1
|
Hayeck TJ, Li Y, Mosbruger TL, Bradfield JP, Gleason AG, Damianos G, Shaw GTW, Duke JL, Conlin LK, Turner TN, Fernández-Viña MA, Sarmady M, Monos DS. The Impact of Patterns in Linkage Disequilibrium and Sequencing Quality on the Imprint of Balancing Selection. Genome Biol Evol 2024; 16:evae009. [PMID: 38302106 PMCID: PMC10853003 DOI: 10.1093/gbe/evae009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.
Collapse
Affiliation(s)
- Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy L Mosbruger
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Adam G Gleason
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Damianos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jamie L Duke
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcelo A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri S Monos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Wang Y, Jasinski-Bergner S, Wickenhauser C, Seliger B. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Adv Anat Pathol 2023; 30:148-159. [PMID: 36517481 DOI: 10.1097/pap.0000000000000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of "avoiding immune destruction" to the hallmarks of cancer demonstrated the importance of cancer immunology and in particular the role of immune surveillance and escape from malignancies. However, the underlying mechanisms contributing to immune impairment and immune responses are diverse. Loss or reduced expression of the HLA class I molecules are major characteristics of human cancers resulting in an impaired recognition of tumor cells by CD8 + cytotoxic T lymphocytes. This is of clinical relevance and associated with worse patients outcome and limited efficacy of T-cell-based immunotherapies. Here, we summarize the role of HLA class I antigens in cancers by focusing on the underlying molecular mechanisms responsible for HLA class I defects, which are caused by either structural alterations or deregulation at the transcriptional, posttranscriptional, and posttranslational levels. In addition, the influence of HLA class I abnormalities to adaptive and acquired immunotherapy resistances will be described. The in-depth knowledge of the different strategies of malignancies leading to HLA class I defects can be applied to design more effective cancer immunotherapies.
Collapse
Affiliation(s)
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)
| | - Barbara Seliger
- Institute of Medical Immunology
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyLeipzig, Germany
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| |
Collapse
|
4
|
Increased Prevalence of Unstable HLA-C Variants in HIV-1 Rapid-Progressor Patients. Int J Mol Sci 2022; 23:ijms232314852. [PMID: 36499177 PMCID: PMC9741376 DOI: 10.3390/ijms232314852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 infection in the absence of treatment results in progression toward AIDS. Host genetic factors play a role in HIV-1 pathogenesis, but complete knowledge is not yet available. Since less-expressed HLA-C variants are associated with poor HIV-1 control and unstable HLA-C variants are associated with higher HIV-1 infectivity, we investigated whether there was a correlation between the different stages of HIV-1 progression and the presence of specific HLA-C allotypes. HLA-C genotyping was performed using allele-specific PCR by analyzing a treatment-naïve cohort of 96 HIV-1-infected patients from multicentric cohorts in the USA, Canada, and Brazil. HIV-1-positive subjects were classified according to their different disease progression status as progressors (Ps, n = 48), long-term non-progressors (LTNPs, n = 37), and elite controllers (ECs, n = 11). HLA-C variants were classified as stable or unstable according to their binding stability to β2-microglobulin/peptide complex. Our results showed a significant correlation between rapid progression to AIDS and the presence of two or one unstable HLA-C variants (p-value: 0.0078, p-value: 0.0143, respectively). These findings strongly suggest a link between unstable HLA-C variants both at genotype and at allele levels and rapid progression to AIDS. This work provides further insights into the impact of host genetic factors on AIDS progression.
Collapse
|
5
|
Tait BD. The importance of establishing genetic phase in clinical medicine. Int J Immunogenet 2021; 49:1-7. [PMID: 34958529 DOI: 10.1111/iji.12567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
Haplotyping or determination of genetic phase has always played a pivotal role in MHC (HLA studies) both in helping to understand inheritance patterns in diseases such as type 1 diabetes (T1D) and in ensuring better matching in transplantation scenarios such as haematopoietic stem cell transplantation (HSCT), using donors genetically related to the patient. In recent years the need to establish genetic phase in a number of clinical scenarios has become apparent. These include: Genetic phasing for hematopoietic stem cell transplants using unrelated donors, where the HLA haplotypes are not known but where haplotype-matched recipients fare better clinically than allele matched, but haplotype mismatched patients. The use of checkpoint inhibitors is one of the most innovative and exciting developments in cancer treatment in years. An example is the use of the monoclonal ipilimumab to block the CTLA-4 receptor which is known to contain polymorphic sites. Until the phase of these polymorphisms is known it will not be possible to determine how effectively this monoclonal will perform in individual patients. The role of miRNA single strand molecules and their effect on gene expression. Thousands of non-coding genes have been identified and have been shown to be polymorphic, as have their target genes. Genetic phasing of polymorphism both in the miRNA source genes and their targets is clearly a fertile area of research In areas such a drug metabolism where the polymorphic family of CYP genes is responsible for the metabolism of the majority of prescription drugs, determining phase of SNPs is critical to understanding drug metabolism and efficacy. In multigenic disease studies combinations of single nucleotide polymorphisms (SNPs) in participating genes require accurate phasing in order to fully appreciate their role in the disease process. In addition, the level of expression of genes (point 3) is also important in understanding disease processes at the functional level. This review outlines the techniques that are currently available for approximating phase and discusses the clinical relevance of establishing genetic phase in areas of clinical medicine outlined in points 1-3.
Collapse
Affiliation(s)
- Brian D Tait
- Haplomic Technologies, Melbourne, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Australia
| |
Collapse
|
6
|
Prinz JC. Antigen Processing, Presentation, and Tolerance: Role in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:750-759. [PMID: 34294386 DOI: 10.1016/j.jid.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/20/2022]
Abstract
Autoreactive T cells pose a constant risk for the emergence of autoimmune skin diseases in genetically predisposed individuals carrying certain HLA risk alleles. Immune tolerance mechanisms are opposed by broad HLA-presented self-immunopeptidomes, a predefined repertoire of polyspecific TCRs, the continuous generation of new antibody specificities by somatic recombination of Ig genes in B cells, and heightened proinflammatory reactivity. Increased autoantigen presentation by HLA molecules, cross-activation of pathogen-induced T cells against autologous structures, altered metabolism of self-proteins, and excessive production of proinflammatory signals may all contribute to the breakdown of immune tolerance and the development of autoimmune skin diseases.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Malnati MS, Biswas P, Ugolotti E, Di Marco E, Sironi F, Parolini F, Garbarino L, Mazzocco M, Zipeto D, Biassoni R. A fast and reliable method for detecting SNP rs67384697 (Hsa-miR-148a binding site) by a single run of allele-specific real-time PCR. HLA 2020; 96:312-322. [PMID: 32530084 DOI: 10.1111/tan.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
Surface expression of human leukocyte antigen (HLA)-class I molecules is critical for modulating T/natural killer lymphocytes' effector functions. Among HLA molecules, HLA-C, the most recently evolved form of class I antigens, is subjected to both transcriptional and multiple post-transcriptional regulation mechanisms affecting its cell surface expression. Among the latter a region placed in the 3' untranslated region of HLA-C transcript contains the single nucleotide polymorphism (SNP) rs67384697 "G-ins/del" that has been found to be strictly associated with surface levels of HLA-C allomorphs because of the effect on the binding site of a microRNA (Hsa-miR-148a). Higher expression of HLA-C has been proved to influence HIV-1 infection via a better control of viremia and a slower disease progression. More importantly, the analysis of SNP rs67384697 "G-ins/del" combined with the evaluation of the HLA-Bw4/-Bw6 C1/C2 supratype, as well as the killer immunoglobulin-like receptor genetic asset, has proved to be pivotal in defining the status of Elite Controllers in the Caucasian population. Here we describe a new reliable and fast method of allele-specific real-time PCR to monitor the integrity/disruption of the binding site of the microRNA Hsa-miR-148a in a high-throughput format that can be easily applied to studies involving large cohorts of individuals.
Collapse
Affiliation(s)
- Mauro S Malnati
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Priscilla Biswas
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Ugolotti
- Translational Research Department, Laboratory Medicine, Diagnostics and Services, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Eddi Di Marco
- Translational Research Department, Laboratory Medicine, Diagnostics and Services, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Sironi
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lucia Garbarino
- Histocompatibility Laboratory, Galliera Hospital, Genoa, Italy
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberto Biassoni
- Translational Research Department, Laboratory Medicine, Diagnostics and Services, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
8
|
Sznarkowska A, Mikac S, Pilch M. MHC Class I Regulation: The Origin Perspective. Cancers (Basel) 2020; 12:cancers12051155. [PMID: 32375397 PMCID: PMC7281430 DOI: 10.3390/cancers12051155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Viral-derived elements and non-coding RNAs that build up “junk DNA” allow for flexible and context-dependent gene expression. They are extremely dense in the MHC region, accounting for flexible expression of the MHC I, II, and III genes and adjusting the level of immune response to the environmental stimuli. This review brings forward the viral-mediated aspects of the origin and evolution of adaptive immunity and aims to link this perspective with the MHC class I regulation. The complex regulatory network behind MHC expression is largely controlled by virus-derived elements, both as binding sites for immune transcription factors and as sources of regulatory non-coding RNAs. These regulatory RNAs are imbalanced in cancer and associate with different tumor types, making them promising targets for diagnostic and therapeutic interventions.
Collapse
|
9
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
10
|
Pradana KA, Widjaya MA, Wahjudi M. Indonesians Human Leukocyte Antigen (HLA) Distributions and Correlations with Global Diseases. Immunol Invest 2019; 49:333-363. [PMID: 31648579 DOI: 10.1080/08820139.2019.1673771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Human, Major Histocompatibility Complex known as Human Leukocyte Antigen (HLA). The HLA grouped into three subclasses regions: the class I region, the class II region, and the class III region. There are thousands of polymorphic HLAs, many of them are proven to have correlations with diseases. Indonesia consists of diverse ethnicity people and populations. It carries a unique genetic diversity between one and another geographical positions. This paper aims to extract Indonesians HLA allele data, mapping the data, and correlating them with global diseases. From the study, it is found that global diseases, like Crohn's disease, rheumatoid arthritis, Graves' disease, gelatin allergy, T1D, HIV, systemic lupus erythematosus, juvenile chronic arthritis, and Mycobacterial disease (tuberculosis and leprosy) suspected associated with the Indonesian HLA profiles.
Collapse
Affiliation(s)
- Krisnawan Andy Pradana
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia.,Department of Anatomy and Histology Faculty of Medicine, Airlangga University, Tambaksari, Surabaya City, Indonesia
| | | | - Mariana Wahjudi
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia
| |
Collapse
|
11
|
Bioinformatic methods for cancer neoantigen prediction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:25-60. [PMID: 31383407 DOI: 10.1016/bs.pmbts.2019.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor cells accumulate aberrations not present in normal cells, leading to presentation of neoantigens on MHC molecules on their surface. These non-self neoantigens distinguish tumor cells from normal cells to the immune system and are thus targets for cancer immunotherapy. The rapid development of molecular profiling platforms, such as next-generation sequencing, has enabled the generation of large datasets characterizing tumor cells. The simultaneous development of algorithms has enabled rapid and accurate processing of these data. Bioinformatic software tools encoding the algorithms can be strung together in a workflow to identify neoantigens. Here, with a focus on high-throughput sequencing, we review state-of-the art bioinformatic tools along with the steps and challenges involved in neoantigen identification and recognition.
Collapse
|
12
|
Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. Funct Integr Genomics 2019; 19:645-658. [PMID: 30859354 DOI: 10.1007/s10142-019-00670-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022]
Abstract
Although many of the genetic loci associated with breast cancer risk have been reported, there is a lack of systematic analysis of regulatory networks composed of different miRNAs and mRNAs on survival analysis in breast cancer. To reconstruct the microRNAs-genes regulatory network in breast cancer, we employed the expression data from The Cancer Genome Atlas (TCGA) related to five essential miRNAs including miR-21, miR-22, miR-210, miR-221, and miR-222, and their associated functional genomics data from the GEO database. Then, we performed an integration analysis to identify the essential target factors and interactions for the next survival analysis in breast cancer. Based on the results of our integrated analysis, we have identified significant common regulatory signatures including differentially expressed genes, enriched pathways, and transcriptional regulation such as interferon regulatory factors (IRFs) and signal transducer and activator of transcription 1 (STAT1). Finally, a reconstructed regulatory network of five miRNAs and 34 target factors was established and then applied to survival analysis in breast cancer. When we used expression data for individual miRNAs, only miR-21 and miR-22 were significantly associated with a survival change. However, we identified 45 significant miRNA-gene pairs that predict overall survival in breast cancer out of 170 one-on-one interactions in our reconstructed network covering all of five miRNAs, and several essential factors such as PSMB9, HLA-C, RARRES3, UBE2L6, and NMI. In our study, we reconstructed regulatory network of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. These results may provide new insights into regulatory network-based precision medicine for breast cancer.
Collapse
|
13
|
Niepiekło-Miniewska W, Mpakali A, Stratikos E, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Wilczyńska K, Nowak I, Wiśniewski A, Zwolińska K, Ponińska J, Płoski R, Szepietowski JC, Kuśnierczyk P. Endoplasmic reticulum aminopeptidase 1 polymorphism Ile276Met is associated with atopic dermatitis and affects the generation of an HLA-C associated antigenic epitope in vitro. J Eur Acad Dermatol Venereol 2019; 33:906-911. [PMID: 30680818 DOI: 10.1111/jdv.15449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease of complex aetiology, with interactions between susceptibility genes and environmental factors. We have previously described a protective effect of the KIR2DS1 gene encoding the natural killer cell receptor, whose ligands are HLA-C molecules. Here, we found an association of HLA-C*05:01 allele with AD. KIR-HLA-C interactions are affected by peptides presented by HLA-C. The generation of these peptides is strongly influenced by endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2). Expression and activity of ERAP molecules depend on the polymorphisms of their genes. OBJECTIVE Possible associations of several single nucleotide polymorphisms (SNPs) in the ERAP1 and ERAP2 genes with susceptibility to AD. METHODS Peripheral blood DNA isolation from 318 patients and 549 controls. PCR-SSO or PCR-SSP for HLA-C typing; TaqMan Genotyping Assay for ERAP typing. RESULTS Only one SNP in the ERAP1 gene, rs26618T>C, causing the amino acid change Ile276Met, had an association with AD. To gain insight on the functional role of this SNP, we produced recombinant variants differing only at position 276 (Ile or Met) and tested their aminopeptidase activity against a N-terminally extended precursor LIVDRPVTLV of the HLA-C*05:01 epitope IVDRPVTLV. Both ERAP1 variants were able to efficiently generate the epitope, although the 276Ile allotype was able to do this about 50% faster. Furthermore, both variants were quite inefficient in further degradation of the mature epitope. Finally, we found that the effect of 276Met on susceptibility to AD was seen only in KIR2DS1-negative individuals, not protected by this KIR. CONCLUSION Associations of HLA-C*05:01 allele and rs26618T>C (Ile276Met) ERAP1 polymorphism with AD, and a significant difference between these two ERAP1 variants in their ability to generate an epitope for the HLA-C*05:01 molecule was found.
Collapse
Affiliation(s)
- W Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - A Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| | - E Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| | - Ł Matusiak
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - J Narbutt
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - A Lesiak
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - P Kuna
- 2nd Chair of Internal Diseases, Medical University of Łódź, N. Barlicki Medical University Hospital, Łódź, Poland
| | - K Wilczyńska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - I Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - A Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - K Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - J Ponińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - R Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - J C Szepietowski
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - P Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
14
|
Hurley CK, Ng J. Continue to focus clinical decision-making on the antigen recognition domain for the present. Hum Immunol 2019; 80:79-84. [DOI: 10.1016/j.humimm.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
|
15
|
Monos D, Drake J. Perspective: HLA functional elements outside the antigen recognition domains. Hum Immunol 2019; 80:1-4. [DOI: 10.1016/j.humimm.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
17
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 478] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
18
|
Kaur G, Gras S, Mobbs JI, Vivian JP, Cortes A, Barber T, Kuttikkatte SB, Jensen LT, Attfield KE, Dendrou CA, Carrington M, McVean G, Purcell AW, Rossjohn J, Fugger L. Structural and regulatory diversity shape HLA-C protein expression levels. Nat Commun 2017; 8:15924. [PMID: 28649982 PMCID: PMC5490200 DOI: 10.1038/ncomms15924] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
Expression of HLA-C varies widely across individuals in an allele-specific manner. This variation in expression can influence efficacy of the immune response, as shown for infectious and autoimmune diseases. MicroRNA binding partially influences differential HLA-C expression, but the additional contributing factors have remained undetermined. Here we use functional and structural analyses to demonstrate that HLA-C expression is modulated not just at the RNA level, but also at the protein level. Specifically, we show that variation in exons 2 and 3, which encode the α1/α2 domains, drives differential expression of HLA-C allomorphs at the cell surface by influencing the structure of the peptide-binding cleft and the diversity of peptides bound by the HLA-C molecules. Together with a phylogenetic analysis, these results highlight the diversity and long-term balancing selection of regulatory factors that modulate HLA-C expression.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Stephanie Gras
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jesse I. Mobbs
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Julian P. Vivian
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Adrian Cortes
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas Barber
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Subita Balaram Kuttikkatte
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, 8200N Aarhus, Denmark
| | - Kathrine E. Attfield
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Calliope A. Dendrou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Anthony W. Purcell
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Department of Clinical Medicine, Aarhus University Hospital, 8200N Aarhus, Denmark
| |
Collapse
|
19
|
Ramsuran V, Hernández-Sanchez PG, O'hUigin C, Sharma G, Spence N, Augusto DG, Gao X, García-Sepúlveda CA, Kaur G, Mehra NK, Carrington M. Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2320-2329. [PMID: 28148735 PMCID: PMC5340644 DOI: 10.4049/jimmunol.1601679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 01/09/2023]
Abstract
Polymorphisms located within the MHC have been linked to many disease outcomes by mechanisms not yet fully understood in most cases. Variants located within untranslated regions of HLA genes are involved in allele-specific expression and may therefore underlie some of these disease associations. We determined sequences extending nearly 2 kb upstream of the transcription start site for 68 alleles from 57 major lineages of classical HLA class I genes. The nucleotide diversity within this promoter segment roughly follows that seen within the coding regions, with HLA-B showing the highest (∼1.9%), followed by HLA-A (∼1.8%), and HLA-C showing the lowest diversity (∼0.9%). Despite its greater diversity, HLA-B mRNA expression levels determined in 178 European Americans do not vary in an allele- or lineage-specific manner, unlike the differential expression levels of HLA-A or HLA-C reported previously. Close proximity of promoter sequences in phylogenetic trees is roughly reflected by similarity of expression pattern for most HLA-A and -C loci. Although promoter sequence divergence might impact promoter activity, we observed no clear link between the phylogenetic structures as represented by pairwise nucleotide differences in the promoter regions with estimated differences in mRNA expression levels for the classical class I loci. Further, no pair of class I loci showed coordinated expression levels, suggesting that distinct mechanisms across loci determine their expression level under nonstimulated conditions. These data serve as a foundation for more in-depth analysis of the functional consequences of promoter region variation within the classical HLA class I loci.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Pedro G Hernández-Sanchez
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Colm O'hUigin
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Niamh Spence
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Danillo G Augusto
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, CEP 81531-980, Brazil
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Christian A García-Sepúlveda
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
20
|
Hou L, Vierra-Green C, Lazaro A, Brady C, Haagenson M, Spellman S, Hurley CK. Limited HLA sequence variation outside of antigen recognition domain exons of 360 10 of 10 matched unrelated hematopoietic stem cell transplant donor-recipient pairs. HLA 2016; 89:39-46. [PMID: 27976839 DOI: 10.1111/tan.12942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/24/2016] [Accepted: 11/17/2016] [Indexed: 12/27/2022]
Abstract
Traditional DNA-based typing focuses primarily on interrogating the exons of human leukocyte antigen (HLA) genes that form the antigen recognition domain (ARD). The relevance of mismatching donor and recipient for HLA variation outside the ARD on hematopoietic stem cell transplantation (HSCT) outcomes is unknown. This study was designed to evaluate the frequency of variation outside the ARD in 10 of 10 (HLA-A, -B, -C, -DRB1, -DQB1) matched unrelated donor transplant pairs (n = 360). Next-generation DNA sequencing was used to characterize both HLA exons and introns for HLA-A, -B, -C alleles; exons 2, 3 and the intervening intron for HLA-DRB1 and exons only for HLA-DQA1 and -DQB1. Over 97% of alleles at each locus were matched for their nucleotide sequence outside of the ARD exons. Of the 4320 allele comparisons overall, only 17 allele pairs were mismatched for non-ARD exons, 41 for noncoding regions and 9 for ARD exons. The observed variation between donor and recipient usually involved a single nucleotide difference (88% of mismatches); 88% of the non-ARD exon variants impacted the amino acid sequence. The impact of amino acid sequence variation caused by substitutions in exons outside ARD regions in D-R pairs will be difficult to assess in HSCT outcome studies because these mismatches do not occur very frequently.
Collapse
Affiliation(s)
- L Hou
- Department of Pediatrics, Georgetown University, Washington, DC, USA
| | - C Vierra-Green
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - A Lazaro
- Department of Pediatrics, Georgetown University, Washington, DC, USA
| | - C Brady
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - M Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - S Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - C K Hurley
- Department of Pediatrics, Georgetown University, Washington, DC, USA.,Department of Oncology, Georgetown University, Washington, DC, USA
| |
Collapse
|
21
|
Hoff GA, Fischer JC, Hsu K, Cooley S, Miller JS, Wang T, Haagenson M, Spellman S, Lee SJ, Uhrberg M, Venstrom JM, Verneris MR. Recipient HLA-C Haplotypes and microRNA 148a/b Binding Sites Have No Impact on Allogeneic Hematopoietic Cell Transplantation Outcomes. Biol Blood Marrow Transplant 2016; 23:153-160. [PMID: 27746218 DOI: 10.1016/j.bbmt.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Natural killer cells are important in graft-versus-leukemia responses after hematopoietic cell transplantation (HCT). A variety of surface receptors dictates natural killer cell function, including killer cell immunoglobulin-like receptor recognition of HLA-C. Previous single-center studies show that HLA-C epitopes, designated C1 and C2, were associated with allogeneic HCT outcomes; specifically, recipients homozygous for the C1 epitope (C1/C1) experienced a survival benefit. Additionally, mismatching at HLA-C was beneficial in recipients possessing at least 1 C2 allele, whereas the opposite was true for homozygous C1 (C1/C1) recipients where HLA-C mismatching resulted in worse outcomes. In this analysis we aimed to validate these findings in a large multicenter study. We also set out to determine whether surface expression of recipient HLA-C, determined by polymorphism in a microRNA (miR-148a/b) binding site within the 3'-region of the HLA-C transcript, was associated with transplant outcomes. In this large registry cohort, we were unable to confirm the prior findings regarding recipient HLA-C epitope status and outcome. Additionally, HLA-C surface expression (ie, surface density), as predicted by the miR-148a/b binding single nucleotide polymorphism, was also not with associated transplant outcomes. Collectively, neither HLA-C surface expression, as determined by miR-148a/b, nor recipient HLA-C epitopes (C1, C2) are associated with allogeneic HCT outcomes.
Collapse
Affiliation(s)
- Gretchen A Hoff
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Johannes C Fischer
- Institute of Transplantation Diagnostics and Cell Therapeutics, Universitatklinikum Dusseldorf Klinik fur Kinder, Düsseldorf, Germany
| | - Katharine Hsu
- Blood and Marrow Transplantation, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Cooley
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie J Lee
- Blood and Marrow Transplantation, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markus Uhrberg
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Clinic of Düsseldorf, Düsseldorf, Germany
| | - Jeffrey M Venstrom
- Blood and Marrow Transplant, University of California San Francisco Medical Center, San Francisco, California
| | - Michael R Verneris
- University of Colorado, Pediatric BMT and Cell Therapy, Aurora, Colorado.
| |
Collapse
|
22
|
Bardeskar NS, Mania-Pramanik J. HIV and host immunogenetics: unraveling the role of HLA-C. HLA 2016; 88:221-231. [PMID: 27620973 DOI: 10.1111/tan.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 01/09/2023]
Abstract
Host genetic factors play a major role in determining the outcome of many infections including human immunodeficiency virus (HIV). Multiple host factors have been studied till date showing their varied role in susceptibility or resistance to HIV infection. HLA-C, however, has been recently started gaining interest in researchers mind revealing its polymorphisms to have an important effect on viral load set-points, disease progression as well as transmission. In this review report, we have compiled these significant findings of HLA-C in HIV infection, in an attempt to highlight the need for further research in the area in different ethnic population to establish its role in the infection.
Collapse
Affiliation(s)
- N S Bardeskar
- Infectious Diseases Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - J Mania-Pramanik
- Infectious Diseases Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
23
|
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 2016; 267:259-82. [PMID: 26284483 DOI: 10.1111/imr.12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Apps R, Del Prete GQ, Chatterjee P, Lara A, Brumme ZL, Brockman MA, Neil S, Pickering S, Schneider DK, Piechocka-Trocha A, Walker BD, Thomas R, Shaw GM, Hahn BH, Keele BF, Lifson JD, Carrington M. HIV-1 Vpu Mediates HLA-C Downregulation. Cell Host Microbe 2016; 19:686-95. [PMID: 27173934 PMCID: PMC4904791 DOI: 10.1016/j.chom.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Many pathogens evade cytotoxic T lymphocytes (CTLs) by downregulating HLA molecules on infected cells, but the loss of HLA can trigger NK cell-mediated lysis. HIV-1 is thought to subvert CTLs while preserving NK cell inhibition by Nef-mediated downregulation of HLA-A and -B but not HLA-C molecules. We find that HLA-C is downregulated by most primary HIV-1 clones, including transmitted founder viruses, in contrast to the laboratory-adapted NL4-3 virus. HLA-C reduction is mediated by viral Vpu and reduces the ability of HLA-C restricted CTLs to suppress viral replication in CD4+ cells in vitro. HLA-A/B are unaffected by Vpu, and primary HIV-1 clones vary in their ability to downregulate HLA-C, possibly in response to whether CTLs or NK cells dominate immune pressure through HLA-C. HIV-2 also suppresses HLA-C expression through distinct mechanisms, underscoring the immune pressure HLA-C exerts on HIV. This viral immune evasion casts new light on the roles of CTLs and NK cells in immune responses against HIV.
Collapse
Affiliation(s)
- Richard Apps
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Pramita Chatterjee
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Stuart Neil
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Rasmi Thomas
- Host Genetics Section, US Military HIV Research Program, Silver Spring, MD 20910, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA.
| |
Collapse
|
25
|
The effect of KIR2D-HLA-C receptor-ligand interactions on clinical outcome in a HIV-1 CRF01_AE-infected Thai population. AIDS 2015; 29:1607-15. [PMID: 26372271 DOI: 10.1097/qad.0000000000000747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Class I human leukocyte antigen (HLA) alleles interact with both cytotoxic T lymphocytes through their T-cell receptors, and natural killer cells through their killer immunoglobulin-like receptors (KIRs). Compared with the reported protective effect of KIR3DL1/S1-HLA-Bw4 interactions in HIV-infected patients, the effect of KIR2D-HLA-C combinations on HIV control remains unclear. Here, we investigate the effect of KIR2D-HLA-C combinations on HIV disease progression. DESIGN We performed a cross-sectional and longitudinal analysis of a Thai HIV cohort. METHODS Two hundred and nine HIV-1 CRF01_AE-infected, treatment-naive Thai patients (CD4 T-cell counts of >200/μl) and 104 exposed seronegatives were studied. The effect of KIR-HLA receptor-ligand combinations on viral transmission and survival rate was statistically analyzed. RESULTS We found the following results: higher frequency of patients expressing both KIR2DL3 and HLA-C1 among infected patients compared with exposed seronegative (odds ratio 4.8, P = 0.004), higher viral load in patients expressing HLA-C1 with KIR2DL3 compared with those without this receptor-ligand combination (median 4.8 vs. 4.2 log copies/ml, P = 0.033), higher numbers of KIR2DL3-HLA-C1 interactions was associated with a higher viral load (β = 0.13, P = 0.039 by linear regression model), and higher mortality rate in carriers of the KIR2DL3-HLA-C1 combination (adjusted hazard ratio 1.9, P = 0.012 by Cox hazard model). CONCLUSION We have identified a deleterious effect of the KIR2DL3-HLA-C1 receptor-ligand combination on HIV clinical outcomes in a Thai cohort. Further investigation into mechanisms underlying this susceptibility may aid the understanding of the role of natural killer cells in HIV disease control and pathogenesis.
Collapse
|
26
|
Ramsuran V, Kulkarni S, O'huigin C, Yuki Y, Augusto DG, Gao X, Carrington M. Epigenetic regulation of differential HLA-A allelic expression levels. Hum Mol Genet 2015; 24:4268-75. [PMID: 25935001 DOI: 10.1093/hmg/ddv158] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 01/24/2023] Open
Abstract
MHC class I expression levels influence the strength of immune responses and represent another variable in determining outcome to disease beyond peptide binding alone. Identification of the HLA loci that vary in allelic expression levels and delineating the mechanism responsible for expression variation may provide the opportunity to modify their expression therapeutically. We have examined the expression levels of allelic lineages at the HLA-A locus in a sample of 216 European Americans using a real-time polymerase chain reaction assay, which amplifies all HLA-A lineages specifically with equal efficiency, and observed a gradient of expression that associates with HLA-A allelic lineage (R = 0.6, P = 5 × 10(-25)). DNA methylation of the HLA-A gene appears to contribute to the variation in HLA-A mRNA expression levels, as a significant inverse correlation was observed between HLA-A mRNA expression levels in untreated cells and the degree to which expression is increased after treatment of the cells with a DNA methyltransferase inhibitor (R = 0.6, P = 2.8 × 10(-6)). Further, deep-sequencing and immunoprecipitation assays revealed allelic lineage-specific methylation patterns within the HLA-A promoter region where increased DNA methylation levels correlated significantly with reduced HLA-A expression levels (R = 0.89, P = 3.7 × 10(-9)). These data demonstrate HLA-A allelic lineage-specific variation in expression levels, and DNA methylation as a likely factor in contributing to this variation.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Smita Kulkarni
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Colm O'huigin
- Cancer Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and
| | - Yuko Yuki
- Cancer Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and
| | - Danillo G Augusto
- Cancer Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Xiaojiang Gao
- Cancer Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and
| | - Mary Carrington
- Cancer Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Jasinski-Bergner S, Mandelboim O, Seliger B. The role of microRNAs in the control of innate immune response in cancer. J Natl Cancer Inst 2014; 106:dju257. [PMID: 25217579 DOI: 10.1093/jnci/dju257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ligands for receptors of natural killer (NK) cells and CD8(+) cytotoxic T lymphocytes (CTL), such as the inhibitory nonclassical HLA-G, the activating stress-induced major histocompatibility complex class I-related antigens MICA and MICB, and/or the UL16-binding proteins (ULBPs), are often aberrantly expressed upon viral infection and neoplastic transformation, thereby preventing virus-infected or malignant-transformed cells from elimination by immune effector cells. Recently, it has been shown that ligands of both NK and CD8(+) T cells are regulated by a number of cellular and/or viral microRNAs (miRs). These miRs are involved in shaping the antiviral and/or antitumoral immune responses as well as neoplastic growth properties. This review summarizes the expression pattern and function of miRs directed against selected NK and T cell receptor ligands, their putative role in shaping immune surveillance and tumorigenicity, and their clinical relevance. In addition, the potential role of RNA-binding proteins in the post-transcriptional gene regulation of these ligands will be discussed.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM)
| | - Ofer Mandelboim
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM)
| | - Barbara Seliger
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM).
| |
Collapse
|
28
|
Majorczyk E, Matusiak L, Nowak I, Pietkiewicz-Sworowska A, Luszczek W, Szepietowski JC, Kuśnierczyk P. A single nucleotide polymorphism -35 kb T>C (rs9264942) is strongly associated with psoriasis vulgaris depending on HLA-Cw(∗)06. Hum Immunol 2014; 75:504-7. [PMID: 24759677 DOI: 10.1016/j.humimm.2014.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 02/05/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
HLA class I molecules play a role both in viral infection control and in autoimmune diseases development. rs9264942T>C polymorphism in HLA-C gene was found to impact on HLA-C surface expression level and to be associated with HIV-1 control. It was found that these HLA alleles which protect against AIDS are associated with autoimmune disease e.g. psoriasis vulgaris (PsV). Whether rs9264942 SNP is associated with PsV was investigated here. rs9264942T>C was genotyped in 292 PsV patients, and 254 controls using TaqMan Genotyping Assay. PsV patients differed from controls in frequencies of rs9264942T>C alleles (p=3.62 × 10(-16)) and genotypes (5.67 × 10(-15)). However, rs9264942C allele was predisposing to PsV 3-fold weaker than HLA-Cw(∗)06 (OR=5.04 vs. OR=15.61, respectively). In addition, this SNP was described earlier to be in strong linkage disequilibrium (LD) with another SNP, rs67384697 ins/del, which by affecting a microRNA binding is responsible for regulating HLA-C expression. However, typing for is cheaper and simpler than that for rs67384697, therefore we think it may substitute for it to some extent.
Collapse
Affiliation(s)
- Edyta Majorczyk
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland; Chair of Biochemistry and Physiology, Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland.
| | - Lukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, ul. T. Chałubińskiego 1, 50-368 Wrocław, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Aneta Pietkiewicz-Sworowska
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Wioleta Luszczek
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, ul. T. Chałubińskiego 1, 50-368 Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
29
|
High-allelic variability in HLA-C mRNA expression: association with HLA-extended haplotypes. Genes Immun 2014; 15:176-81. [DOI: 10.1038/gene.2014.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
|
30
|
Kulkarni S, Qi Y, O’hUigin C, Pereyra F, Ramsuran V, McLaren P, Fellay J, Nelson G, Chen H, Liao W, Bass S, Apps R, Gao X, Yuki Y, Lied A, Ganesan A, Hunt PW, Deeks SG, Wolinsky S, Walker BD, Carrington M. Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci U S A 2013; 110:20705-10. [PMID: 24248364 PMCID: PMC3870724 DOI: 10.1073/pnas.1312237110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variation in the 3' untranslated region (3'UTR) of the HLA-C locus determines binding of the microRNA Hsa-miR-148a, resulting in lower cell surface expression of alleles that bind miR-148a relative to those alleles that escape its binding. The HLA-C 3'UTR variant was shown to associate with HIV control, but like the vast majority of disease associations in a region dense with causal candidates, a direct effect of HLA-C expression level on HIV control was not proven. We demonstrate that a MIR148A insertion/deletion polymorphism associates with its own expression levels, affecting the extent to which HLA-C is down-regulated, the level of HIV control, and the risk of Crohn disease only among those carrying an intact miR-148a binding site in the HLA-C 3'UTR. These data illustrate a direct effect of HLA-C expression level on HIV control that cannot be attributed to other HLA loci in linkage disequilibrium with HLA-C and highlight the rich complexity of genetic interactions in human disease.
Collapse
Affiliation(s)
- Smita Kulkarni
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Colm O’hUigin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Veron Ramsuran
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Paul McLaren
- School of Life Sciences, École Polytechnique Fédérale de Lausanne and Institute of Microbiology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne and Institute of Microbiology, University of Lausanne, 1011 Lausanne, Switzerland
| | - George Nelson
- Basic Research Program, Center for Cancer Research Genetics Core, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Haoyan Chen
- Department of Dermatology, University of California, San Francisco, CA 94115
- Department of Gastroenterology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Diseases, Shanghai 200001, China
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA 94115
| | - Sara Bass
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
| | - Richard Apps
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Yuko Yuki
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Alexandra Lied
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Uniformed Services University, Bethesda, MD 20817
| | - Peter W. Hunt
- San Francisco General Hospital AIDS Division, University of California, San Francisco, CA 94110; and
| | - Steven G. Deeks
- San Francisco General Hospital AIDS Division, University of California, San Francisco, CA 94110; and
| | - Steven Wolinsky
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| |
Collapse
|
31
|
MHC-driven HIV-1 control on the long run is not systematically determined at early times post-HIV-1 infection. AIDS 2013; 27:1707-16. [PMID: 23462218 DOI: 10.1097/qad.0b013e328360a4bd] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Human leukocyte antigen (HLA) class I-driven long-term protection against HIV-1 is mainly associated with HLA-B*27 and HLA-B*57. This effect is observed early after infection. Clarification needs to be established concerning the moment of action for the other HLA-B or HLA-C alleles. METHODS HLA-B and HLA-C alleles from 111 individuals that control HIV-1 disease for over 8 years and from 747 seroconverters frequencies were compared. Also, HLA-B and HLA-C influence on early levels of plasma HIV-RNA, cellular HIV-DNA, CD4, CD8 and CD4/CD8 ratio was evaluated among the seroconverters. We performed univariate, multivariate and haplotypic analyses in order to disentangle the respective contribution of the HLA-B and HLA-C genes. RESULTS The haplotypes analysis shows three patterns of protective effects of HLA-B and HLA-C alleles or haplotypes. First, the HLA B*57, HLA-B*27, HLA-B*13 and HLA-C*14 alleles, which have a strong effect on long-term disease control, also influence at least one of the early infection phenotypes. Second, HLA-B*52 has a strong effect during early time points on HIV-RNA without significant effect on the long-term control of HIV-1. Finally, the HLA-B*14-C*08 haplotype has a strong effect on the long-term protection, without influencing early viral control. CONCLUSION Our study highlighted independent effects of HLA-B and HLA-C alleles on HIV-disease progression. Furthermore, some alleles appeared to be specifically associated with either long-term control or early virological parameters, suggesting different immunological mechanisms according to the disease stages.
Collapse
|
32
|
Genetic variability in markers of HLA-C expression in two diverse South African populations. PLoS One 2013; 8:e67780. [PMID: 23861805 PMCID: PMC3702582 DOI: 10.1371/journal.pone.0067780] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
An insertion-deletion (indel) polymorphism within the 3′ untranslated region (UTR) of HLA-C has been shown to be involved in the regulation of HLA-C expression. Individuals who carry a deletion at this position exhibit increased HLA-C expression, which associates with lower viral set point in HIV-1 infected individuals. This 263 indel (rs67384697) is reported to be in strong linkage disequilibrium (LD) with a single nucleotide polymorphism (SNP) 35 kilobases upstream of HLA-C (-35T/C; rs9264942) in Caucasian individuals, making this SNP a potential marker for both HLA-C expression and HIV-1 disease progression. We therefore examined genetic variation within the HLA-C 3′ UTR of 265 Black and Caucasian South Africans by direct sequencing and identified haplotypes encompassing the 263 indel and another indel at position 230 in both populations. Concomitant evaluation of variability at the −35 SNP revealed this polymorphism to be an inappropriate marker for the 263 indel in these populations. These findings provide important insights into genetic variability within the regulatory regions of HLA-C that have potential implications for our understanding of the regulation of HLA-C expression and its impact on HIV-1 disease progression.
Collapse
|
33
|
Abstract
Host genetic factors are a major contributing factor to the inter-individual variation observed in response to human immunodeficiency virus (HIV) infection and are linked to resistance to HIV infection among exposed individuals, as well as rate of disease progression and the likelihood of viral transmission. Of the genetic variants that have been shown to affect the natural history of HIV infection, the human leukocyte antigen (HLA) class I genes exhibit the strongest and most consistent association, underscoring a central role for CD8(+) T cells in resistance to the virus. HLA proteins play important roles in T-cell-mediated adaptive immunity by presenting immunodominant HIV epitopes to cytotoxic T lymphocytes (CTLs) and CD4(+) T cells. Genetic and functional data also indicate a function for HLA in natural killer cell-mediated innate immunity against HIV by interacting with killer cell immunoglobulin-like receptors (KIR). We review the HLA and KIR associations with HIV disease and discuss the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Characterization of 3′untranslated region (3′UTR) of the MICB gene. Hum Immunol 2013; 74:746-50. [DOI: 10.1016/j.humimm.2013.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/24/2013] [Indexed: 01/27/2023]
|
35
|
Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, Yuki Y, Del Prete GQ, Goulder P, Brumme ZL, Brumme CJ, John M, Mallal S, Nelson G, Bosch R, Heckerman D, Stein JL, Soderberg KA, Moody MA, Denny TN, Zeng X, Fang J, Moffett A, Lifson JD, Goedert JJ, Buchbinder S, Kirk GD, Fellay J, McLaren P, Deeks SG, Pereyra F, Walker B, Michael NL, Weintrob A, Wolinsky S, Liao W, Carrington M. Influence of HLA-C expression level on HIV control. Science 2013; 340:87-91. [PMID: 23559252 PMCID: PMC3784322 DOI: 10.1126/science.1232685] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn's disease, suggesting a broader influence of HLA expression levels in human disease.
Collapse
Affiliation(s)
- Richard Apps
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| | | | - Haoyan Chen
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Department of Gastroenterology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Diseases, Shanghai 200001, China
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| | - Rasmi Thomas
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yuko Yuki
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| | - Greg Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Philip Goulder
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics, Oxford University, Oxford OX1 3SY, UK
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, 6150
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, 6150
| | - George Nelson
- Basic Research Program, Center for Cancer Research Genetics Core, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ronald Bosch
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, MA 02115, USA
| | - David Heckerman
- Microsoft Research, eScience Group, Los Angeles, CA 90024, USA
| | - Judy L. Stein
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xue Zeng
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Fang
- Department of Gastroenterology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Diseases, Shanghai 200001, China
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, CB2 1QP, UK
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - James J. Goedert
- Infectious and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Susan Buchbinder
- San Francisco Department of Public Health, Bridge HIV, San Francisco, CA 94102, USA
| | - Gregory D. Kirk
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jacques Fellay
- Institute of Microbiology, University Hospital Lausanne and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Paul McLaren
- Institute of Microbiology, University Hospital Lausanne and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA 94105, USA
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Amy Weintrob
- Infectious Disease Clinical Research Program, Uniformed Services University, Bethesda, MD, 20817, USA
| | - Steven Wolinsky
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02114, USA
| |
Collapse
|
36
|
Lind C, Ferriola D, Mackiewicz K, Papazoglou A, Sasson A, Monos D. Filling the gaps – The generation of full genomic sequences for 15 common and well-documented HLA class I alleles using next-generation sequencing technology. Hum Immunol 2013; 74:325-9. [DOI: 10.1016/j.humimm.2012.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
37
|
Endale Ahanda ML, Fritz ER, Estellé J, Hu ZL, Madsen O, Groenen MAM, Beraldi D, Kapetanovic R, Hume DA, Rowland RRR, Lunney JK, Rogel-Gaillard C, Reecy JM, Giuffra E. Prediction of altered 3'- UTR miRNA-binding sites from RNA-Seq data: the swine leukocyte antigen complex (SLA) as a model region. PLoS One 2012; 7:e48607. [PMID: 23139801 PMCID: PMC3490867 DOI: 10.1371/journal.pone.0048607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/27/2012] [Indexed: 01/09/2023] Open
Abstract
THE SLA (swine leukocyte antigen, MHC: SLA) genes are the most important determinants of immune, infectious disease and vaccine response in pigs; several genetic associations with immunity and swine production traits have been reported. However, most of the current knowledge on SLA is limited to gene coding regions. MicroRNAs (miRNAs) are small molecules that post-transcriptionally regulate the expression of a large number of protein-coding genes in metazoans, and are suggested to play important roles in fine-tuning immune mechanisms and disease responses. Polymorphisms in either miRNAs or their gene targets may have a significant impact on gene expression by abolishing, weakening or creating miRNA target sites, possibly leading to phenotypic variation. We explored the impact of variants in the 3'-UTR miRNA target sites of genes within the whole SLA region. The combined predictions by TargetScan, PACMIT and TargetSpy, based on different biological parameters, empowered the identification of miRNA target sites and the discovery of polymorphic miRNA target sites (poly-miRTSs). Predictions for three SLA genes characterized by a different range of sequence variation provided proof of principle for the analysis of poly-miRTSs from a total of 144 M RNA-Seq reads collected from different porcine tissues. Twenty-four novel SNPs were predicted to affect miRNA-binding sites in 19 genes of the SLA region. Seven of these genes (SLA-1, SLA-6, SLA-DQA, SLA-DQB1, SLA-DOA, SLA-DOB and TAP1) are linked to antigen processing and presentation functions, which is reminiscent of associations with disease traits reported for altered miRNA binding to MHC genes in humans. An inverse correlation in expression levels was demonstrated between miRNAs and co-expressed SLA targets by exploiting a published dataset (RNA-Seq and small RNA-Seq) of three porcine tissues. Our results support the resource value of RNA-Seq collections to identify SNPs that may lead to altered miRNA regulation patterns.
Collapse
Affiliation(s)
- Marie-Laure Endale Ahanda
- INRA, UMR 1313 de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, Laboratoire de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Eric R. Fritz
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Jordi Estellé
- INRA, UMR 1313 de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, Laboratoire de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Zhi-Liang Hu
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Dario Beraldi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Robert R. R. Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Joan K. Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Claire Rogel-Gaillard
- INRA, UMR 1313 de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, Laboratoire de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - James M. Reecy
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Elisabetta Giuffra
- INRA, UMR 1313 de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, Laboratoire de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
38
|
McLaren PJ, Ripke S, Pelak K, Weintrob AC, Patsopoulos NA, Jia X, Erlich RL, Lennon NJ, Kadie CM, Heckerman D, Gupta N, Haas DW, Deeks SG, Pereyra F, Walker BD, de Bakker PIW. Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans. Hum Mol Genet 2012; 21:4334-47. [PMID: 22718199 PMCID: PMC3441117 DOI: 10.1093/hmg/dds226] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/12/2022] Open
Abstract
A small proportion of human immunodeficiency virus-1 (HIV-1) infected individuals, termed HIV-1 controllers, suppress viral replication to very low levels in the absence of therapy. Genetic investigations of this phenotype have strongly implicated variation in the class I major histocompatibility complex (MHC) region as key to HIV-1 control. We collected sequence-based classical class I HLA genotypes at 4-digit resolution in HIV-1-infected African American controllers and progressors (n = 1107), and tested them for association with host control using genome-wide single nucleotide polymorphism data to account for population structure. Several classical alleles at HLA-B were associated with host control, including B*57:03 [odds ratio (OR) = 5.1; P= 3.4 × 10(-18)] and B*81:01 (OR = 4.8; P= 1.3 × 10(-9)). Analysis of variable amino acid positions demonstrates that HLA-B position 97 is the most significant association with host control in African Americans (omnibus P = 1.2 × 10(-21)) and explains the signal of several HLA-B alleles, including B*57:03. Within HLA-B, we also identified independent effects at position 116 (omnibus P= 2.8 × 10(-15)) in the canonical F pocket, position 63 in the B pocket (P= 1.5 × 10(-3)) and the non-pocket position 245 (P= 8.8 × 10(-10)), which is thought to influence CD8-binding kinetics. Adjusting for these HLA-B effects, there is evidence for residual association in the MHC region. These results underscore the key role of HLA-B in affecting HIV-1 replication, likely through the molecular interaction between HLA-B and viral peptides presented by infected cells, and suggest that sites outside the peptide-binding pocket also influence HIV-1 control.
Collapse
Affiliation(s)
- Paul J. McLaren
- Division of Genetics
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Stephan Ripke
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Pelak
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA
| | - Amy C. Weintrob
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nikolaos A. Patsopoulos
- Division of Genetics
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xiaoming Jia
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rachel L. Erlich
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Niall J. Lennon
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David W. Haas
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Florencia Pereyra
- Division of Infectious Disease and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Charlestown, MA, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Charlestown, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul I. W. de Bakker
- Division of Genetics
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Genetics and
- Department of Epidemiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
39
|
Klitz W, Hedrick P, Louis EJ. New reservoirs of HLA alleles: pools of rare variants enhance immune defense. Trends Genet 2012; 28:480-6. [PMID: 22867968 DOI: 10.1016/j.tig.2012.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
Highly polymorphic exons of the major histocompatibility complex (MHC, or HLA in humans) encode critical amino acids that bind foreign peptides. Recognition of the peptide-MHC complexes by T cells initiates the adaptive immune response. The particular structure of these exons facilitates gene conversion(GC) events, leading to the generation of new alleles. Estimates for allele creation and loss indicate that more than 10000 such alleles are circulating at low frequencies in human populations. Empirical sampling has affirmed this expectation. This suggests that the MHC loci have a system for moving valuable and often complex variants into adaptive service. Here, we argue that HLA loci carry many new mutant alleles prepared to assume epidemiologically meaningful roles when called on by selection provoked by exposure to new and evolving pathogens. Because new mutant alleles appear in a population at the lowest possible frequency (i.e., a single copy), they have typically been thought of as having little consequence. However, this large population of rare yet potentially valuable new alleles may contribute to pathogen defense.
Collapse
Affiliation(s)
- William Klitz
- School of Public Health, University of California, Berkeley, CA, USA.
| | | | | |
Collapse
|
40
|
Zipeto D, Beretta A. HLA-C and HIV-1: friends or foes? Retrovirology 2012; 9:39. [PMID: 22571741 PMCID: PMC3386009 DOI: 10.1186/1742-4690-9-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | | |
Collapse
|
41
|
Bagasra O, Sheraz M, Pace DG. Hepatitis G Virus or GBV-C: A Natural Anti-HIV Interfering Virus. VIRUSES: ESSENTIAL AGENTS OF LIFE 2012:363-388. [DOI: 10.1007/978-94-007-4899-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|