1
|
Pettinato F, Marzà V, Ciantia F, Romanello G, Cocuzza MD, Fichera M, Rizzo R, Barone R. Acute neurological regression following fever as presenting sign of pontocerebellar hypoplasia type 2D ( SEPSECS mutation). Biomed Rep 2025; 22:67. [PMID: 40017499 PMCID: PMC11865714 DOI: 10.3892/br.2025.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 03/01/2025] Open
Abstract
Pontocerebellar hypoplasia type 2D (PCH2D) is caused by mutations in the gene encoding O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS; chromosome 4p15.2). This is a key enzyme in the biosynthesis of selenoproteins, which act in maintaining antioxidant systems. To date, 26 patients with PCH2D have been reported, all with neurological involvement characterized by progressive pontocerebellar and cerebral atrophy. The present study reports on a patient with compound heterozygosity in the SEPSECS gene, including a novel missense variant, c.440G>A (p.Ser147Asn). The patient exhibited acute neurological regression following a vaccination-related fever, which is reminiscent of primary mitochondrial disease. In addition, the patient displayed severe spastic tetraparesis, convergent strabismus and postnatal onset of microcephaly, as well as recurrent blood lactate elevation. Brain MRI showed multiple alterations in the peri/supraventricular and subcortical white matter and progressive pontocerebellar and cerebral atrophy. A review of the clinical spectrum associated with SEPSECS mutations was conducted and the first report on a patient with SEPSECS mutations of acute neurological regression following a catabolic stressor at the onset of PCH2D was provided. This study broadens the genetic background of PCH2D and associated PCH2D phenotype, supporting the causal link between selenoprotein biosynthesis deficiency and mitochondrial disorders.
Collapse
Affiliation(s)
- Fabio Pettinato
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Viviana Marzà
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Fiorella Ciantia
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Giorgia Romanello
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Maria Donatella Cocuzza
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, I-95124 Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, I-94018 Troina, Italy
| | - Renata Rizzo
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Rita Barone
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, I-94018 Troina, Italy
| |
Collapse
|
2
|
Sasuclark AR, Watanabe M, Roshto K, Kilonzo VW, Zhang Y, Pitts MW. Selenium deficiency impedes maturation of parvalbumin interneurons, perineuronal nets, and neural network activity. Redox Biol 2025; 81:103548. [PMID: 39983343 PMCID: PMC11893315 DOI: 10.1016/j.redox.2025.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Selenoproteins are fundamental players in redox signaling that are essential for proper brain development and function. They are indispensable for the vitality of GABAergic parvalbumin-expressing interneurons (PVIs), a cell type characterized by fast-spiking activity and heightened rates of metabolism. During development, PVIs are preferentially encapsulated by specialized extracellular matrix structures, termed perineuronal nets (PNNs), which serve to stabilize synaptic structure and act as protective barriers against redox insults. Consequently, alterations in PVIs and PNNs are well chronicled in neuropsychiatric disease, and evidence from animal models indicates that redox imbalance during adolescence impedes their maturation. Herein, we examined the influence of selenium on maturation of neural network structure and activity in primary cortical cultures. Cultures grown in selenium-deficient media exhibited reduced antioxidant activity, impaired PNN formation, and decreased synaptic input onto PVIs at 28 days in vitro, which coincided with increased oxidative stress. Parallel studies to monitor longitudinal maturation of in vitro electrophysiological activity were conducted using microelectrode arrays (MEA). Selenium content affected the electrophysiological profile of developing cultures, as selenium-deficient cultures exhibited impairments in long-term potentiation in conjunction with reduced spike counts for both network bursts and in response to stimulation. Finally, similar PNN deficits were observed in the cortex of mice raised on a selenium-deficient diet, providing corroborative evidence for the importance of selenium in PNN development. In sum, these findings show the vital role of selenium for the development of GABAergic inhibitory circuits.
Collapse
Affiliation(s)
- Alexandru R Sasuclark
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Marissa Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Kai Roshto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Victor W Kilonzo
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Yiqiang Zhang
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA; Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
3
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Laugwitz L, Buchert R, Olguín P, Estiar MA, Atanasova M, Jr WM, Enssle J, Marsden B, Avilés J, González-Gutiérrez A, Candia N, Fabiano M, Morlot S, Peralta S, Groh A, Schillinger C, Kuehn C, Sofan L, Sturm M, Bender B, Tomaselli PJ, Diebold U, Mueller AJ, Spranger S, Fuchs M, Freua F, Melo US, Mattas L, Ashtiani S, Suchowersky O, Groeschel S, Rouleau GA, Yosovich K, Michelson M, Leibovitz Z, Bilal M, Uctepe E, Yesilyurt A, Ozdogan O, Celik T, Krägeloh-Mann I, Riess O, Rosewich H, Umair M, Lev D, Zuchner S, Schweizer U, Lynch DS, Gan-Or Z, Haack TB. EEFSEC deficiency: A selenopathy with early-onset neurodegeneration. Am J Hum Genet 2025; 112:168-180. [PMID: 39753114 PMCID: PMC11739927 DOI: 10.1016/j.ajhg.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025] Open
Abstract
Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures. Cerebral MRI primarily demonstrated a cerebellar pathology, including hypoplasia and progressive atrophy. Exome or genome sequencing identified six different bi-allelic EEFSEC variants in nine individuals from eight unrelated families. These variants showed reduced EEFSEC function in vitro, leading to lower levels of selenoproteins in fibroblasts. In line with the clinical phenotype, an eEFSec-RNAi Drosophila model displays progressive impairment of motor function, which is reflected in the synaptic defects in this model organisms. This study identifies EEFSEC deficiency as an inborn error of selenocysteine metabolism. It reveals the pathophysiological mechanisms of neurodegeneration linked to selenoprotein metabolism, suggesting potential targeted therapies.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany.
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Patricio Olguín
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Mehrdad A Estiar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mihaela Atanasova
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wilson Marques Jr
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14048-900, Brazil
| | - Jörg Enssle
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Brian Marsden
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Javiera Avilés
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Andrés González-Gutiérrez
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Noemi Candia
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Uniklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Susanne Morlot
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Alisa Groh
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Carmen Schillinger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Kuehn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Radiologic Clinics, University of Tübingen, 72076 Tübingen, Germany
| | - Pedro J Tomaselli
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14048-900, Brazil
| | - Uta Diebold
- Social Pediatric Center, Auf der Bult, Hannover, Germany
| | - Amelie J Mueller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Maren Fuchs
- Sozialpädiatrisches Zentrum (SPZ), Allgemeines Krankenhaus Celle, 29221 Celle, Germany
| | - Fernando Freua
- Division of Clinical Neurology, Hospital das Clinicas da Universidade de São Paulo, São Paulo, Brazil
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lauren Mattas
- Department of Pediatrics, Division of Medical Genetics, Stanford Medicine, Stanford, CA, USA
| | - Setareh Ashtiani
- Alberta Children's Hospital, Medical Genetics, Calgary, AB, Canada
| | - Oksana Suchowersky
- Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Samuel Groeschel
- Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Guy A Rouleau
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Keren Yosovich
- Molecular Genetic Lab, Wolfson Medical Center, Holon 58100, Israel
| | - Marina Michelson
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon 58100, Israel
| | - Zvi Leibovitz
- Obstetrics & Gynecology Ultrasound Unit, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute, Haifa, Israel
| | - Muhammad Bilal
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Eyyup Uctepe
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Turkey
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Turkey; Acibadem Maslak Hospital, Istanbul, Turkey
| | - Orhan Ozdogan
- Departman of Pediatric Neurology, Adana City Training and Research Hospital, Adana, Turkey
| | - Tamer Celik
- Departman of Pediatric Neurology, Adana City Training and Research Hospital, Adana, Turkey
| | - Ingeborg Krägeloh-Mann
- Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| | - Hendrik Rosewich
- Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia (KSA); Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon 58100, Israel; The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon 58100, Israel
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Uniklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - David S Lynch
- Department of Neurogenetics, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| |
Collapse
|
5
|
Stoupa A, Franca MM, Abdulhadi-Atwan M, Fujisawa H, Korwutthikulrangsri M, Marchand I, Polak G, Beltrand J, Polak M, Kariyawasam D, Liao XH, Raimondi C, Steigerwald C, Abreu NJ, Bauer AJ, Carré A, Taneja C, Mekhoubad AB, Dumitrescu AM. Severe neurodevelopmental phenotype, diagnostic, and treatment challenges in patients with SECISBP2 deficiency. Genet Med 2024; 26:101280. [PMID: 39315526 PMCID: PMC11625595 DOI: 10.1016/j.gim.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE Defects in the gene encoding selenocysteine insertion sequence binding protein 2, SECISBP2, result in global impaired selenoprotein synthesis manifesting a complex syndrome with characteristic serum thyroid function tests due to impaired thyroid hormone metabolism. Knowledge about this multisystemic defect remains limited. METHODS Genetic and laboratory investigations were performed in affected members from 6 families presenting with short stature and failure to thrive. RESULTS Four probands presented a complex neurodevelopmental profile, including absent speech, autistic features, and seizures. Pediatric neurological evaluation prompted genetic investigations leading to the identification of SECISBP2 variants before knowing the characteristic thyroid tests in 2 cases. Thyroid hormone treatment improved motor development, whereas speech and intellectual impairments persisted. This defect poses great diagnostic and treatment challenges for clinicians, as illustrated by a case that escaped detection for 20 years because SECISBP2 was not included in the neurodevelopmental genetic panel, and his complex thyroid status prompted antithyroid treatment instead. CONCLUSION This syndrome uncovers the role of selenoproteins in humans. The severe neurodevelopmental disabilities manifested in 4 patients with SECISBP2 deficiency highlight an additional phenotype in this multisystem disorder. Early diagnosis and treatment are required, and long-term evaluation will determine the full spectrum of manifestations and the impact of therapy.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Cochin Institute, Paris, and IMAGINE Institute affiliate, Paris, Université Paris Cité, France
| | | | - Maha Abdulhadi-Atwan
- Pediatric Endocrinology Department, Palestine Red Crescent Society Hospital, Hebron branch, Bethlehem, Palestine
| | - Haruki Fujisawa
- Department of Medicine, The University of Chicago, Chicago, IL; Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Japan
| | - Manassawee Korwutthikulrangsri
- Department of Medicine, The University of Chicago, Chicago, IL; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Isis Marchand
- Pediatric Department, Hôpital Intercommunal de Créteil, Créteil, France
| | | | - Jacques Beltrand
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Cochin Institute, Paris, and IMAGINE Institute affiliate, Paris, Université Paris Cité, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Cochin Institute, Paris, and IMAGINE Institute affiliate, Paris, Université Paris Cité, France; Centre de référence des maladies endocriniennes rares de la croissance et du développement, Hôpital Universitaire Necker-Enfants Malades, Paris, France; Centre régional de dépistage néonatal (CRDN) Ile de France, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Cochin Institute, Paris, and IMAGINE Institute affiliate, Paris, Université Paris Cité, France
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL
| | | | | | - Nicolas J Abreu
- Department of Neurology, NYU Grossman School of Medicine, NY
| | - Andrew J Bauer
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA
| | - Aurore Carré
- Cochin Institute, Paris, and IMAGINE Institute affiliate, Paris, Université Paris Cité, France
| | - Charit Taneja
- Division of Endocrinology, Diabetes and Metabolism, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Allison Bauman Mekhoubad
- Division of Pediatric Endocrinology, Northwell Health, Cohen Children's Medical Center, Lake Success, NY
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, IL; Committee of Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL.
| |
Collapse
|
6
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. Proc Natl Acad Sci U S A 2024; 121:e2317864121. [PMID: 39495910 PMCID: PMC11572970 DOI: 10.1073/pnas.2317864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 11/06/2024] Open
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA-modifying enzyme that methylates wobble uridines in a subset of tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit reduced protein synthesis in the nervous system, including a specific decrease in selenoprotein levels. Either loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 null animals also exhibit associative memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA wobble uridine modification in redox homeostasis in the developing nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI02912
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI53706
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY14627
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen6525 AJ, The Netherlands
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY14627
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI02912
- Carney Institute for Brain Sciences, Brown University, Providence, RI02912
| |
Collapse
|
7
|
Sif-Eddine W, Ba-M'hamed S, Lefranc B, Leprince J, Boukhzar L, Anouar Y, Bennis M. Selenoprotein T, a potential treatment of attention-deficit/hyperactivity disorder and comorbid pain in neonatal 6-OHDA lesioned mice. Exp Mol Pathol 2024; 137:104905. [PMID: 38797131 DOI: 10.1016/j.yexmp.2024.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
pathological pain and Attention-deficit/hyperactivity disorder (ADHD) are two complex multifactorial syndromes. The comorbidity of ADHD and altered pain perception is well documented in children, adolescents, and adults. According to pathophysiological investigations, the dopaminergic system's dysfunction provides a common basis for ADHD and comorbid pain. Growing evidence suggests that oxidative stress may be crucial in both pathologies. Recent studies revealed that a small peptide encompassing the redox-active site of selenoprotein T (PSELT), protects dopaminergic neurons and fibers as well as lesioned nerves in animal models. The current study aims to examine the effects of PSELT treatment on ADHD-like symptoms and pain sensitivity, as well as the role of catecholaminergic systems in these effects. Our results demonstrated that intranasal administration of PSELT reduced the hyperactivity in the open field, decreased the impulsivity displayed by 6-OHDA-lesioned male mice in the 5-choice serial reaction time task test and improved attentional performance. In addition, PSELT treatment significantly increased the nociception threshold in both normal and inflammatory conditions. Furthermore, anti-hyperalgesic activity was antagonized with sulpiride pre-treatment, but not by phentolamine, or propranolol pre-treatments. The present study suggests that PSELT reduces the severity of ADHD symptoms in mice and possesses potent antinociceptive effects which could be related to the involvement of D2/D3 dopaminergic receptors.
Collapse
Affiliation(s)
- Wahiba Sif-Eddine
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| | - Benjamin Lefranc
- Univ Rouen Normandie, INSERM, NorDiC, UMR 1239, Rouen, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, INSERM, NorDiC, UMR 1239, Rouen, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco; Univ Rouen Normandie, INSERM, NorDiC, UMR 1239, Rouen, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Univ Rouen Normandie, INSERM, NorDiC, UMR 1239, Rouen, France; Institute for Research and Innovation in Biomedicine, Rouen, France.
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
8
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
9
|
Ghasemi MR, Tehrani Fateh S, Moeinafshar A, Sadeghi H, Karimzadeh P, Mirfakhraie R, Rezaei M, Hashemi-Gorji F, Rezvani Kashani M, Fazeli Bavandpour F, Bagheri S, Moghimi P, Rostami M, Madannejad R, Roudgari H, Miryounesi M. Broadening the phenotype and genotype spectrum of novel mutations in pontocerebellar hypoplasia with a comprehensive molecular literature review. BMC Med Genomics 2024; 17:51. [PMID: 38347586 PMCID: PMC10863249 DOI: 10.1186/s12920-024-01810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Pontocerebellar hypoplasia is an umbrella term describing a heterogeneous group of prenatal neurodegenerative disorders mostly affecting the pons and cerebellum, with 17 types associated with 25 genes. However, some types of PCH lack sufficient information, which highlights the importance of investigating and introducing more cases to further elucidate the clinical, radiological, and biochemical features of these disorders. The aim of this study is to provide an in-depth review of PCH and to identify disease genes and their inheritance patterns in 12 distinct Iranian families with clinically confirmed PCH. METHODS Cases included in this study were selected based on their phenotypic and genetic information available at the Center for Comprehensive Genetic Services. Whole-exome sequencing (WES) was used to discover the underlying genetic etiology of participants' problems, and Sanger sequencing was utilized to confirm any suspected alterations. We also conducted a comprehensive molecular literature review to outline the genetic features of the various subtypes of PCH. RESULTS This study classified and described the underlying etiology of PCH into three categories based on the genes involved. Twelve patients also were included, eleven of whom were from consanguineous parents. Ten different variations in 8 genes were found, all of which related to different types of PCH. Six novel variations were reported, including SEPSECS, TSEN2, TSEN54, AMPD2, TOE1, and CLP1. Almost all patients presented with developmental delay, hypotonia, seizure, and microcephaly being common features. Strabismus and elevation in lactate levels in MR spectroscopy were novel phenotypes for the first time in PCH types 7 and 9. CONCLUSIONS This study merges previously documented phenotypes and genotypes with unique novel ones. Due to the diversity in PCH, we provided guidance for detecting and diagnosing these heterogeneous groups of disorders. Moreover, since certain critical conditions, such as spinal muscular atrophy, can be a differential diagnosis, providing cases with novel variations and clinical findings could further expand the genetic and clinical spectrum of these diseases and help in better diagnosis. Therefore, six novel genetic variants and novel clinical and paraclinical findings have been reported for the first time. Further studies are needed to elucidate the underlying mechanisms and potential therapeutic targets for PCH.
Collapse
Affiliation(s)
- Mohammad-Reza Ghasemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Mofid Children's Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Rezvani Kashani
- Pediatric Neurology Department, Mofid Children's Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saman Bagheri
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Parinaz Moghimi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Masoumeh Rostami
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Madannejad
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Roudgari
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran.
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
12
|
Zhao R, Zhang L, Lu H. Analysis of the Clinical Features and Imaging Findings of Pontocerebellar Hypoplasia Type 2D Caused by Mutations in SEPSECS Gene. CEREBELLUM (LONDON, ENGLAND) 2023; 22:938-946. [PMID: 36085396 DOI: 10.1007/s12311-022-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Pontocerebellar hypoplasia type 2D (PCH2D) caused by SEPSECS gene mutations is very rare and only described in a few case reports. In this study, we analyzed the clinical features and imaging findings of these individuals, so as to provide references for the clinic. We reported a case of PCH2D caused by a new complex heterozygote mutation in SEPSECS gene, and reviewed the literatures to summarize the clinical features and imaging findings and compare the differences between early-onset patients (EOPs) and late-onset patients (LOPs). Of 23 PCH2D patients, 19 cases were early-onset and 4 cases were late-onset, with average ages of 4.1 ± 4.0 years and 21.8 ± 9.4 years, females were more prevalent (14/19). EOPs mainly distributed in Arab countries (10/14) and Finland (4/14), while LOPs in East Asia (3/3). EOPs develop severe initial symptoms at the average age of 4.1 ± 7.8 months or shortly after birth, while LOPs experienced mild developmental delay in infancy. Microcephaly (10/11), intellectual disability (10/11), decreased motor function (10/11), and spastic or dystonic quadriplegia (8/10) were the common clinical features of EOPs and LOPs. EOPs also presented with visual impairment (5/7), seizures (4/7), neonatal irritability/opisthotonus (3/7), tremors/myoclonus (3/7), dysmorphic features (3/7), and other symptoms. EOPs were characterized by cerebellar symptoms (4/4). Magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy followed by less pronounced cerebral atrophy, and there was no pons atrophy in LOPs. Most patients of PCH2D were severe early-onset, and a few were late-onset with milder symptoms. EOPs and LOPs shared some common clinical features and MRI findings, but also had their own characteristics.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Nicolle R, Altin N, Siquier-Pernet K, Salignac S, Blanc P, Munnich A, Bole-Feysot C, Malan V, Caron B, Nitschké P, Desguerre I, Boddaert N, Rio M, Rausell A, Cantagrel V. A non-coding variant in the Kozak sequence of RARS2 strongly decreases protein levels and causes pontocerebellar hypoplasia. BMC Med Genomics 2023; 16:143. [PMID: 37344844 DOI: 10.1186/s12920-023-01582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Bi-allelic variants in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been involved in early-onset encephalopathies classified as pontocerebellar hypoplasia (PCH) type 6 and in epileptic encephalopathy. A variant (NM_020320.3:c.-2A > G) in the promoter and 5'UTR of the RARS2 gene has been previously identified in a family with PCH. Only a mild impact of this variant on the mRNA level has been detected. As RARS2 is non-dosage-sensitive, this observation is not conclusive in regard of the pathogenicity of the variant.We report and describe here a new patient with the same variant in the RARS2 gene, at the homozygous state. This patient presents with a clinical phenotype consistent with PCH6 although in the absence of lactic acidosis. In agreement with the previous study, we measured RARS2 mRNA levels in patient's fibroblasts and detected a partially preserved gene expression compared to control. Importantly, this variant is located in the Kozak sequence that controls translation initiation. Therefore, we investigated the impact on protein translation using a bioinformatic approach and western blotting. We show here that this variant, additionally to its effect on the transcription, also disrupts the consensus Kozak sequence, and has a major impact on RARS2 protein translation. Through the identification of this additional case and the characterization of the molecular consequences, we clarified the involvement of this Kozak variant in PCH and on protein synthesis. This work also points to the current limitation in the pathogenicity prediction of variants located in the translation initiation region.
Collapse
Affiliation(s)
- Romain Nicolle
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Clinical Bioinformatics Laboratory, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
| | - Nami Altin
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
| | - Karine Siquier-Pernet
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
| | - Sherlina Salignac
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
| | - Pierre Blanc
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Arnold Munnich
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Christine Bole-Feysot
- Genomics Platform, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
| | - Valérie Malan
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Barthélémy Caron
- Clinical Bioinformatics Laboratory, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
| | - Patrick Nitschké
- Bioinformatics Core Facility, Université Paris Cité, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
| | - Isabelle Desguerre
- Département de Neurologie Pédiatrique, AP-HP, Necker Hospital for Sick Children, 75015, Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, AP-HP, Necker Hospital for Sick Children and Université Paris Cité, INSERM UMR 1163 and INSERM U1299, Imagine Institute, Paris, 75015, France
| | - Marlène Rio
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Antonio Rausell
- Clinical Bioinformatics Laboratory, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France.
| |
Collapse
|
14
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
15
|
Nakahata Y, Hanai T, Miwa T, Maeda T, Imai K, Suetsugu A, Takai K, Shimizu M. Effect of Selenium Deficiency on the Development of Overt Hepatic Encephalopathy in Patients with Chronic Liver Disease. J Clin Med 2023; 12:jcm12082869. [PMID: 37109203 PMCID: PMC10143189 DOI: 10.3390/jcm12082869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Selenium is an essential trace element to maintain good health. This retrospective study investigated the prevalence of selenium deficiency and its effect on overt hepatic encephalopathy (OHE) in patients with chronic liver disease (CLD). Patients who underwent serum selenium level measurement between January 2021 and April 2022 were enrolled. The factors associated with selenium deficiency (≤10 µg/dL) and the association between selenium deficiency and OHE were analyzed. Among 98 eligible patients, 24% were observed to have selenium deficiency, with a median serum selenium level of 11.8 µg/dL. The serum selenium levels were significantly lower in patients with cirrhosis than in those with chronic hepatitis (10.9 µg/dL vs. 12.4 µg/dL; p = 0.03). The serum selenium levels were negatively correlated with mac-2 binding protein glycan isomer, the FIB-4 index, albumin-bilirubin (ALBI) score, and Child-Pugh score. The ALBI score remained significantly associated with selenium deficiency (odds ratio, 3.23; 95% confidence interval [CI], 1.56-6.67). During a median follow-up period of 2.9 months, nine patients experienced OHE. Selenium deficiency was associated with OHE (hazard ratio, 12.75; 95% CI, 2.54-70.22). Selenium deficiency is highly prevalent in patients with CLD and is associated with an increased risk of OHE development.
Collapse
Affiliation(s)
- Yuki Nakahata
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
- Department of Gastroenterology, Asahi University Hospital, Gifu 5008523, Japan
| | - Tatsunori Hanai
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
- Center for Nutrition Support & Infection Control, Gifu University Hospital, Gifu 5011194, Japan
| | - Takao Miwa
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
- Health Administration Center, Gifu University, Gifu 5011193, Japan
| | - Toshihide Maeda
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
| | - Kenji Imai
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
| | - Atsushi Suetsugu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
| | - Koji Takai
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
- Division for Regional Cancer Control, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
| |
Collapse
|
16
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
17
|
Behl S, Mehta S, Pandey MK. The role of selenoproteins in neurodevelopment and neurological function: Implications in autism spectrum disorder. Front Mol Neurosci 2023; 16:1130922. [PMID: 36969558 PMCID: PMC10034371 DOI: 10.3389/fnmol.2023.1130922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Selenium and selenoproteins play a role in many biological functions, particularly in brain development and function. This review outlines the role of each class of selenoprotein in human brain function. Most selenoproteins play a large antioxidant role within the brain. Autism spectrum disorder (ASD) has been shown to correlate with increased oxidative stress, and the presumption of selenoproteins as key players in ASD etiology are discussed. Further, current literature surrounding selenium in ASD and selenium supplementation studies are reviewed. Finally, perspectives are given for future directions of selenoprotein research in ASD.
Collapse
Affiliation(s)
- Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sunil Mehta
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Mukesh K. Pandey,
| |
Collapse
|
18
|
Schweizer U, Wirth EK, Klopstock T, Hölter SM, Becker L, Moskovitz J, Grune T, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Köhrle J, Schomburg L. Seizures, ataxia and parvalbumin-expressing interneurons respond to selenium supply in Selenop-deficient mice. Redox Biol 2022; 57:102490. [PMID: 36182809 PMCID: PMC9526222 DOI: 10.1016/j.redox.2022.102490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Mice with constitutive disruption of the Selenop gene have been key to delineate the importance of selenoproteins in neurobiology. However, the phenotype of this mouse model is exquisitely dependent on selenium supply and timing of selenium supplementation. Combining biochemical, histological, and behavioral methods, we tested the hypothesis that parvalbumin-expressing interneurons in the primary somatosensory cortex and hippocampus depend on dietary selenium availability in Selenop-/- mice. Selenop-deficient mice kept on adequate selenium diet (0.15 mg/kg, i.e. the recommended dietary allowance, RDA) developed ataxia, tremor, and hyperexcitability between the age of 4-5 weeks. Video-electroencephalography demonstrated epileptic seizures in Selenop-/- mice fed the RDA diet, while Selenop± heterozygous mice behaved normally. Both neurological phenotypes, hyperexcitability/seizures and ataxia/dystonia were successfully prevented by selenium supplementation from birth or transgenic expression of human SELENOP under a hepatocyte-specific promoter. Selenium supplementation with 10 μM selenite in the drinking water on top of the RDA diet increased the activity of glutathione peroxidase in the brains of Selenop-/- mice to control levels. The effects of selenium supplementation on the neurological phenotypes were dose- and time-dependent. Selenium supplementation after weaning was apparently too late to prevent ataxia/dystonia, while selenium withdrawal from rescued Selenop-/- mice eventually resulted in ataxia. We conclude that SELENOP expression is essential for preserving interneuron survival under limiting Se supply, while SELENOP appears dispensable under sufficiently high Se status.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Uniklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Eva K Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, 80336, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jackob Moskovitz
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße. 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße. 1, 85764, Neuherberg, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Schomburg L. Selenoprotein P - Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med 2022; 191:150-163. [PMID: 36067902 DOI: 10.1016/j.freeradbiomed.2022.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The habitual intake of selenium (Se) varies strongly around the world, and many people are at risk of inadequate supply and health risks from Se deficiency. Within the human organism, efficient transport mechanisms ensure that organs with a high demand and relevance for reproduction and survival are preferentially supplied. To this end, selenoprotein P (SELENOP) is synthesized in the liver and mediates Se transport to essential tissues such as the endocrine glands and the brain, where the "SELENOP cycle" maintains a privileged Se status. Mouse models indicate that SELENOP is not essential for life, as supplemental Se supply was capable of preventing the development of severe symptoms. However, knockout mice died under limiting supply, arguing for an essential role of SELENOP in Se deficiency. Many clinical studies support this notion, pointing to close links between health risks and low SELENOP levels. Accordingly, circulating SELENOP concentrations serve as a functional biomarker of Se supply, at least until a saturated status is achieved and SELENOP levels reach a plateau. Upon toxic intake, a further increase in SELENOP is observed, i.e., SELENOP provides information about possible selenosis. The SELENOP transcripts predict an insertion of ten selenocysteine residues. However, the decoding is imperfect, and not all these positions are ultimately occupied by selenocysteine. In addition to the selenocysteine residues near the C-terminus, one selenocysteine resides central within an enzyme-like environment. SELENOP proved capable of catalyzing peroxide degradation in vitro and protecting e.g. LDL particles from oxidation. An enzymatic activity in the intact organism is unclear, but an increasing number of clinical studies provides evidence for a direct involvement of SELENOP-dependent Se transport as an important and modifiable risk factor of disease. This interaction is particularly strong for cardiovascular and critical disease including COVID-19, cancer at various sites and autoimmune thyroiditis. This review briefly highlights the links between the growing knowledge of Se in health and disease over the last 50 years and the specific advances that have been made in our understanding of the physiological and clinical contribution of SELENOP to the current picture.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, 10115 Berlin, Germany.
| |
Collapse
|
20
|
Moran C, Schoenmakers N, Visser WE, Schoenmakers E, Agostini M, Chatterjee K. Genetic disorders of thyroid development, hormone biosynthesis and signalling. Clin Endocrinol (Oxf) 2022; 97:502-514. [PMID: 35999191 PMCID: PMC9544560 DOI: 10.1111/cen.14817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Development and differentiation of the thyroid gland is directed by expression of specific transcription factors in the thyroid follicular cell which mediates hormone biosynthesis. Membrane transporters are rate-limiting for cellular entry of thyroid hormones (TH) (T4 and T3) into some tissues, with selenocysteine-containing, deiodinase enzymes (DIO1 and DIO2) converting T4 to the biologically active hormone T3. TH regulate expression of target genes via hormone-inducible nuclear receptors (TRα and TRβ) to exert their physiological effects. Primary congenital hypothyroidism (CH) due to thyroid dysgenesis may be mediated by defects in thyroid transcription factors or impaired thyroid stimulating hormone receptor function. Dyshormonogenic CH is usually due to mutations in genes mediating thyroidal iodide transport, organification or iodotyrosine synthesis and recycling. Disorders of TH signalling encompass conditions due to defects in membrane TH transporters, impaired hormone metabolism due to deficiency of deiodinases and syndromes of Resistance to thyroid hormone due to pathogenic variants in either TRα or TRβ. Here, we review the genetic basis, pathogenesis and clinical features of congenital, dysgenetic or dyshormonogenic hypothyroidism and disorders of TH transport, metabolism and action.
Collapse
Affiliation(s)
- Carla Moran
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- Present address:
Beacon Hospital and School of MedicineUniversity CollegeDublinIreland
| | - Nadia Schoenmakers
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - W. Edward Visser
- Department of Internal MedicineErasmus Medical Center, Academic Center for Thyroid DiseasesRotterdamThe Netherlands
| | - Erik Schoenmakers
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Maura Agostini
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Krishna Chatterjee
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
21
|
Schweizer U, Fabiano M. Selenoproteins in brain development and function. Free Radic Biol Med 2022; 190:105-115. [PMID: 35961466 DOI: 10.1016/j.freeradbiomed.2022.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023]
Abstract
Expression of selenoproteins is widespread in neurons of the central nervous system. There is continuous evidence presented over decades that low levels of selenium or selenoproteins are linked to seizures and epilepsy indicating a failure of the inhibitory system. Many developmental processes in the brain depend on the thyroid hormone T3. T3 levels can be locally increased by the action of iodothyronine deiodinases on the prohormone T4. Since deiodinases are selenoproteins, it is expected that selenoprotein deficiency may affect development of the central nervous system. Studies in genetically modified mice or clinical observations of patients with rare diseases point to a role of selenoproteins in brain development and degeneration. In particular selenoprotein P is central to brain function by virtue of its selenium transport function into and within the brain. We summarize which selenoproteins are essential for the brain, which processes depend on selenoproteins, and what is known about genetic deficiencies of selenoproteins in humans. This review is not intended to cover the potential influence of selenium or selenoproteins on major neurodegenerative disorders in human.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| |
Collapse
|
22
|
Görlich CL, Sun Q, Roggenkamp V, Hackler J, Mehl S, Minich WB, Kaindl AM, Schomburg L. Selenium Status in Paediatric Patients with Neurodevelopmental Diseases. Nutrients 2022; 14:nu14122375. [PMID: 35745104 PMCID: PMC9227519 DOI: 10.3390/nu14122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodevelopmental diseases are often associated with other comorbidities, especially inflammatory processes. The disease may affect the trace element (TE) status, which in turn may affect disease severity and progression. Selenium (Se) is an essential TE required for the biosynthesis of selenoproteins including the transporter selenoprotein P (SELENOP) and extracellular glutathione peroxidase (GPX3). SELENOP deficiency in transgenic mice resulted in a Se status-dependent phenotype characterized by impaired growth and disturbed neuronal development, with epileptic seizures on a Se-deficient diet. Therefore, we hypothesized that Se and SELENOP deficiencies may be prevalent in paediatric patients with a neurodevelopmental disease. In an exploratory cross-sectional study, serum samples from children with neurodevelopmental diseases (n = 147) were analysed for total serum Se, copper (Cu), and zinc (Zn) concentrations as well as for the TE biomarkers SELENOP, ceruloplasmin (CP), and GPX3 activity. Children with epilepsy displayed elevated Cu and Zn concentrations but no dysregulation of serum Se status. Significantly reduced SELENOP concentrations were found in association with intellectual disability (mean ± SD (standard deviation); 3.9 ± 0.9 mg/L vs. 4.4 ± 1.2 mg/L, p = 0.015). A particularly low GPX3 activity (mean ± SD; 172.4 ± 36.5 vs. 192.6 ± 46.8 U/L, p = 0.012) was observed in phacomatoses. Autoantibodies to SELENOP, known to impair Se transport, were not detected in any of the children. In conclusion, there was no general association between Se deficiency and epilepsy in this observational analysis, which does not exclude its relevance to individual cases. Sufficiently high SELENOP concentrations seem to be of relevance to the support of normal mental development. Decreased GPX3 activity in phacomatoses may be relevant to the characteristic skin lesions and merits further analysis. Longitudinal studies are needed to determine whether the observed differences are relevant to disease progression and whether correcting a diagnosed TE deficiency may confer health benefits to affected children.
Collapse
Affiliation(s)
- Christian L. Görlich
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.L.G.); (Q.S.); (J.H.); (S.M.); (W.B.M.)
- Center for Chronically Sick Children (SPZ), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (V.R.); (A.M.K.)
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.L.G.); (Q.S.); (J.H.); (S.M.); (W.B.M.)
| | - Viola Roggenkamp
- Center for Chronically Sick Children (SPZ), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (V.R.); (A.M.K.)
| | - Julian Hackler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.L.G.); (Q.S.); (J.H.); (S.M.); (W.B.M.)
| | - Sebastian Mehl
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.L.G.); (Q.S.); (J.H.); (S.M.); (W.B.M.)
| | - Waldemar B. Minich
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.L.G.); (Q.S.); (J.H.); (S.M.); (W.B.M.)
| | - Angela M. Kaindl
- Center for Chronically Sick Children (SPZ), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (V.R.); (A.M.K.)
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.L.G.); (Q.S.); (J.H.); (S.M.); (W.B.M.)
- Correspondence: ; Tel./Fax: +49-30-450-524-289
| |
Collapse
|
23
|
Bullich G, Matalonga L, Pujadas M, Papakonstantinou A, Piscia D, Tonda R, Artuch R, Gallano P, Garrabou G, González JR, Grinberg D, Guitart M, Laurie S, Lázaro C, Luengo C, Martí R, Milà M, Ovelleiro D, Parra G, Pujol A, Tizzano E, Macaya A, Palau F, Ribes A, Pérez-Jurado LA, Beltran S. Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases. J Mol Diagn 2022; 24:529-542. [PMID: 35569879 DOI: 10.1016/j.jmoldx.2022.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).
Collapse
Affiliation(s)
- Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Leslie Matalonga
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Montserrat Pujadas
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anastasios Papakonstantinou
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Davide Piscia
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pia Gallano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics Department, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Glòria Garrabou
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Muscle Research and Mitochondrial Function Laboratory, CELLEX-Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Internal Medicine Department, Hospital Clinic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Grinberg
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Míriam Guitart
- Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steven Laurie
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Conxi Lázaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalan Institute of Oncology, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Luengo
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Martí
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Milà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigació Biomèdica August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Ovelleiro
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Genís Parra
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aurora Pujol
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Hospital Duran i Reynals, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Medicine Genetics Group Vall d'Hebron Institut de Recerca (VHIR), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Universitat Autònoma de Barcelona, Hospital Vall d´Hebron, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Palau
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetic and Molecular Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Clinic Institute of Medicine and Dermatology, Hospital Clínic de Barcelona and Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Antònia Ribes
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Secció d'Errors Congènits del Metabolisme-Institute of Clinical Biochemistry (IBC), Servei de Bioquímica i Genètìca Molecular, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, South Australia, Australia
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
24
|
Nicita F, Travaglini L, Bombelli F, Tosi M, Pro S, Bertini E, D'Amico A. Novel SEPSECS Pathogenic Variants Featuring Unusual Phenotype of Complex Movement Disorder With Thin Corpus Callosum: A Case Report. Neurol Genet 2022; 8:e661. [PMID: 35252561 PMCID: PMC8893591 DOI: 10.1212/nxg.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022]
Abstract
Objectives To report a novel association between pathogenic variants in the SEPSECS gene and complex movement disorder with thin corpus callosum (TCC). Methods Clinical exome sequencing was performed in an adult patient with a genetically unsolved neurodegenerative disorder. The main clinical, neuroimaging, and genetic data were described. Results The c.865C > T (p.P289S) and c.1297T > C (p.Y433H) missense variants in SEPSECS (NM_016,955.3) were discovered. Discussion This case represents a novel form of early-onset pyramidal syndrome with optic nerve hypoplasia, which slowly evolved to extrapyramidal syndrome featuring dystonia-parkinsonism, associated with TCC, caused by SEPSECS pathogenic variants. This form enlarges the group of the so-called pyramidal-extrapyramidal syndromes, as well as complex hereditary spastic paraparesis with TCC.
Collapse
Affiliation(s)
- Francesco Nicita
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorena Travaglini
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Bombelli
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Tosi
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Pro
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adele D'Amico
- Genetics and Rare Diseases Research Division (N.D.F., L.T., M.T., E.B., A.D.A.), Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS; Studio Neurologico Laterano (F.B.); and Neurophysiology Unit (S.P.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
25
|
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022; 14:23. [PMID: 35220969 PMCID: PMC8883622 DOI: 10.1186/s13073-022-01026-w] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Rare diseases affect 30 million people in the USA and more than 300-400 million worldwide, often causing chronic illness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed diseases. These technologies have allowed diagnoses for a sizable proportion (25-35%) of undiagnosed patients, often with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, transcriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clinicians and researchers in the next steps when encountering patients with non-diagnostic exomes.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Euan A Ashley
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Dailey GP, Premadasa LS, Ruzicka JA, Taylor EW. Inhibition of selenoprotein synthesis by Zika virus may contribute to congenital Zika syndrome and microcephaly by mimicking SELENOP knockout and the genetic disease PCCA. BBA ADVANCES 2022; 1. [PMID: 34988542 DOI: 10.1016/j.bbadva.2021.100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selenium status plays a major role in health impacts of various RNA viruses. We previously reported potential antisense interactions between viral mRNAs and host mRNAs encoding isoforms of the antioxidant selenoprotein thioredoxin reductase (TXNRD). Here, we examine possible targeting of selenoprotein mRNAs by Zika virus (ZIKV), because one of the most devastating outcomes of ZIKV infection in neonates, microcephaly, is a key manifestation of Progressive Cerebello-Cerebral Atrophy (PCCA), a genetic disease of impaired selenoprotein synthesis. Potential antisense matches between ZIKV and human selenoprotein mRNAs were identified computationally, the strongest being against human TXNRD1 and selenoprotein P (SELENOP), a selenium carrier protein essential for delivery of selenium to the brain. Computationally, ZIKV has regions of extensive (~30bp) and stable (ΔE < -50kcal/mol) antisense interactions with both TXNRD1 and SELENOP mRNAs. The core ZIKV/SELENOP hybridization was experimentally confirmed at the DNA level by gel shift assay using synthetic oligonucleotides. In HEK293T cells, using Western blot probes for SELENOP and TXNRD1, ZIKV infection knocked down SELENOP protein expression almost completely, by 99% (p<0.005), and TXNRD1 by ~90% (p<0.05). In contrast, by RT-qPCR, there was no evidence of significant changes in SELENOP and TXNRD1 mRNA levels after ZIKV infection, suggesting that their knockdown at the protein level is not primarily a result of mRNA degradation. These results suggest that knockdown of SELENOP and TXNRD1 by ZIKV in fetal brain, possibly antisense-mediated, could mimic SELENOP knockout, thereby contributing to neuronal cell death and symptoms similar to the genetic disease PCCA, including brain atrophy and microcephaly.
Collapse
Affiliation(s)
- Gabrielle P Dailey
- Dept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America
| | - Lakmini S Premadasa
- Texas Biomedical Research Institute, Southwest National Primate Research Center, P.O. Box 760549, San Antonio, Texas 78245-0549, United States of America
| | - Jan A Ruzicka
- Dept. of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, NC 27268, United States of America
| | - Ethan Will Taylor
- Dept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America
| |
Collapse
|
27
|
Schoenmakers E, Chatterjee K. Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency. Int J Mol Sci 2021; 22:12927. [PMID: 34884733 PMCID: PMC8658020 DOI: 10.3390/ijms222312927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023] Open
Abstract
Selenium, a trace element fundamental to human health, is incorporated as the amino acid selenocysteine (Sec) into more than 25 proteins, referred to as selenoproteins. Human mutations in SECISBP2, SEPSECS and TRU-TCA1-1, three genes essential in the selenocysteine incorporation pathway, affect the expression of most if not all selenoproteins. Systemic selenoprotein deficiency results in a complex, multifactorial disorder, reflecting loss of selenoprotein function in specific tissues and/or long-term impaired selenoenzyme-mediated defence against oxidative and endoplasmic reticulum stress. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Selenoprotein deficiency due to SECISBP2 and TRU-TCA1-1 defects are characterized by abnormal circulating thyroid hormones due to lack of Sec-containing deiodinases, low serum selenium levels (low SELENOP, GPX3), with additional features (myopathy due to low SELENON; photosensitivity, hearing loss, increased adipose mass and function due to reduced antioxidant and endoplasmic reticulum stress defence) in SECISBP2 cases. Antioxidant therapy ameliorates oxidative damage in cells and tissues of patients, but its longer term benefits remain undefined. Ongoing surveillance of patients enables ascertainment of additional phenotypes which may provide further insights into the role of selenoproteins in human biological processes.
Collapse
Affiliation(s)
| | - Krishna Chatterjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
28
|
Fradejas-Villar N, Zhao W, Reuter U, Doengi M, Ingold I, Bohleber S, Conrad M, Schweizer U. Missense mutation in selenocysteine synthase causes cardio-respiratory failure and perinatal death in mice which can be compensated by selenium-independent GPX4. Redox Biol 2021; 48:102188. [PMID: 34794077 PMCID: PMC8605217 DOI: 10.1016/j.redox.2021.102188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Selenoproteins are a small family of proteins containing the trace element selenium in form of the rare amino acid selenocysteine (Sec), which is decoded by the UGA codon. In humans, a number of pathogenic variants in genes encoding distinct selenoproteins or selenoprotein biosynthesis factors have been identified. Pathogenic variants in selenocysteine synthase (SEPSECS), which catalyzes the last step in Sec-tRNA[Ser]Sec biosynthesis, were reported in children suffering from progressive cerebello-cerebral atrophy. To understand the pathomechanism associated with SEPSECS deficiency, we generated a novel mouse model recapitulating the respective human pathogenic p.Y334C variant in the murine Sepsecs gene (SepsecsY334C). Unlike in patients, pups homozygous for the p.Y334C variant died perinatally with signs of cardio-respiratory failure. Perinatal death is reminiscent of the Sedaghatian spondylometaphyseal dysplasia disorder in humans, which is caused by pathogenic variants in the gene encoding the selenoprotein and key ferroptosis regulator glutathione peroxidase 4 (GPX4). Protein expression levels of distinct selenoproteins in SepsecsY334C/Y334C mice were found to be generally reduced in brain and isolated cortical neurons, while transcriptomics analysis uncovered an upregulation of NRF2-regulated genes. Crossbreeding of SepsecsY334C/Y334C mice with mice harboring a targeted mutation of the catalytically active Sec to Cys in GPX4 rescued perinatal death of SepsecsY334C/Y334C mice, showing that the cardio-respiratory defects of SepsecsY334C/Y334C mice were caused by the lack of GPX4. Like in SepsecsY334C/Y334C mice, selenoprotein expression levels remained low and NRF2-regulated genes remained highly expressed in these compound mutant mice, indicating that selenium-independent GPX4, along with a sustained antioxidant response are sufficient to compensate for dysfunctional Sec-tRNA[Ser]Sec biosynthesis. Our findings imply that children with pathogenic variants in SEPSECS or GPX4 may even benefit from treatments that incompletely compensate for impaired GPX4 activity.
Collapse
Affiliation(s)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Michael Doengi
- Institut für Physiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Irina Ingold
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany; Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, 117997, Russia
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany.
| |
Collapse
|
29
|
Chen H, Li N, Xu Y, Li G, Song C, Yao RE, Yu T, Wang J, Yang L. Novel compound heterozygous variant of TOE1 results in a mild type of pontocerebellar hypoplasia type 7: an expansion of the clinical phenotype. Neurogenetics 2021; 23:11-17. [PMID: 34716526 DOI: 10.1007/s10048-021-00675-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
The target of EGR1 protein 1 (TOE1) is a 3-exonuclease belonging to the Asp-Glu-Asp-Asp deadenylase family that plays a vital role in the maturation of a variety of small nuclear RNAs (snRNAs). Bi-allelic variants in TOE1 have been reported to cause a rare and severe neurodegenerative syndrome, pontocerebellar hypoplasia type 7 (PCH7) (OMIM # 614,969), which is characterized by progressive neurodegeneration, developmental delay, and ambiguous genitalia. Here, we describe the case of a 5-year-6-month-old female Chinese patient who presented with cerebral dysplasia, moderate intellectual disability, developmental delay, and dystonia. Trio whole-exome sequencing revealed two previously unreported heterozygous variants of TOE1 in the patient, including a maternal inherited splicing variant c.237-2A > G and a de novo missense variant c.551G > T, p.Arg184Leu. TA clone sequencing showed trans status of the two variants, indicating the missense variant occurred on the paternal strand in the patient. Clinical features of the patient were mostly concordant with previous reports but brain deformities (enlarged lateral ventricle and deepened cerebellum sulcus without microcephaly and reduced cerebellar volume) were less severe than in typical PCH7 patients. Moreover, the patient had no gonadal malformation, which is common and variable in patients with PCH7. In summary, we report the case of a Chinese patient with atypical PCH7 caused by a novel TOE1 compound variant. Our work suggests that variations in the TOE1 gene can lead to highly variable clinical phenotypes.
Collapse
Affiliation(s)
- Hongzhu Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China. .,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China.
| | - Lin Yang
- Department of Clinical laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
30
|
Webb BD, Evans A, Naidich TP, M Bird L, Parikh S, Fernandez Garcia M, Henderson LB, Millan F, Si Y, Brennand KJ, Hung P, Rucker JC, Wheeler PG, Schadt EE. Haploinsufficiency of POU4F1 causes an ataxia syndrome with hypotonia and intention tremor. Hum Mutat 2021; 42:685-693. [PMID: 33783914 DOI: 10.1002/humu.24201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Evans
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas P Naidich
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Sumit Parikh
- Neurometabolism & Neurogenetics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Meilin Fernandez Garcia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Yue Si
- GeneDx, Gaithersburg, Maryland, USA
| | - Kristen J Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Hung
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janet C Rucker
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA.,Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
The Function of Selenium in Central Nervous System: Lessons from MsrB1 Knockout Mouse Models. Molecules 2021; 26:molecules26051372. [PMID: 33806413 PMCID: PMC7961861 DOI: 10.3390/molecules26051372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology.
Collapse
|
32
|
Schweizer U, Bohleber S, Zhao W, Fradejas-Villar N. The Neurobiology of Selenium: Looking Back and to the Future. Front Neurosci 2021; 15:652099. [PMID: 33732108 PMCID: PMC7959785 DOI: 10.3389/fnins.2021.652099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Eighteen years ago, unexpected epileptic seizures in Selenop-knockout mice pointed to a potentially novel, possibly underestimated, and previously difficult to study role of selenium (Se) in the mammalian brain. This mouse model was the key to open the field of molecular mechanisms, i.e., to delineate the roles of selenium and individual selenoproteins in the brain, and answer specific questions like: how does Se enter the brain; which processes and which cell types are dependent on selenoproteins; and, what are the individual roles of selenoproteins in the brain? Many of these questions have been answered and much progress is being made to fill remaining gaps. Mouse and human genetics have together boosted the field tremendously, in addition to traditional biochemistry and cell biology. As always, new questions have become apparent or more pressing with solving older questions. We will briefly summarize what we know about selenoproteins in the human brain, glance over to the mouse as a useful model, and then discuss new questions and directions the field might take in the next 18 years.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
33
|
Zhang YF, Wang YZ, Hao XS, Zhang HB, Wang JT, Liang JM. Paroxysmal tonic upgaze accompanied by occipital discharge on electroencephalography: a case report and literature review. J Int Med Res 2021; 49:300060520984929. [PMID: 33530807 PMCID: PMC7871064 DOI: 10.1177/0300060520984929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Paroxysmal tonic upgaze (PTU) is an infantile-onset paroxysmal neurological disorder that is characterized by episodes of sustained conjugate upward eye deviation. The paroxysmal abnormal eye movements need to be differentiated from seizures. We report a case of PTU with occipital discharge on electroencephalography (EEG), which made the diagnosis more complicated. Case presentation A 6-month-old girl presented with paroxysmal upward deviation or left strabismus of the eyes, with a bowed head, lowered jaw, raised eyebrows, closed lips, and slight grin. Each episode lasted for a few seconds, and episodes occurred multiple times per day. EEG showed spike waves in the right occipital region, and the girl was initially misdiagnosed with epilepsy. After further analysis using video EEG, we corrected her diagnosis as PTU and stopped the administration of an antiepileptic drug. Conclusion PTU accompanied by discharge on EEG may lead to a misdiagnosis. Video EEG monitoring, and especially the analysis of EEG traces synchronized with attacks, can provide evidence to distinguish between seizures and non-epileptic events.
Collapse
Affiliation(s)
- Yan-Feng Zhang
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| | - Yi-Zhu Wang
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| | - Xiao-Sheng Hao
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| | - Hong-Bo Zhang
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| | - Jiang-Tao Wang
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| | - Jian-Min Liang
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
35
|
Rong T, Yao R, Deng Y, Lin Q, Wang G, Wang J, Jiang F, Jiang Y. Case Report: A Relatively Mild Phenotype Produced by Novel Mutations in the SEPSECS Gene. Front Pediatr 2021; 9:805575. [PMID: 35155316 PMCID: PMC8826681 DOI: 10.3389/fped.2021.805575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022] Open
Abstract
Mutations in the human O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase gene (SEPSECS) are associated with progressive cerebello-cerebral atrophy (PCCA), also known as pontocerebellar hypoplasia type 2D (PCH2D). Early-onset profound developmental delay, progressive microcephaly, and hypotonia that develops toward severe spasticity have been previously reported with SEPSECS mutations. Herein we report a case with severe global developmental delay, myogenic changes in the lower limbs, and insomnia, but without progressive microcephaly and brain atrophy during infancy and toddlerhood in a child harboring the SEPSECS missense variant c.194A>G (p. Asn65Ser) and a novel splicing mutation c.701+1G>A. With these findings we communicate the first Chinese SEPSECS mutant case, and our report indicates that SEPSECS mutations can give rise to a milder phenotype.
Collapse
Affiliation(s)
- Tingyu Rong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujiao Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Qingmin Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Yanrui Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| |
Collapse
|
36
|
Schoenmakers E, Chatterjee K. Human Disorders Affecting the Selenocysteine Incorporation Pathway Cause Systemic Selenoprotein Deficiency. Antioxid Redox Signal 2020; 33:481-497. [PMID: 32295391 PMCID: PMC7409586 DOI: 10.1089/ars.2020.8097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Generalized selenoprotein deficiency has been associated with mutations in SECISBP2, SEPSECS, and TRU-TCA1-1, 3 factors that are crucial for incorporation of the amino acid selenocysteine (Sec) into at least 25 human selenoproteins. SECISBP2 and TRU-TCA1-1 defects are characterized by a multisystem phenotype due to deficiencies of antioxidant and tissue-specific selenoproteins, together with abnormal thyroid hormone levels reflecting impaired hormone metabolism by deiodinase selenoenzymes. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Recent Advances: The recent identification of individuals with defects in genes encoding components of the selenocysteine insertion pathway has delineated complex and multisystem disorders, reflecting a lack of selenoproteins in specific tissues, oxidative damage due to lack of oxidoreductase-active selenoproteins and other pathways whose nature is unclear. Critical Issues: Abnormal thyroid hormone metabolism in patients can be corrected by triiodothyronine (T3) treatment. No specific therapies for other phenotypes (muscular dystrophy, male infertility, hearing loss, neurodegeneration) exist as yet, but their severity often requires supportive medical intervention. Future Directions: These disorders provide unique insights into the role of selenoproteins in humans. The long-term consequences of reduced cellular antioxidant capacity remain unknown, and future surveillance of patients may reveal time-dependent phenotypes (e.g., neoplasia, aging) or consequences of deficiency of selenoproteins whose function remains to be elucidated. The role of antioxidant therapies requires evaluation. Antioxid. Redox Signal. 33, 481-497.
Collapse
Affiliation(s)
- Erik Schoenmakers
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Krishna Chatterjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| |
Collapse
|
37
|
Sedaghatian-type spondylometaphyseal dysplasia: Whole exome sequencing in neonatal dry blood spots enabled identification of a novel variant in GPX4. Eur J Med Genet 2020; 63:104020. [PMID: 32827718 DOI: 10.1016/j.ejmg.2020.104020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/25/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
Accumulation of lipid peroxides causes membrane damage and cell death. Glutathione peroxidase 4 (GPX4) acts as a hydroperoxidase which prevents accumulation of toxic oxidized lipids and blocks ferroptosis, an iron-dependent, non-apoptotic mode of cell death. GPX4 deficiency causes Sedaghatian-type spondylo-metaphyseal dysplasia (SSMD), a lethal autosomal recessive disorder, featuring skeletal dysplasia, cardiac arrhythmia and brain anomalies with only three pathogenic GPX4 variants reported in two SSMD patients. Our objective was to identify the underlying genetic cause of neonatal death of two siblings presenting with hypotonia, cardiorespiratory failure and SSMD. Whole exome sequencing (WES) was performed in DNA samples from two siblings and their parents. Since "critical samples" were not available from the patients, DNA was extracted from dry blood spots (DBS) retrieved from the Israeli newborn-screening center. Sanger sequencing and segregation analysis followed the WES. Homozygous novel GPX4 variant, c.153_160del; p.His52fs*1 causing premature truncation of GPX4 was detected in both siblings; their parents were heterozygotes. Segregation analysis confirmed autosomal recessive inheritance. This report underscores the importance of DBS WES in identifying the genes and mutations causing devastating rare diseases. Obtaining critical samples from a dying patient is crucial for enabling genetic diagnosis.
Collapse
|
38
|
|
39
|
Paroxysmal tonic upgaze: A heterogeneous clinical condition responsive to carbonic anhydrase inhibition. Eur J Paediatr Neurol 2020; 25:181-186. [PMID: 31810576 DOI: 10.1016/j.ejpn.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/15/2019] [Accepted: 11/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Paroxysmal tonic upgaze (PTU), defined as an involuntary upward movement of the eyes, has been considered as a benign phenomenon but may also be associated with ataxia and developmental delay. METHODS We report eight children with PTU; six of them also exhibiting symptoms of ataxia and/or developmental delay. Treatment with carbonic anhydrase inhibition was offered to children with persisting and/or severe forms. RESULTS Whole-exome sequencing and genome-wide array analysis (n = 7) did not reveal mutations in the three known genes associated with PTU (CACNA1A, GRID2, SEPSECS), whereas by MLPA a heterozygous deletion of exon 31 of the CACNA1A gene could be detected in one patient, her mother and two further family members. Further exome and array analysis showed no recurrent variants in potentially novel PTU-related genes in more than one patient. A de novo variant at a highly conserved position in the SIM1 gene was detected in one patient, for which a pathogenic effect could be speculated. Carbonic anhydrase inhibition was started in five children and proved at least partially effective in all of them. CONCLUSION Irrespective of the clinical background and the molecular basic mechanism of PTU, therapeutic carbonic anhydrase inhibition was effective in all five children (acetazolamide, n = 3; sultiame, n = 2) who received this treatment.
Collapse
|
40
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
41
|
Genetic Disorders Associated with Metal Metabolism. Cells 2019; 8:cells8121598. [PMID: 31835360 PMCID: PMC6952812 DOI: 10.3390/cells8121598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic disorders associated with metal metabolism form a large group of disorders and mostly result from defects in the proteins/enzymes involved in nutrient metabolism and energy production. These defects can affect different metabolic pathways and cause mild to severe disorders related to metal metabolism. Some disorders have moderate to severe clinical consequences. In severe cases, these elements accumulate in different tissues and organs, particularly the brain. As they are toxic and interfere with normal biological functions, the severity of the disorder increases. However, the human body requires a very small amount of these elements, and a deficiency of or increase in these elements can cause different genetic disorders to occur. Some of the metals discussed in the present review are copper, iron, manganese, zinc, and selenium. These elements may play a key role in the pathology and physiology of the nervous system.
Collapse
|
42
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
43
|
Arrudi-Moreno M, Fernández-Gómez A, Peña-Segura JL. A new mutation in the SEPSECS gene related to pontocerebellar hypoplasia type 2D. Med Clin (Barc) 2019; 156:94-95. [PMID: 31748115 DOI: 10.1016/j.medcli.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - José L Peña-Segura
- Neuropediatric & Metabolism Department, Miguel Servet University Hospital, Zaragoza, Spain
| |
Collapse
|
44
|
Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med 2019; 22:490-499. [PMID: 31607746 DOI: 10.1038/s41436-019-0672-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE We investigated the value of transcriptome sequencing (RNAseq) in ascertaining the consequence of DNA variants on RNA transcripts to improve the diagnostic rate from exome or genome sequencing for undiagnosed Mendelian diseases spanning a wide spectrum of clinical indications. METHODS From 234 subjects referred to the Undiagnosed Diseases Network, University of California-Los Angeles clinical site between July 2014 and August 2018, 113 were enrolled for high likelihood of having rare undiagnosed, suspected genetic conditions despite thorough prior clinical evaluation. Exome or genome sequencing and RNAseq were performed, and RNAseq data was integrated with genome sequencing data for DNA variant interpretation genome-wide. RESULTS The molecular diagnostic rate by exome or genome sequencing was 31%. Integration of RNAseq with genome sequencing resulted in an additional seven cases with clear diagnosis of a known genetic disease. Thus, the overall molecular diagnostic rate was 38%, and 18% of all genetic diagnoses returned required RNAseq to determine variant causality. CONCLUSION In this rare disease cohort with a wide spectrum of undiagnosed, suspected genetic conditions, RNAseq analysis increased the molecular diagnostic rate above that possible with genome sequencing analysis alone even without availability of the most appropriate tissue type to assess.
Collapse
|
45
|
Rocca C, Pasqua T, Boukhzar L, Anouar Y, Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. Cell Mol Life Sci 2019; 76:3969-3985. [PMID: 31218451 PMCID: PMC11105271 DOI: 10.1007/s00018-019-03195-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy.
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France.
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France.
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy
- "Fondazione Umberto Veronesi", Milan, Italy
| | - Loubna Boukhzar
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy.
- National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
46
|
VPS53 gene is associated with a new phenotype of complicated hereditary spastic paraparesis. Neurogenetics 2019; 20:187-195. [DOI: 10.1007/s10048-019-00586-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/08/2019] [Indexed: 11/26/2022]
|
47
|
Cell-Type Specific Analysis of Selenium-Related Genes in Brain. Antioxidants (Basel) 2019; 8:antiox8050120. [PMID: 31060314 PMCID: PMC6562762 DOI: 10.3390/antiox8050120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
Selenoproteins are a unique class of proteins that play key roles in redox signaling in the brain. This unique organ is comprised of a wide variety of cell types that includes excitatory neurons, inhibitory neurons, astrocytes, microglia, and oligodendrocytes. Whereas selenoproteins are known to be required for neural development and function, the cell-type specific expression of selenoproteins and selenium-related machinery has yet to be systematically investigated. Due to advances in sequencing technology and investment from the National Institutes of Health (NIH)-sponsored BRAIN initiative, RNA sequencing (RNAseq) data from thousands of cortical neurons can now be freely accessed and searched using the online RNAseq data navigator at the Allen Brain Atlas. Hence, we utilized this newly developed tool to perform a comprehensive analysis of the cell-type specific expression of selenium-related genes in brain. Select proteins of interest were further verified by means of multi-label immunofluorescent labeling of mouse brain sections. Of potential significance to neural selenium homeostasis, we report co-expression of selenoprotein P (SELENOP) and selenium binding protein 1 (SELENBP1) within astrocytes. These findings raise the intriguing possibility that SELENBP1 may negatively regulate astrocytic SELENOP synthesis and thereby limit downstream Se supply to neurons.
Collapse
|
48
|
Kahn-Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, Hinman A, Malone SA, Bruegger JJ, Wang L, Kim V, Shrader WD, Hoff KG, Latham JC, Ashley EA, Wheeler MT, Bertini E, Carrozzo R, Martinelli D, Dionisi-Vici C, Chapman KA, Enns GM, Gahl W, Wolfe L, Saneto RP, Johnson SC, Trimmer JK, Klein MB, Holst CR. Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One 2019; 14:e0214250. [PMID: 30921410 PMCID: PMC6438538 DOI: 10.1371/journal.pone.0214250] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.
Collapse
Affiliation(s)
- Amanda H. Kahn-Kirby
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Akiko Amagata
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Celine I. Maeder
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Janet J. Mei
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Steve Sideris
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Yuko Kosaka
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Andrew Hinman
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Stephanie A. Malone
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Joel J. Bruegger
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Leslie Wang
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Virna Kim
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - William D. Shrader
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Kevin G. Hoff
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Joey C. Latham
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Euan A. Ashley
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew T. Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Diego Martinelli
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Carlo Dionisi-Vici
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Kimberly A. Chapman
- Children’s National Rare Disease Institute, Children's National Health System, Washington, D.C., United States of America
| | - Gregory M. Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - William Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Russell P. Saneto
- Division of Pediatric Neurology, Department of Neurology, Neuroscience Institute, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Simon C. Johnson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey K. Trimmer
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Matthew B. Klein
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Charles R. Holst
- BioElectron Technology Corporation, Mountain View, California, United States of America
| |
Collapse
|
49
|
Mayer K, Mundigl O, Kettenberger H, Birzele F, Stahl S, Pastan I, Brinkmann U. Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress. Redox Biol 2019; 20:146-156. [PMID: 30312900 PMCID: PMC6180344 DOI: 10.1016/j.redox.2018.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
The diphthamide modification of translation elongation factor 2 is highly conserved in eukaryotes and archaebacteria. Nevertheless, cells lacking diphthamide can carry out protein synthesis and are viable. We have analyzed the phenotypes of diphthamide deficient cells and found that diphthamide deficiency reduces selenocysteine incorporation into selenoproteins. Additional phenotypes resulting from diphthamide deficiency include altered tRNA-synthetase and selenoprotein transcript levels, hypersensitivity to oxidative stress and increased selenite tolerance. Diphthamide-eEF2 occupies the aminoacyl-tRNA translocation site at which UGA either stalls translation or decodes selenocysteine. Its position is in close proximity and mutually exclusive to the ribosomal binding site of release/recycling factor ABCE1, which harbors a redox-sensitive Fe-S cluster and, like diphthamide, is present in eukaryotes and archaea but not in eubacteria. Involvement of diphthamide in UGA-SECIS decoding may explain deregulated selenoprotein expression and as a consequence oxidative stress, NFkB activation and selenite tolerance in diphthamide deficient cells.
Collapse
Affiliation(s)
- Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Sebastian Stahl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
50
|
Osinalde N, Duarri A, Ramirez J, Barrio R, Perez de Nanclares G, Mayor U. Impaired proteostasis in rare neurological diseases. Semin Cell Dev Biol 2018; 93:164-177. [PMID: 30355526 DOI: 10.1016/j.semcdb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Rare diseases are classified as such when their prevalence is 1:2000 or lower, but even if each of them is so infrequent, altogether more than 300 million people in the world suffer one of the ∼7000 diseases considered as rare. Over 1200 of these disorders are known to affect the brain or other parts of our nervous system, and their symptoms can affect cognition, motor function and/or social interaction of the patients; we refer collectively to them as rare neurological disorders or RNDs. We have focused this review on RNDs known to have compromised protein homeostasis pathways. Proteostasis can be regulated and/or altered by a chain of cellular mechanisms, from protein synthesis and folding, to aggregation and degradation. Overall, we provide a list comprised of above 215 genes responsible for causing more than 170 distinct RNDs, deepening on some representative diseases, including as well a clinical view of how those diseases are diagnosed and dealt with. Additionally, we review existing methodologies for diagnosis and treatment, discussing the potential of specific deubiquitinating enzyme inhibition as a future therapeutic avenue for RNDs.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Anna Duarri
- Barcelona Stem Cell Bank, Center of Regenerative Medicine in Barcelona, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|