S, Kim JW, Park T, Cho EY, Cho Y, Park DY, Lee YS, Kwon JS, Hong KS. Genome-wide linkage scan of quantitative traits representing symptom dimensions in multiplex schizophrenia families. Psychiatry Res 2013; 210:756-60. [PMID: 24035701 DOI: 10.1016/j.psychres.2013.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/16/2013] [Accepted: 08/09/2013] [Indexed: 01/07/2023]
Abstract
Symptom dimensions of schizophrenia are likely to be the intermediate phenotypes under the control of disease-susceptibility genes, or separate traits related to disease-modifier genes. This study aimed to identify chromosomal loci linked to symptom dimensions of schizophrenia through genome-wide quantitative trait locus (QTL) linkage analysis. The study subjects consisted of 56 families with 183 members including 123 affected individuals. Symptom evaluations were performed on lifetime basis. Through principal component factor analysis, eight quantitative phenotypes representing symptom dimensions were identified. Genotyping was done for 6008 SNP markers, and genome-wide QTL linkage analysis was performed. No symptom dimension showed a significant linkage attaining genome-wide empirical thresholds. We observed seven regions yielding linkage signals attaining genome-wide empirical thresholds for suggestive linkage (NPL Z score = 2.78-3.49); chromosome 15q26.1 for 'non-paranoid delusion factor', 2p24.3 and 7q31.1 for 'prodromal impairment factor', 1q32.1, 9p21.3, and 9q31.2 for 'negative symptom factor', and 10p13 for 'disorganization factor'. Among these loci, chromosome 2p24.3 and 1q32.1 overlap with susceptibility loci of schizophrenia identified in our previous linkage studies. This study suggests the existence of genetic loci related to various clinical features of schizophrenia. Further genetic analyses for these dimensional phenotypes are warranted.
Collapse
Affiliation(s)
- Seunghyong Ryu
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Del Pino I, García-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martínez de Lagrán M, Ciceri G, Gabaldón MV, Moratal D, Dierssen M, Canals S, Marín O, Rico B. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 2013; 79:1152-68. [PMID: 24050403 DOI: 10.1016/j.neuron.2013.07.010] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
Genetic variation in neuregulin and its ErbB4 receptor has been linked to schizophrenia, although little is known about how they contribute to the disease process. Here, we have examined conditional Erbb4 mouse mutants to study how disruption of specific inhibitory circuits in the cerebral cortex may cause large-scale functional deficits. We found that deletion of ErbB4 from the two main classes of fast-spiking interneurons, chandelier and basket cells, causes relatively subtle but consistent synaptic defects. Surprisingly, these relatively small wiring abnormalities boost cortical excitability, increase oscillatory activity, and disrupt synchrony across cortical regions. These functional deficits are associated with increased locomotor activity, abnormal emotional responses, and impaired social behavior and cognitive function. Our results reinforce the view that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Isabel Del Pino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|
43
|
Hatzimanolis A, McGrath JA, Wang R, Li T, Wong PC, Nestadt G, Wolyniec PS, Valle D, Pulver AE, Avramopoulos D. Multiple variants aggregate in the neuregulin signaling pathway in a subset of schizophrenia patients. Transl Psychiatry 2013; 3:e264. [PMID: 23715299 PMCID: PMC3669920 DOI: 10.1038/tp.2013.33] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite the strongly held view that schizophrenia (SZ) shows substantial genetic heterogeneity, pathway heterogeneity, as seen in cancer where different pathways are affected in similar tumors, has not been explored. We explore this possibility in a case-only study of the neuregulin signaling pathway (NSP), which has been prominently implicated in SZ and for which there is detailed knowledge on the ligand- and receptor-processing steps through β- and γ-secretase cleavage. We hypothesize that more than one damaging variants in the NSP genes might be necessary to cause disease, leading to an apparent clustering of such variants in only the few patients with affected NSP. We analyze linkage and next-generation sequencing results for the genes encoding components of the pathway, including NRG1, NRG3, ERBB4, β-secretase and the γ-secretase complex. We find multiple independent examples of supporting evidence for this hypothesis: (i) increased linkage scores over NSP genes, (ii) multiple positive interlocus correlations of linkage scores across families suggesting each family is linked to either many or none of the genes, (iii) aggregation of predicted damaging variants in a subset of individuals and (iv) significant phenotypic differences of the subset of patients carrying such variants. Collectively, our data strongly support the hypothesis that the NSP is affected by multiple damaging variants in a subset of phenotypically distinct patients. On the basis of this, we propose a general model of pathway heterogeneity in SZ, which, in part, may explain its phenotypic variability and genetic complexity.
Collapse
Affiliation(s)
- A Hatzimanolis
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J A McGrath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Wang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Li
- Departments of Pathology, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P C Wong
- Departments of Pathology, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P S Wolyniec
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A E Pulver
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, 733 North Broadway, Broadway Research Building Room 509, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|
44
|
Neuregulin 3 is associated with attention deficits in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol 2013; 16:549-56. [PMID: 22831755 DOI: 10.1017/s1461145712000697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Linkage and fine mapping studies have established that the neuregulin 3 gene (NRG3) is a susceptibility locus for schizophrenia. Association studies of this disorder have implicated NRG3 variants in both psychotic symptoms and attention performance. Psychotic symptoms and cognitive deficits are also frequent features of bipolar disorder. The aims of the present study were to extend analysis of the association between NRG3 and psychotic symptoms and attention in schizophrenia and to determine whether these associations also apply to bipolar disorder. A total of 358 patients with schizophrenia and 111 patients with bipolar disorder were included. Psychotic symptoms were evaluated using the Operational Criteria Checklist for Psychotic Illness (OPCRIT) and attention performance was assessed using the Trail Making Test (TMT). Symptoms and performance scores were then tested for association with the NRG3 variant rs6584400. A significant association was found between the number of rs6584400 minor alleles and the total OPCRIT score for psychotic symptoms in patients with schizophrenia. Moreover, in both schizophrenia and bipolar disorder patients, minor allele carriers of rs6584400 outperformed homozygous major allele carriers in the TMT. The results suggest that rs6584400 is associated with psychotic symptoms and attention performance in schizophrenia. The finding of a significant association between rs6584400 and attention performance in bipolar disorder supports the hypothesis that this NRG3 variant confers genetic susceptibility to cognitive deficits in both schizophrenia and bipolar disorder.
Collapse
|
45
|
Kukshal P, Bhatia T, Bhagwat AM, Gur RE, Gur RC, Deshpande SN, Nimgaonkar VL, Thelma BK. Association study of neuregulin-1 gene polymorphisms in a North Indian schizophrenia sample. Schizophr Res 2013; 144:24-30. [PMID: 23360725 PMCID: PMC4040109 DOI: 10.1016/j.schres.2012.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuregulin-1 (NRG1) gene polymorphisms have been proposed as risk factors for several common disorders. Associations with cognitive variation have also been tested. With regard to schizophrenia (SZ) risk, studies of Caucasian ancestry samples indicate associations more consistently than East Asian samples, suggesting heterogeneity. To exploit the differences in linkage disequilibrium (LD) structure across ethnic groups, we conducted a SZ case-control study (that included cognitive evaluations) in a sample from the north Indian population. METHODS NRG1 variants (n=35 SNPs, three microsatellite markers) were initially analyzed among cases (DSM IV criteria, n=1007) and controls (n=1019, drawn from two groups) who were drawn from the same geographical region in North India. Nominally significant associations with SZ were next analyzed in relation to neurocognitive measures estimated with a computerized neurocognitive battery in a subset of the sample (n=116 cases, n=170 controls). RESULTS Three variants and one microsatellite showed allelic association with SZ (rs35753505, rs4733263, rs6994992, and microsatellite 420M9-1395, p≤0.05 uncorrected for multiple comparisons). A six marker haplotype 221121 (rs35753505-rs6994992-rs1354336-rs10093107-rs3924999-rs11780123) showed (p=0.0004) association after Bonferroni corrections. Regression analyses with the neurocognitive measures showed nominal (uncorrected) associations with emotion processing and attention at rs35753505 and rs6994992, respectively. CONCLUSIONS Suggestive associations with SZ and SZ-related neurocognitive measures were detected with two SNPs from the NRG1 promoter region in a north Indian cohort. The functional role of the alleles merits further investigation.
Collapse
Affiliation(s)
- Prachi Kukshal
- Department of Genetics, University of Delhi South campus, Benito
Juarez Road, New Delhi – 110 021, India
- C.B. Patel Research Centre, Vile Parle (West), Mumbai, India
| | - Triptish Bhatia
- Department of Psychiatry, Dr. RML Hospital, New Delhi – 110
001, India
| | - A. M. Bhagwat
- C.B. Patel Research Centre, Vile Parle (West), Mumbai, India
| | - Raquel E. Gur
- Department of Psychiatry, Neuropsychiatry Section, University of
Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, Neuropsychiatry Section, University of
Pennsylvania, Philadelphia, PA, USA
| | | | - Vishwajit L. Nimgaonkar
- Department of Psychiatry and Human Genetics, Western Psychiatric
Institute and Clinic, University of Pittsburgh School of Medicine and Graduate
School of Public Health, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - B. K. Thelma
- Department of Genetics, University of Delhi South campus, Benito
Juarez Road, New Delhi – 110 021, India
| |
Collapse
|
46
|
Zhang R, Du XY, Yu J, Xu N, Zheng YW, Zhao YL, Zhang H, Ma J. No genetic evidence for Neuregulin 3 conferring risk of schizophrenia in the Chinese population. Psychiatry Res 2013; 205:279-81. [PMID: 22981155 DOI: 10.1016/j.psychres.2012.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/04/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
Abstract
We genotyped 13 single nucleotide polymorphisms (SNPs) within Neuregulin 3 (NRG3) to investigate the association between NRG3 and schizophrenia in 488 patients and 506 controls in Northwest China. No association was detected either in SNPs or in haplotypes. Our study provided no evidence that NRG3 confers a risk of schizophrenia susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet 2013; 92:221-37. [PMID: 23375656 DOI: 10.1016/j.ajhg.2012.12.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/26/2012] [Accepted: 12/20/2012] [Indexed: 11/24/2022] Open
Abstract
Rare copy-number variants (CNVs) have been implicated in autism and intellectual disability. These variants are large and affect many genes but lack clear specificity toward autism as opposed to developmental-delay phenotypes. We exploited the repeat architecture of the genome to target segmental duplication-mediated rearrangement hotspots (n = 120, median size 1.78 Mbp, range 240 kbp to 13 Mbp) and smaller hotspots flanked by repetitive sequence (n = 1,247, median size 79 kbp, range 3-96 kbp) in 2,588 autistic individuals from simplex and multiplex families and in 580 controls. Our analysis identified several recurrent large hotspot events, including association with 1q21 duplications, which are more likely to be identified in individuals with autism than in those with developmental delay (p = 0.01; OR = 2.7). Within larger hotspots, we also identified smaller atypical CNVs that implicated CHD1L and ACACA for the 1q21 and 17q12 deletions, respectively. Our analysis, however, suggested no overall increase in the burden of smaller hotspots in autistic individuals as compared to controls. By focusing on gene-disruptive events, we identified recurrent CNVs, including DPP10, PLCB1, TRPM1, NRXN1, FHIT, and HYDIN, that are enriched in autism. We found that as the size of deletions increases, nonverbal IQ significantly decreases, but there is no impact on autism severity; and as the size of duplications increases, autism severity significantly increases but nonverbal IQ is not affected. The absence of an increased burden of smaller CNVs in individuals with autism and the failure of most large hotspots to refine to single genes is consistent with a model where imbalance of multiple genes contributes to a disease state.
Collapse
|
48
|
Narayan S, Nakajima K, Sawa A. DISC1: a key lead in studying cortical development and associated brain disorders. Neuroscientist 2013; 19:451-64. [PMID: 23300216 DOI: 10.1177/1073858412470168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For the past decade, DISC1 has been studied as a promising lead to understand the biology underlying major mental illnesses, such as schizophrenia. Consequently, many review articles on DISC1 have been published. In this article, rather than repeating comprehensive overviews of research articles, we will introduce the utility of DISC1 in the study of cortical development in association with a wide range of developmental brain disorders. Cortical development involves cell autonomous and cell nonautonomous mechanisms as well as host responses to environmental factors, all of which involve DISC1 function. Thus, we will discuss the significance of DISC1 in forming an overall understanding of multiple mechanisms that orchestrate corticogenesis and can serve as therapeutic targets in diseases caused by abnormal cortical development.
Collapse
Affiliation(s)
- Soumya Narayan
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
49
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Piper M, Beneyto M, Burne THJ, Eyles DW, Lewis DA, McGrath JJ. The neurodevelopmental hypothesis of schizophrenia: convergent clues from epidemiology and neuropathology. Psychiatr Clin North Am 2012; 35:571-84. [PMID: 22929867 DOI: 10.1016/j.psc.2012.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurodevelopmental hypothesis of schizophrenia suggests that the disruption of early brain development increases the risk of later developing schizophrenia. This hypothesis focuses attention on critical periods of early brain development. From an epidemiologic perspective, various prenatal and perinatal risk factors have been linked to schizophrenia, including exposures related to infection, nutrition, and obstetric complications. From a genetic perspective, candidate genes have also been linked to altered brain development. In recent decades evidence from neuropathology has provided support for the neurodevelopmental hypothesis. Animal models involving early life exposures have been linked to changes in these same brain systems, providing convergent evidence for this long-standing hypothesis.
Collapse
Affiliation(s)
- Michael Piper
- School of Biomedical Science, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|