1
|
Kvarnung M, Pettersson M, Chun-On P, Rafati M, McReynolds LJ, Norberg A, Moura PL, Pesonen I, Chaireti R, Grönros Söderholm B, Burlin J, Rydén J, Lindberg EH, Giri N, Savage SA, Agarwal S, Nordgren A, Tesi B. Identification of biallelic POLA2 variants in two families with an autosomal recessive telomere biology disorder. Eur J Hum Genet 2025; 33:580-587. [PMID: 39616267 PMCID: PMC12048608 DOI: 10.1038/s41431-024-01722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 10/17/2024] [Indexed: 05/04/2025] Open
Abstract
POLA2 encodes the accessory subunit of DNA polymerase α (polα)/primase, which is crucial for telomere C-strand fill-in. Incomplete fill-in of the C-rich telomeric strand after DNA replication has been proposed as a mechanism for Coats plus syndrome, a phenotype within the broader spectrum of telomere biology disorders (TBD). Coats plus syndrome has so far been associated with pathogenic variants in POT1, CTC1, and STN1. Here we report the findings of biallelic deleterious rare variants in POLA2 gene detected by whole genome sequencing and segregation analysis in five young adults from two unrelated families. All five individuals displayed abnormally short telomeres and a clinical phenotype suggesting a TBD disorder with Coats plus features including retinal and gastrointestinal telangiectasias. Our results suggest POLA2 as a novel autosomal recessive gene for a TBD with Coats plus features.
Collapse
Affiliation(s)
- Malin Kvarnung
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Pattra Chun-On
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maryam Rafati
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Anna Norberg
- Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Pedro Luis Moura
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ida Pesonen
- Department of Medicine Solna, Respiratory Medicine Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Roza Chaireti
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Julia Burlin
- Division of Nephrology, Danderyd University Hospital, Stockholm, Sweden
| | - Jenny Rydén
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Hellström Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Sanz-Moreno A, Becker L, Xie K, da Silva-Buttkus P, Dragano NRV, Aguilar-Pimentel A, Amarie OV, Calzada-Wack J, Kraiger M, Leuchtenberger S, Seisenberger C, Marschall S, Rathkolb B, Scifo E, Liu T, Thanabalasingam A, Sanchez-Vazquez R, Martinez P, Blasco MA, Savage SA, Fuchs H, Ehninger D, Gailus-Durner V, de Angelis MH. Loss of Ten1 in mice induces telomere shortening and models human dyskeratosis congenita. SCIENCE ADVANCES 2025; 11:eadp8093. [PMID: 40215293 PMCID: PMC11988282 DOI: 10.1126/sciadv.adp8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Telomere length regulation is essential for genome stability as short telomeres can trigger cellular senescence and apoptosis constituting an integral aspect of biological aging. Telomere biology disorders (TBDs) such as dyskeratosis congenita (DC) are rare, inherited diseases with known mutations in at least 16 different genes encoding components of the telomere maintenance complexes. The precise role of TEN1, part of the CST complex (CTC1, STN1, and TEN1), and the consequences of its loss of function in vivo are not yet known. We investigated the first viable murine model of Ten1 deficiency created by CRISPR-Cas9-mediated exon 3 deletion. Ten1 homozygous knockout mice present with telomere attrition, short life span, skin hyperpigmentation, aplastic anemia, and cerebellar hypoplasia. Molecular analyses revealed a reduction of proliferating cells, increased apoptosis, and stem cell depletion with activation of the p53/p21 signaling pathway. Our data demonstrate that Ten1 deficiency causes telomere shortening and associates with accelerated aging.
Collapse
Affiliation(s)
- Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Nathalia R. V. Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Oana V. Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377 Munich, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Anoja Thanabalasingam
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Raul Sanchez-Vazquez
- Telomeres and Telomerase Group–Fundación Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group–Fundación Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group–Fundación Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Hrabê de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| |
Collapse
|
3
|
Tummala H, Walne AJ, Badat M, Patel M, Walne AM, Alnajar J, Chow CC, Albursan I, Frost JM, Ballard D, Killick S, Szitányi P, Kelly AM, Raghavan M, Powell C, Raymakers R, Todd T, Mantadakis E, Polychronopoulou S, Pontikos N, Liao T, Madapura P, Hossain U, Vulliamy T, Dokal I. The evolving genetic landscape of telomere biology disorder dyskeratosis congenita. EMBO Mol Med 2024; 16:2560-2582. [PMID: 39198715 PMCID: PMC11473520 DOI: 10.1038/s44321-024-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK.
- Barts Health NHS Trust, London, UK.
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Mohsin Badat
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Manthan Patel
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Abigail M Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Chi Ching Chow
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Ibtehal Albursan
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - David Ballard
- Department of Analytical, Environmental & Forensic Sciences, Kings College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Peter Szitányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Prague, Czech Republic
| | - Anne M Kelly
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Manoj Raghavan
- Clinical Haematology, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | - Corrina Powell
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Reinier Raymakers
- University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Tony Todd
- Department of Haematology, Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - Elpis Mantadakis
- Department of Pediatrics' University General Hospital of Alexandroupolis, Democritus University of Thrace Faculty of Medicine, 6th Kilometer Alexandroupolis-Makris, 68 100 Alexandroupolis, Thrace, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tianyi Liao
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Pradeep Madapura
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Upal Hossain
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
4
|
Cai SW, Takai H, Zaug AJ, Dilgen TC, Cech TR, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/primase at human telomeres. Cell 2024; 187:3638-3651.e18. [PMID: 38838667 PMCID: PMC11246235 DOI: 10.1016/j.cell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Teague C Dilgen
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA.
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Rohatgi SJ, Nimal SR, Nirhale SP, Rao PM, Naphade PU. Unraveling Labrune Syndrome: A Case Report on the Neurological Phenotype in SNORD118-Negative Patients. Cureus 2024; 16:e62029. [PMID: 38989370 PMCID: PMC11235405 DOI: 10.7759/cureus.62029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Labrune syndrome is a rare neurogenetic disorder with varied presentations. Here, we report the case of a 53-year-old male who presented with seizures, gait imbalance, and upper limb tremors for two years. Imaging studies revealed extensive leukodystrophy, multiple cerebral calcifications, and cystic lesions characteristic of Labrune syndrome. However, whole exome sequencing did not detect the SNORD118 mutation, typically associated with Labrune syndrome. Although the SNORD118 mutation is commonly found in Labrune syndrome, a few cases of the syndrome without this mutation have also been reported. This suggests the possibility that other yet undiscovered mutations may cause the same phenotype.
Collapse
Affiliation(s)
- Shalesh J Rohatgi
- Neurology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Siddharth R Nimal
- Neurology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Satish P Nirhale
- Neurology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Prajwal M Rao
- Neurology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Pravin U Naphade
- Neurology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| |
Collapse
|
6
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
7
|
Lasho T, Patnaik MM. Adaptive and Maladaptive Clonal Hematopoiesis in Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:35-44. [PMID: 38095828 DOI: 10.1007/s11899-023-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) are germline-inherited conditions characterized by reduction in telomerase function, accelerated shortening of telomeres, predisposition to organ-failure syndromes, and increased risk of neoplasms, especially myeloid malignancies. In normal cells, critically short telomeres trigger apoptosis and/or cellular senescence. However, the evolutionary mechanism by which TBD-related telomerase-deficient cells can overcome this fitness constraint remains elusive. RECENT FINDINGS Preliminary data suggests the existence of adaptive somatic mosaic states characterized by variants in TBD-related genes and maladaptive somatic mosaic states that attempt to overcome hematopoietic fitness constraints by alternative methods leading to clonal hematopoiesis. TBDs are both rare and highly heterogeneous in presentation, and the association of TBD with malignant transformation is unclear. Understanding the clonal complexity and mechanisms behind TBD-associated molecular signatures that lead to somatic adaptation in the setting of defective hematopoiesis will help inform therapy and treatment for this set of diseases.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Chelban V, Houlden H. White matter disorders with cerebral calcification in adulthood. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:111-131. [PMID: 39322374 DOI: 10.1016/b978-0-323-99209-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This chapter provides a comprehensive overview of adult-onset leukoencephalopathies with cerebral calcification (CC), emphasizing the importance of age at presentation, systemic clinical features, and neuroimaging patterns for accurate diagnosis. CC is a multifaceted phenomenon associated with various neurologic, developmental, metabolic, and genetic conditions, as well as normal aging. Here, we explore the distinction between primary familial brain calcification (PFBC) and secondary forms, including metabolic and mitochondrial causes. We discuss genetic causes, e.g., SLC20A2, XPR1, PDGFB, PDGFRB, MYORG, NAA60 and JAM2, in the context of autosomal dominant and recessive PFBC and other inherited conditions. The chapter delineates the diagnostic approach involving family history, clinical assessments, and detailed investigations of calcium-phosphate metabolism. Neuroimaging modalities, including computed tomography and magnetic resonance imaging, are crucial for assessing calcification patterns and localizations. Genetic testing, especially next-generation sequencing, plays a pivotal role in providing a final molecular diagnosis. The management of patients with CC encompasses symptomatic treatment and cause-specific approaches, requiring a multidisciplinary care approach. In conclusion, this chapter highlights the complexity of leukoencephalopathies with CC, emphasizing the need for integrated and evolving management to optimize patient care.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
9
|
Livingston JH. Childhood-inherited white matter disorders with calcification. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:95-109. [PMID: 39322397 DOI: 10.1016/b978-0-323-99209-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Intracranial calcification (ICC) occurs in many neurologic disorders both acquired and genetic. In some inherited white matter disorders, it is a common or even invariable feature where the presence and pattern of calcification provides an important pointer to the specific diagnosis. This is particularly the case for the Aicardi-Goutières syndrome (AGS) and for Coats plus (CP) and leukoencephalopathy with calcifications and cysts (LCC), which are discussed in detail in this chapter. AGS is a genetic disorder of type 1 interferon regulation, caused by mutations in any of the nine genes identified to date. In its classic form, AGS has very characteristic clinical and neuroimaging features which will be discussed here. LCC is a purely neurologic disorder caused by mutations in the SNORD118 gene, whereas CP is a multisystem disorder of telomere function that may result from mutations in the CTC1, POT1, or STN genes. In spite of the different pathogenetic basis for LCC and CP, they share remarkably similar neuroimaging and neuropathologic features. Cockayne syndrome, in which ICC is usually present, is discussed elsewhere in this volume. ICC may occur as an occasional feature of many other white matter diseases, including Alexander disease, Krabbe disease, X-ALD, and occulodentodigital dysplasia.
Collapse
Affiliation(s)
- John H Livingston
- Professor of Paediatric Neurology, University of Leeds, Leeds, United Kingdom; Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, United Kingdom.
| |
Collapse
|
10
|
Ongie L, Raj HA, Stevens KB. Genetic Counseling and Family Screening Recommendations in Patients with Telomere Biology Disorders. Curr Hematol Malig Rep 2023; 18:273-283. [PMID: 37787873 DOI: 10.1007/s11899-023-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) encompass a spectrum of genetic diseases with a common pathogenesis of defects in telomerase function and telomere maintenance causing extremely short telomere lengths. Here, we review the current literature surrounding genetic testing strategies, cascade testing, reproductive implications, and the role of genetic counseling. RECENT FINDINGS The understanding of the genetic causes and clinical symptoms of TBDs continues to expand while genetic testing and telomere length testing are nuanced tools utilized in the diagnosis of this condition. Access to genetic counseling is becoming more abundant and is valuable in supporting patients and their families in making informed decisions. Patient resources and support groups are valuable to this community. Defining which populations should be offered genetic counseling and testing is imperative to provide proper diagnoses and medical management for not only the primary patient, but also their biological relatives.
Collapse
Affiliation(s)
| | - Hannah A Raj
- Team Telomere, Inc., New York, NY, USA
- College of Medicine, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
11
|
Jaiswal RK, Lei KH, Chastain M, Wang Y, Shiva O, Li S, You Z, Chi P, Chai W. CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection. Nat Commun 2023; 14:7882. [PMID: 38036565 PMCID: PMC10689503 DOI: 10.1038/s41467-023-43685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Olga Shiva
- Office of Research, Washington State University, Spokane, WA, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
12
|
Liao P, Yan B, Wang C, Lei P. Telomeres: Dysfunction, Maintenance, Aging and Cancer. Aging Dis 2023; 15:2595-2631. [PMID: 38270117 PMCID: PMC11567242 DOI: 10.14336/ad.2023.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Aging has emerged at the forefront of scientific research due to the growing social and economic costs associated with the growing aging global population. The defining features of aging involve a variety of molecular processes and cellular systems, which are interconnected and collaboratively contribute to the aging process. Herein, we analyze how telomere dysfunction potentially amplifies or accelerates the molecular and biochemical mechanisms underpinning each feature of aging and contributes to the emergence of age-associated illnesses, including cancer and neurodegeneration, via the perspective of telomere biology. Furthermore, the recently identified novel mechanistic actions for telomere maintenance offer a fresh viewpoint and approach to the management of telomeres and associated disorders. Telomeres and the defining features of aging are intimately related, which has implications for therapeutic and preventive approaches to slow aging and reduce the prevalence of age-related disorders.
Collapse
Affiliation(s)
- Pan Liao
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ping Lei
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Politano D, Catalano G, Pezzotti E, Varesio C, Sirchia F, Casella A, Rognone E, Pichiecchio A, Borgatti R, Orcesi S. Expanding the Natural History of SNORD118-Related Ribosomopathy: Hints from an Early-Diagnosed Patient with Leukoencephalopathy with Calcifications and Cysts and Overview of the Literature. Genes (Basel) 2023; 14:1817. [PMID: 37761957 PMCID: PMC10531261 DOI: 10.3390/genes14091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Leukoencephalopathy with calcifications and cysts (LCC) is a rare autosomal recessive disorder showing a pediatric or adult onset. First described in 1996 by Labrune and colleagues, it was only in 2016 that bi-allelic variants in a non-protein coding gene, SNORD118, were found as the cause for LCC, differentiating this syndrome from coats plus (CP). SNORD118 transcribes for a small nucleolar RNA, which is necessary for correct ribosome biogenesis, hence the classification of LCC among ribosomopathies. The syndrome is characterized by a combination of white matter hyperintensities, calcifications, and cysts on brain MRI with varying neurological signs. Corticosteroids, surgery, and recently bevacizumab, have been tried with unclear results since the natural history of the disease remains elusive. To date, 67 patients with a pediatric onset of disease have been described in the literature, with a clinical-radiological follow-up carried out in only eleven of them. We described the clinical-radiological follow-up from birth to almost five years of age of a late-preterm patient diagnosed with LCC and carried out a thorough overview of pediatric patients described in the literature. It is important to gather serial clinical-radiological data from other patients to depict the natural history of this disease, aiming to deeply depict genotype-phenotype correlations and make the role of new therapeutics clearer.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Guido Catalano
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elena Pezzotti
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- U.O. Neuropsichiatria Infanzia e Adolescenza, ASST Bergamo Est, 24068 Seriate, Italy
| | - Costanza Varesio
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Medical Genetics Unit, IRCCS San Matteo Foundation, 27100 Pavia, Italy
| | - Antonella Casella
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Rognone
- Neuroradiology Department, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavior Neuroscience, University of Pavia, 27100 Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
14
|
Abstract
It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
15
|
Wang H, Ma T, Zhang X, Chen W, Lan Y, Kuang G, Hsu SJ, He Z, Chen Y, Stewart J, Bhattacharjee A, Luo Z, Price C, Feng X. CTC1 OB-B interaction with TPP1 terminates telomerase and prevents telomere overextension. Nucleic Acids Res 2023; 51:4914-4928. [PMID: 37021555 PMCID: PMC10250220 DOI: 10.1093/nar/gkad237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
CST (CTC1-STN1-TEN1) is a telomere associated complex that binds ssDNA and is required for multiple steps in telomere replication, including termination of G-strand extension by telomerase and synthesis of the complementary C-strand. CST contains seven OB-folds which appear to mediate CST function by modulating CST binding to ssDNA and the ability of CST to recruit or engage partner proteins. However, the mechanism whereby CST achieves its various functions remains unclear. To address the mechanism, we generated a series of CTC1 mutants and studied their effect on CST binding to ssDNA and their ability to rescue CST function in CTC1-/- cells. We identified the OB-B domain as a key determinant of telomerase termination but not C-strand synthesis. CTC1-ΔB expression rescued C-strand fill-in, prevented telomeric DNA damage signaling and growth arrest. However, it caused progressive telomere elongation and the accumulation of telomerase at telomeres, indicating an inability to limit telomerase action. The CTC1-ΔB mutation greatly reduced CST-TPP1 interaction but only modestly affected ssDNA binding. OB-B point mutations also weakened TPP1 association, with the deficiency in TPP1 interaction tracking with an inability to limit telomerase action. Overall, our results indicate that CTC1-TPP1 interaction plays a key role in telomerase termination.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tengfei Ma
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yina Lan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guotao Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shih-Jui Hsu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Zhenhua Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Carolyn Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Xuyang Feng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Zade NH, Khattar E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J Cell Physiol 2023; 238:1237-1255. [PMID: 37183325 DOI: 10.1002/jcp.31034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The protection of telomere protein (POT1) is a telomere-binding protein and is an essential component of the six-membered shelterin complex, which is associated with the telomeres. POT1 directly binds to the 3' single-stranded telomeric overhang and prevents the activation of DNA damage response at telomeres thus preventing the telomere-telomere fusions and genomic instability. POT1 also plays a pivotal role in maintaining telomere length by regulating telomerase-mediated telomere elongation. Mutations in POT1 proteins result in three different telomere phenotypes, which include long, short, or aberrant telomere length. Long telomeres predispose individuals to cancer, while short or aberrant telomere phenotypes result in pro-aging diseases referred to as telomeropathies. Here, we review the function of POT1 proteins in telomere length hemostasis and how the spectrum of mutations reported in POT1 can be segregated toward developing very distinct disease phenotypes of cancer and telomeropathies.
Collapse
Affiliation(s)
- Nikita Harish Zade
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
17
|
Li J, Li C, Zhang Q, Qiu C. Leukoencephalopathy with calcifications and cysts: A case report with literature review. Neurol Sci 2023:10.1007/s10072-023-06776-y. [PMID: 37004603 DOI: 10.1007/s10072-023-06776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Leukoencephalopathy with calcifications and cysts (LCC; OMIM #614561) is a rare disease and at present there are less than 100 cases reported worldwide. Mutations in the SNORD118 gene is now known to be the cause of LCC. We present a case who was heterozygous for the n.70G>A and n.6C>T sequence variants of the SNORD118 gene, variants which to date have not been described. Compared with the cases that we reviewed, our patient had the second longest time to diagnosis (age 56) from onset of symptoms 40 years prior. Moreover, his cousin's family has a high prevalence of epilepsy. This paper reviewed all published reports to date that had descriptive cases involving LCC as well as testing for the SNORD118 gene. Since 1996 only 85 patients have been described in 59 case reports. In this review, we summarize their clinical features, especially central nervous system symptoms, treatment, pathology, and gene testing results.
Collapse
Affiliation(s)
- Jingya Li
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, P. R. China
| | - Chun Li
- Department of Neurology, Anji Traditional Chinese Medical Hospital, 299 Shengli West Road,, Anji Huzhou, Zhejiang Province, P. R. China
| | - Qing Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, P. R. China
| | - Chao Qiu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
18
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
19
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Doubková M, Vrzalová Z, Štefániková M, Červinek L, Kozubík KS, Blaháková I, Pospíšilová Š, Doubek M. Germline variant of CTC1 gene in a patient with pulmonary fibrosis and myelodysplastic syndrome. Multidiscip Respir Med 2023; 18:909. [PMID: 37404458 PMCID: PMC10316942 DOI: 10.4081/mrm.2023.909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Telomeropathies are associated with a wide range of diseases and less common combinations of various pulmonary and extrapulmonary disorders. Case presentation In proband with high-risk myelodysplastic syndrome and interstitial pulmonary fibrosis, whole exome sequencing revealed a germline heterozygous variant of CTC1 gene (c.1360delG). This "frameshift" variant results in a premature stop codon and is classified as likely pathogenic/pathogenic. So far, this gene variant has been described in a heterozygous state in adult patients with hematological diseases such as idiopathic aplastic anemia or paroxysmal nocturnal hemoglobinuria, but also in interstitial pulmonary fibrosis. Described CTC1 gene variant affects telomere length and leads to telomeropathies. Conclusions In our case report, we describe a rare case of coincidence of pulmonary fibrosis and hematological malignancy caused by a germline gene mutation in CTC1. Lung diseases and hematologic malignancies associated with short telomeres do not respond well to standard treatment.
Collapse
Affiliation(s)
- Martina Doubková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital and Faculty of Medicine, Brno
| | - Zuzana Vrzalová
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Marianna Štefániková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital and Faculty of Medicine, Brno
| | - Libor Červinek
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Kateřina Staňo Kozubík
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Ivona Blaháková
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Šárka Pospíšilová
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
- Department of Medical Genetics and Genomics, University Hospital and Faculty of Medicine, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
- Department of Medical Genetics and Genomics, University Hospital and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
21
|
Kodama K, Aoyama H, Murakami Y, Takanashi JI, Koshimizu E, Miyatake S, Iwama K, Mizuguchi T, Matsumoto N, Omata T. A case of early-infantile onset, rapidly progressive leukoencephalopathy with calcifications and cysts caused by biallelic SNORD118 variants. Radiol Case Rep 2023; 18:1217-1220. [PMID: 36660574 PMCID: PMC9842793 DOI: 10.1016/j.radcr.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 01/13/2023] Open
Abstract
Leukoencephalopathy with calcifications and cysts is a rare autosomal recessive genetic disorder neuroradiologically characterized by intracranial calcification, cerebral white matter disease, and multiple cysts. Although SNORD118 genes have recently been identified as a cause of this disorder, its clinical course varies for each patient. We report an early infantile case of this disease that progressed rapidly with confirmed SNORD118 variants. A 3-month-old female infant presented with epileptic seizures. Computed tomography revealed intracranial calcifications in the basal ganglia and thalamus. Magnetic resonance imaging demonstrated hyperintense lesions in the diffuse white matter on T2-weighted images starting at 7 months of age. Calcifications developed in the cerebral white matter, pons, and cerebellum. Small cysts appeared in the cerebral white matter at 1 year and 6 months. These cysts then began to increase bilaterally and expand rapidly. Although her epilepsy was controlled, she exhibited severe developmental delays and was unable to speak or walk at the age of 4 years. Whole-exome sequencing did not reveal any causal variants in the coding sequences. Further, Sanger sequencing revealed biallelic SNORD118 variants. Clinical features of this disease have not been established. To date, no cases with rapid changes in imaging results have been reported in detail prior to the appearance of cysts. Thus, we report a novel case that had an early infantile-onset and progressed rapidly with sequential appearance of calcification, white matter lesions and cysts. As SNORD118 variants might be missed by regular whole-exome sequencing, careful neuroimaging follow-up may be necessary to diagnose this disease.
Collapse
Affiliation(s)
- Kazuo Kodama
- Division of Child Neurology, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
- Corresponding author.
| | - Hiromi Aoyama
- Division of Child Neurology, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Murakami
- Division of Child Neurology, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Jun-ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University, Yachiyo Medical Center, Yachiyo, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University, Yokohama, Japan
| | | | - Taku Omata
- Division of Child Neurology, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| |
Collapse
|
22
|
Whole-Exome Sequencing Identifies Pathogenic Germline Variants in Patients with Lynch-Like Syndrome. Cancers (Basel) 2022; 14:cancers14174233. [PMID: 36077770 PMCID: PMC9454535 DOI: 10.3390/cancers14174233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary A significant proportion of families with a clinical suggestion of Lynch syndrome and screened for the known MMR genes remain without a molecular diagnosis. These patients, who generally show a suggestive family pedigree or early-onset tumors with MMR deficiency and no detectable germline variants, are referred to as having Lynch-like syndrome. To investigate underlying and potentially predisposing variants related to Lynch-like syndrome, we performed whole-exome sequencing in patients with clinical criteria for Lynch syndrome, MMR deficiency and without germline variants. This approach allowed for the identification of new variants potentially associated with Lynch-like syndrome, providing new clues to explain the familial predisposition to Lynch syndrome-related tumors in these patients, which could lead to new screening strategies for the identification of families at risk of developing cancer. Abstract Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, characterized by germline pathogenic variants in mismatch repair (MMR)-related genes that lead to microsatellite instability. Patients who meet the clinical criteria for LS and MMR deficiency and without any identified germline pathogenic variants are frequently considered to have Lynch-like syndrome (LLS). These patients have a higher risk of CRC and extracolonic tumors, and little is known about their underlying genetic causes. We investigated the germline spectrum of LLS patients through whole-exome sequencing (WES). A total of 20 unrelated patients with MMR deficiency who met the clinical criteria for LS and had no germline variant were subjected to germline WES. Variant classification was performed according to the American College of Medical Genetics and Genomics (ACMG) criteria. Pathogenic/likely pathogenic variants were identified in 35% of patients in known cancer genes such as MUTYH and ATM. Besides this, rare and potentially pathogenic variants were identified in the DNA repair gene POLN and other cancer-related genes such as PPARG, CTC1, DCC and ALPK1. Our study demonstrates the germline mutational status of LLS patients, a population at high risk of colorectal cancer.
Collapse
|
23
|
Abstract
Telomere biology was first studied in maize, ciliates, yeast, and mice, and in recent decades, it has informed understanding of common disease mechanisms with broad implications for patient care. Short telomere syndromes are the most prevalent premature aging disorders, with prominent phenotypes affecting the lung and hematopoietic system. Less understood are a newly recognized group of cancer-prone syndromes that are associated with mutations that lengthen telomeres. A large body of new data from Mendelian genetics and epidemiology now provides an opportunity to reconsider paradigms related to the role of telomeres in human aging and cancer, and in some cases, the findings diverge from what was interpreted from model systems. For example, short telomeres have been considered potent drivers of genome instability, but age-associated solid tumors are rare in individuals with short telomere syndromes, and T cell immunodeficiency explains their spectrum. More commonly, short telomeres promote clonal hematopoiesis, including somatic reversion, providing a new leukemogenesis paradigm that is independent of genome instability. Long telomeres, on the other hand, which extend the cellular life span in vitro, are now appreciated to be the most common shared germline risk factor for cancer in population studies. Through this contemporary lens, I revisit here the role of telomeres in human aging, focusing on how short and long telomeres drive cancer evolution but through distinct mechanisms.
Collapse
Affiliation(s)
- Mary Armanios
- Departments of Oncology, Genetic Medicine, Pathology, and Molecular Biology and Genetics; Telomere Center at Johns Hopkins; and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
24
|
Patient-Derived iPSCs Reveal Evidence of Telomere Instability and DNA Repair Deficiency in Coats Plus Syndrome. Genes (Basel) 2022; 13:genes13081395. [PMID: 36011306 PMCID: PMC9407572 DOI: 10.3390/genes13081395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Coats plus (CP) syndrome is an inherited autosomal recessive condition that results from mutations in the conserved telomere maintenance component 1 gene (CTC1). The CTC1 protein functions as a part of the CST protein complex, a protein heterotrimer consisting of CTC1-STN1-TEN1 which promotes telomere DNA synthesis and inhibits telomerase-mediated telomere elongation. However, it is unclear how CTC1 mutations may have an effect on telomere structure and function. For that purpose, we established the very first induced pluripotent stem cell lines (iPSCs) from a compound heterozygous patient with CP carrying deleterious mutations in both alleles of CTC1. Telomere dysfunction and chromosomal instability were assessed in both circulating lymphocytes and iPSCs from the patient and from healthy controls of similar age. The circulating lymphocytes and iPSCs from the CP patient were characterized by their higher telomere length heterogeneity and telomere aberrations compared to those in control cells from healthy donors. Moreover, in contrast to iPSCs from healthy controls, the high levels of telomerase were associated with activation of the alternative lengthening of telomere (ALT) pathway in CP-iPSCs. This was accompanied by inappropriate activation of the DNA repair proteins γH2AX, 53BP1, and ATM, as well as with accumulation of DNA damage, micronuclei, and anaphase bridges. CP-iPSCs presented features of cellular senescence and increased radiation sensitivity. Clonal dicentric chromosomes were identified only in CP-iPSCs after exposure to radiation, thus mirroring the role of telomere dysfunction in their formation. These data demonstrate that iPSCs derived from CP patients can be used as a model system for molecular studies of the CP syndrome and underscores the complexity of telomere dysfunction associated with the defect of DNA repair machinery in the CP syndrome.
Collapse
|
25
|
Riquelme J, Takada S, van Dijk T, Peña F, Boogaard MW, van Duyvenvoorde HA, Pico-Knijnenburg I, Wit JM, van der Burg M, Mericq V, Losekoot M. Primary Ovarian Failure in Addition to Classical Clinical Features of Coats Plus Syndrome in a Female Carrying 2 Truncating Variants of CTC1. Horm Res Paediatr 2022; 94:448-455. [PMID: 34706368 DOI: 10.1159/000520410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
Coats plus syndrome is an autosomal recessive multisystemic and pleiotropic disorder affecting the eyes, brain, bone, and gastrointestinal tract, usually caused by compound heterozygous variants of the conserved telomere maintenance component 1 gene (CTC1), involved in telomere homeostasis and replication. So far, most reported patients are compound heterozygous for a truncating mutation and a missense variant. The phenotype is believed to result from telomere dysfunction, with accumulation of DNA damage, cellular senescence, and stem cell depletion. Here, we report a 23-year-old female with prenatal and postnatal growth retardation, microcephaly, osteopenia, recurrent fractures, intracranial calcification, leukodystrophy, parenchymal brain cysts, bicuspid aortic valve, and primary ovarian failure. She carries a previously reported maternally inherited pathogenic variant in exon 5 (c.724_727del, p.(Lys242Leufs*41)) and a novel, paternally inherited splice site variant (c.1617+5G>T; p.(Lys480Asnfs*17)) in intron 9. CTC1 transcript analysis showed that the latter resulted in skipping of exon 9. A trace of transcripts was normally spliced resulting in the presence of a low level of wild-type CTC1 transcripts. We speculate that ovarian failure is caused by telomere shortening or chromosome cohesion failure in oocytes and granulosa cells, with early decrease in follicular reserve. This is the first patient carrying 2 truncating CTC1 variants and the first presenting primary ovarian failure.
Collapse
Affiliation(s)
- Joel Riquelme
- Department of Pediatrics, University of Chile, Hospital San Juan de Dios, Santiago, Chile.,Department of Pediatrics, Clínica Las Condes, Santiago, Chile
| | - Sanami Takada
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa van Dijk
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fernanda Peña
- Department of Pediatrics, Hospital San Juan de Dios, Santiago, Chile
| | - Merel W Boogaard
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veronica Mericq
- Department of Pediatrics, Clínica Las Condes, Santiago, Chile.,Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Niewisch MR, Giri N, McReynolds LJ, Alsaggaf R, Bhala S, Alter BP, Savage SA. Disease progression and clinical outcomes in telomere biology disorders. Blood 2022; 139:1807-1819. [PMID: 34852175 PMCID: PMC8952184 DOI: 10.1182/blood.2021013523] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Dyskeratosis congenita related telomere biology disorders (DC/TBDs) are characterized by very short telomeres caused by germline pathogenic variants in telomere biology genes. Clinical presentations can affect all organs, and inheritance patterns include autosomal dominant (AD), autosomal recessive (AR), X-linked (XLR), or de novo. This study examined the associations between mode of inheritance with phenotypes and long-term clinical outcomes. Two hundred thirty-one individuals with DC/TBDs (144 male, 86.6% known genotype, median age at diagnosis 19.4 years [range 0 to 71.6]), enrolled in the National Cancer Institute's Inherited Bone Marrow Failure Syndrome Study, underwent detailed clinical assessments and longitudinal follow-up (median follow-up 5.2 years [range 0 to 36.7]). Patients were grouped by inheritance pattern, considering AD-nonTINF2, AR/XLR, and TINF2 variants separately. Severe bone marrow failure (BMF), severe liver disease, and gastrointestinal telangiectasias were more prevalent in AR/XLR or TINF2 disease, whereas pulmonary fibrosis developed predominantly in adults with AD disease. After adjusting for age at DC/TBD diagnosis, we observed the highest cancer risk in AR/XLR individuals. At last follow-up, 42% of patients were deceased with a median overall survival (OS) of 52.8 years (95% confidence interval [CI] 45.5-57.6), and the hematopoietic cell or solid organ transplant-free median survival was 45.3 years (95% CI 37.4-52.1). Significantly better OS was present in AD vs AR/XLR/TINF2 disease (P < .01), while patients with AR/XLR and TINF2 disease had similar survival probabilities. This long-term study of the clinical manifestations of DC/TBDs creates a foundation for incorporating the mode of inheritance into evidence-based clinical care guidelines and risk stratification in patients with DC/TBDs. This trial was registered at www.clinicaltrials.gov as #NCT00027274.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sonia Bhala
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
27
|
Bozkurt S, Usta AM, Urganci N, Kalay NG, Kose G, Ozmen E. Coats plus syndrome: a rare cause of severe gastrointestinal tract bleeding in children - a case report. BMC Pediatr 2022; 22:119. [PMID: 35260125 PMCID: PMC8903628 DOI: 10.1186/s12887-022-03140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Coats plus syndrome, cerebroretinal microangiopathy with calcifications and cysts, is a rare disease with autosomal recessive pattern occurring due to a mutation in CTC1, encoding conserved telomere maintenance component 1, gene. Besides retinal involvement, abnormalities in brain and osteopenia, serious life-threatening bleeding in gastrointestinal tract and portal hypertension can be observed. CASE PRESENTATION A 6-year-old girl with Coats plus syndrome presented to the pediatric emergency department with vomiting blood and blood in stool. An upper and lower gastrointestinal endoscopy revealed esophageal varices and vascular telangiectasia in the pyloric antrum, duodenum, and colon. She received palliative care and the bleeding was stopped after receiving intravenous octreotide. She then was followed in the pediatric gastroenterology, neurology, and ophthalmology clinics. She was later hospitalized and admitted to the intensive care unit as she continued to have intermittent gastrointestinal system bleeding. She eventually died due to severe gastrointestinal system bleeding. CONCLUSIONS Coats plus syndrome can lead to life-threatening gastrointestinal bleeding and portal hypertension. As Coats plus syndrome is quite rare, there is little published data on this syndrome. This report presents a case of Coats plus syndrome as a rare cause of gastrointestinal bleeding and portal hypertension.
Collapse
Affiliation(s)
- Selcen Bozkurt
- Department of Pediatrics, Karadeniz Eregli State Hospital, Zonguldak, Turkey.
| | - Ayse Merve Usta
- Department of Pediatric Gastroenterology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Nafiye Urganci
- Department of Pediatric Gastroenterology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Nida Gulderen Kalay
- Department of Pediatrics, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gulsen Kose
- Department of Pediatric Neurology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Evrim Ozmen
- Department of Pediatric Radiology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
28
|
Paff M, Samuel N, Alsafwani N, Paul D, Diamandis P, Climans SA, Kucharczyk W, Ding MYR, Gao AF, Lozano AM. Leukoencephalopathy with brain calcifications and cysts (Labrune syndrome) case report: diagnosis and management of a rare neurological disease. BMC Neurol 2022; 22:10. [PMID: 34986804 PMCID: PMC8729138 DOI: 10.1186/s12883-021-02531-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Background Leukoencephalopathy with brain calcifications and cysts (LCC; also known as Labrune syndrome) is a rare genetic microangiopathy caused by biallelic mutations in SNORD118. The mechanisms by which loss-of-function mutations in SNORD118 lead to the phenotype of leukoencephalopathy, calcifications and intracranial cysts is unknown. Case presentation We present the histopathology of a 36-year-old woman with ataxia and neuroimaging findings of diffuse white matter abnormalities, cerebral calcifications, and parenchymal cysts, in whom the diagnosis of LCC was confirmed with genetic testing. Biopsy of frontal white matter revealed microangiopathy with small vessel occlusion and sclerosis associated with axonal loss within the white matter. Conclusions These findings support that the white matter changes seen in LCC arise as a consequence of ischemia rather than demyelination.
Collapse
Affiliation(s)
- Michelle Paff
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, ON, USA.
| | - Noor Alsafwani
- Laboratory Medicine Program, University Health Network, Toronto, ON, USA.,Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Darcia Paul
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, ON, USA
| | - Phedias Diamandis
- Laboratory Medicine Program, University Health Network, Toronto, ON, USA
| | - Seth A Climans
- Division of Neurology, Department of Medicine, University Health Network, Toronto, ON, USA
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, USA
| | - Mandy Yi Rong Ding
- Division of Neurology, Department of Medicine, University Health Network, Toronto, ON, USA
| | - Andrew F Gao
- Laboratory Medicine Program, University Health Network, Toronto, ON, USA
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, ON, USA
| |
Collapse
|
29
|
Sim CY, Mukari SAM, Ngu LH, Loh CY, Remli R, Ibrahim NM. Labrune's Syndrome Presenting With Stereotypy-Like Movements and Psychosis: A Case Report and Review. J Mov Disord 2021; 15:162-166. [PMID: 34937159 PMCID: PMC9171312 DOI: 10.14802/jmd.21120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Labrune's syndrome, or leukoencephalopathy with brain calcifications and cysts (LCC), is a rare genetic syndrome with variable neurological presentations. Psychiatric manifestations and involuntary movements are uncommonly reported. We report the case of a 19-year-old female, initially diagnosed with Fahr's syndrome, who presented to us with acute psychosis, abnormal behavior and involuntary movements. Her brain computed tomography showed extensive bilateral intracranial calcifications without cysts. Genetic testing detected two compound heterozygous variants, NR_033294.1 n.*9C>T and n.24C>T, in the SNORD118 gene, confirming the diagnosis of LCC. We discuss the expanding phenotypic spectrum of LCC and provide a literature review on the current diagnosis and management of this rare syndrome.
Collapse
Affiliation(s)
- Chun-Yang Sim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | | - Lock-Hock Ngu
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | | | - Rabani Remli
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | |
Collapse
|
30
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
31
|
Lei KH, Yang HL, Chang HY, Yeh HY, Nguyen DD, Lee TY, Lyu X, Chastain M, Chai W, Li HW, Chi P. Crosstalk between CST and RPA regulates RAD51 activity during replication stress. Nat Commun 2021; 12:6412. [PMID: 34741010 PMCID: PMC8571288 DOI: 10.1038/s41467-021-26624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Replication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.
Collapse
Affiliation(s)
- Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Han-Lin Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Dinh Duc Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Tzu-Yu Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Xinxing Lyu
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
32
|
The Intrinsically Disordered Region in the Human STN1 OB-Fold Domain Is Important for Protecting Genome Stability. BIOLOGY 2021; 10:biology10100977. [PMID: 34681076 PMCID: PMC8533325 DOI: 10.3390/biology10100977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The human CTC1–STN1–TEN1 (CST) complex is an ssDNA-binding protein complex that is thought to be related to the RPA70/RPA32/RPA14 complex. While recent studies have shown that CST plays key roles in multiple genome maintenance pathways, including protecting fork stability under perturbed replication, promoting efficient replication of difficult-to-replicate DNA, repairing DNA double-stranded breaks, and maintaining telomere integrity, it is poorly understood how CST function is regulated in genome maintenance. In this study, we identify an intrinsically disordered region (IDR) in the OB domain of STN1 and analyze the functions of cancer-associated IDR variants and a number of alanine substitutions of individual polar or hydrophilic residues in this IDR. We observe that these variants confer replication-associated genome instability, reduced cellular viability, and increased HU sensitivity. Analysis of protein–protein interactions using IDR variants and IDR deletion shows that the IDR is critical for STN1–POLα interaction, but not CST–RAD51 interaction or CST complex formation. Together, our results identify the IDR in STN1-OB as an important element modulating CST function in protecting genome stability under replication stress. Abstract The mammalian CTC1–STN1–TEN1 (CST) complex is an ssDNA-binding protein complex that has emerged as an important player in protecting genome stability and preserving telomere integrity. Studies have shown that CST localizes at stalled replication forks and is critical for protecting the stability of nascent strand DNA. Recent cryo-EM analysis reveals that CST subunits possess multiple OB-fold domains that can form a decameric supercomplex. While considered to be RPA-like, CST acts distinctly from RPA to protect genome stability. Here, we report that while the OB domain of STN1 shares structural similarity with the OB domain of RPA32, the STN1-OB domain contains an intrinsically disordered region (IDR) that is important for maintaining genome stability under replication stress. Single mutations in multiple positions in this IDR, including cancer-associated mutations, cause genome instabilities that are elevated by replication stress and display reduced cellular viability and increased HU sensitivity. While IDR mutations do not impact CST complex formation or CST interaction with its binding partner RAD51, they diminish RAD51 foci formation when replication is perturbed. Interestingly, the IDR is critical for STN1–POLα interaction. Collectively, our results identify the STN1 IDR as an important element in regulating CST function in genome stability maintenance.
Collapse
|
33
|
Neuroimaging findings in leukoencephalopathy with calcifications and cysts: case report and review of the literature. Neurol Sci 2021; 42:4471-4487. [PMID: 34482485 DOI: 10.1007/s10072-021-05560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Leukoencephalopathy with cerebral calcifications and cysts (LCC) is a neurological disorder characterized by the radiological triad of white matter abnormalities, intracranial calcifications and cystic lesions variable in size resulting from a diffuse cerebral microangiopathy. Typically, progressive focal neurological deficits and seizures are the first clinical manifestation, but the severity of symptoms can vary according to the size and location of the cystic lesions holding compressive effects on the surrounding brain tissue. The most common histopathological finding is diffuse microangiopathy, which might be associated to pathogenic mutations in SNORD118 gene causing Labrune syndrome. Similar neuroradiological appearances have been found in the Coats plus syndrome, a systemic disorder caused by a genetic diffuse microangiopathy that affects not only the brain but also the retina and multiple organs, with a more complex clinical picture that address the diagnosis; biallelic mutations in CTC1 gene, encoding the conserved telomere maintenance component 1 (CTC1), are responsible of this systemic disorder. The aim of this contribution is to review the existing literature focusing on the neuroimaging characteristics by reporting cases in which radiological findings were highly suggestive for LCC.
Collapse
|
34
|
Vieri M, Brümmendorf TH, Beier F. Treatment of telomeropathies. Best Pract Res Clin Haematol 2021; 34:101282. [PMID: 34404536 DOI: 10.1016/j.beha.2021.101282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Telomeropathies or telomere biology disorders (TBDs) are a group of rare diseases characterised by altered telomere maintenance. Most patients with TBDs show pathogenic variants of genes that encode factors involved in the prevention of telomere shortening. Particularly in adults, TBDs mostly present themselves with heterogeneous clinical features that often include bone marrow failure, hepatopathies, interstitial lung disease and other organ sites. Different degrees of severity are also observed among patients with TBDs, ranging from very severe syndromes manifesting themselves in early childhood, such as Revesz syndrome, Hoyeraal-Hreidarsson syndrome, and Coats plus disease, to dyskeratosis congenita (DKC) and adult-onset "cryptic" forms of TBD, which often affect fewer organ systems. Overall, the most relevant clinical complications of TBD are bone marrow failure, lung fibrosis, and liver cirrhosis. In this review, we summarise recent advances in the management and treatment of TBD and provide a brief overview of the various treatment approaches.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
35
|
Jin H, Ren X, Wu H, Hou Y, Fang F. Case Report: Clinical Features of Childhood Leukoencephalopathy With Cerebral Calcifications and Cysts Due to SNORD118 Variants. Front Neurol 2021; 12:585606. [PMID: 34220662 PMCID: PMC8248351 DOI: 10.3389/fneur.2021.585606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Leukoencephalopathy with cerebral calcifications and cysts (LCC) is a rare autosomal recessive cerebral microangiopathy. Recently, biallelic variants in a non-protein-coding gene SNORD118 have been discovered to cause LCC. Case Presentation: We here report a genetically confirmed childhood case of LCC. The patient was a 4-year-and-1-month-old boy with focal seizures. The age at onset of his seizure was 10 days after birth. The seizures were well-controlled by antiepileptic treatment but reoccurred twice due to a head impact accident and a fever, respectively. He suffered from a self-limited esotropia and unsteady running gait during the seizure onset. He had the typical neuroimaging triad of multifocal intracranial calcifications, cysts, and leukoencephalopathy. Genetic analysis indicated that he carried compound heterozygous variants of n.*9C>T and n.3C>T in SNORD118, which were inherited from his parents. Conclusion: We report a childhood LCC case with compound heterozygous variants in SNORD118. To the best of our knowledge, the patient reported in our case had the youngest onset age of LCC with a determined genotype. The triad cerebral-imaging findings of calcifications, cysts, and leukoencephalopathy provide a crucial diagnostic basis. Moreover, the gene assessment, together with the clinical investigations, should be considered for the diagnosis of LCC.
Collapse
Affiliation(s)
- Hong Jin
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Husheng Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | | | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
36
|
Acharya T, Firth HV, Dugar S, Grammatikopoulos T, Seabra L, Walters A, Crow YJ, Parker APJ. Novel compound heterozygous STN1 variants are associated with Coats Plus syndrome. Mol Genet Genomic Med 2021; 9:e1708. [PMID: 34110109 PMCID: PMC8683631 DOI: 10.1002/mgg3.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aim Coats plus syndrome (CP) is a rare autosomal recessive disorder, characterised by retinal telangiectasia exudates (Coats disease), leukodystrophy, distinctive intracranial calcification and cysts, as well as extra‐neurological features including abnormal vasculature of the gastrointestinal tract, portal hypertension and osteopenia with a tendency to fractures. CP most frequently occurs due to loss‐of‐function mutations in CTC1. The encoded protein CTC1 constitutes part of the CST (CTC1‐STN1‐TEN1) complex, and three patients have been described with CP due to biallelic mutations in STN1. Together with the identification of homozygosity for a specific loss‐of‐function mutation in POT1 in a sibling pair, these observations highlight a defect in the maintenance of telomere integrity as the cause of CP, although the precise mechanism leading to the micro‐vasculopathy seen at a pathological level remains unclear. Here, we present the investigation of a fourth child who presented to us with retinal exudates, intracranial calcifications and developmental delay, in keeping with a diagnosis of CP, and later went on to develop pancytopenia and gastrointestinal bleeding. Genome sequencing revealed compound heterozygous variants in STN1 as the likely genetic cause of CP in this present case. Methods We assessed the phenotype to be CP and undertook targeted sequencing. Results Whilst sequencing of CTC1 and POT1 was normal, we identified novel compound heterozygous variants in STN1 (previous gene symbol OBFC1): one loss‐of‐function––c.894dup (p.(Asp299Argfs*58)); and one missense––c.707T>C (p.(Leu236Pro)). Conclusion Given the clinical phenotype and identified variants we suggest that this is only the fourth patient reported to date with CP due to mutations in STN1.
Collapse
Affiliation(s)
- Tanvi Acharya
- School of Clinical Medicine, Cambridge University, Cambridge, UK
| | - Helen V Firth
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - Shilpa Dugar
- Paediatric Liver, GI and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, London, UK
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, London, UK
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France
| | - Angharad Walters
- Cambridgeshire Community Services, Brooksfield Hospital, Cambridge, UK
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
37
|
Lyu X, Sang PB, Chai W. CST in maintaining genome stability: Beyond telomeres. DNA Repair (Amst) 2021; 102:103104. [PMID: 33780718 PMCID: PMC8081025 DOI: 10.1016/j.dnarep.2021.103104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The human CST (CTC1-STN1-TEN1) complex is an RPA-like single-stranded DNA binding protein complex. While its telomeric functions have been well investigated, numerous studies have revealed that hCST also plays important roles in maintaining genome stability beyond telomeres. Here, we review and discuss recent discoveries on CST in various global genome maintenance pathways, including findings on the CST supercomplex structure, its functions in unperturbed DNA replication, stalled replication, double-strand break repair, and the ATR-CHK1 activation pathway. By summarizing these recent discoveries, we hope to offer new insights into genome maintenance mechanisms and the pathogenesis of CST mutation-associated diseases.
Collapse
Affiliation(s)
- Xinxing Lyu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China; Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States
| | - Pau Biak Sang
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States.
| |
Collapse
|
38
|
Abstract
Telomere biology disorders (TBD) are a heterogeneous group of diseases arising from germline mutations affecting genes involved in telomere maintenance. Telomeres are DNA-protein structures at chromosome ends that maintain chromosome stability; their length affects cell replicative potential and senescence. A constellation of bone marrow failure, pulmonary fibrosis, liver cirrhosis and premature greying is suggestive, however incomplete penetrance results in highly variable manifestations, with idiopathic pulmonary fibrosis as the most common presentation. Currently, the true extent of TBD burden is unknown as there is no established diagnostic criteria and the disorder often is unrecognised and underdiagnosed. There is no gold standard for measuring telomere length and not all TBD-related mutations have been identified. There is no specific cure and the only treatment is organ transplantation, which has poor outcomes. This review summarises the current literature and discusses gaps in understanding and areas of need in managing TBD.
Collapse
|
39
|
Himes RW, Chiou EH, Queliza K, Shouval DS, Somech R, Agarwal S, Jajoo K, Ziegler DS, Kratz CP, Huang J, Lucas TL, Myers KC, Nelson AS, DiNardo CD, Alter BP, Giri N, Khincha PP, McReynolds LJ, Dufour C, Pierri F, Goldman FD, Sherif Y, Savage SA, Miloh T, Bertuch AA. Gastrointestinal Hemorrhage: A Manifestation of the Telomere Biology Disorders. J Pediatr 2021; 230:55-61.e4. [PMID: 32971146 DOI: 10.1016/j.jpeds.2020.09.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To describe the clinical features, therapeutic interventions, and patient outcomes of gastrointestinal (GI) hemorrhage in individuals with a telomere biology disorder, including dyskeratosis congenita, Hoyeraal-Hreidarsson syndrome, Revesz syndrome, and Coats plus. STUDY DESIGN Clinical Care Consortium for Telomere Associated Ailments members were invited to contribute data on individuals with telomere biology disorders at their institutions who experienced GI bleeding. Patient demographic, laboratory, imaging, procedural, and treatment information and outcomes were extracted from the medical record. RESULTS Sixteen patients who experienced GI hemorrhage were identified at 11 centers. Among 14 patients who underwent genetic testing, 8 had mutations in TINF2, 4 had mutations in CTC1 or STN1, and 1 patient each had a mutation in TERC and RTEL1. Ten patients had a history of hematopoietic cell transplantation. The patients with Coats plus and those without Coats plus had similar clinical features and courses. Angiodysplasia of the stomach and/or small bowel was described in 8 of the 12 patients who underwent endoscopy; only 4 had esophageal varices. Various medical interventions were trialed. No single intervention was uniformly associated with cessation of bleeding, although 1 patient had a sustained response to treatment with bevacizumab. Recurrence was common, and the overall long-term outcome for affected patients was poor. CONCLUSIONS GI bleeding in patients with telomere biology disorders is associated with significant morbidity and with vascular ectasias rather than varices.
Collapse
Affiliation(s)
- Ryan W Himes
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Section of Gastroenterology and Hepatology, Department of Pediatrics, Ochsner Health, New Orleans, LA.
| | - Eric H Chiou
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Karen Queliza
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Gastroenterology, Hepatology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Suneet Agarwal
- Boston Children's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA
| | - Kunal Jajoo
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - James Huang
- Division of Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, CA
| | - Tiffany L Lucas
- Division of Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, CA
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adam S Nelson
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Carlo Dufour
- Hemato-Oncology-Stem Cell Transplant Pole, IRCCS Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hemato-Oncology-Stem Cell Transplant Pole, IRCCS Giannina Gaslini, Genoa, Italy
| | | | - Youmna Sherif
- Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Tamir Miloh
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Miami Transplant Institute, University of Miami, Miami, FL
| | - Alison A Bertuch
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| |
Collapse
|
40
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
41
|
Crow YJ, Marshall H, Rice GI, Seabra L, Jenkinson EM, Baranano K, Battini R, Berger A, Blair E, Blauwblomme T, Bolduc F, Boddaert N, Buckard J, Burnett H, Calvert S, Caumes R, Ng ACH, Chiang D, Clifford DB, Cordelli DM, de Burca A, Demic N, Desguerre I, De Waele L, Di Fonzo A, Dunham SR, Dyack S, Elmslie F, Ferrand M, Fisher G, Karimiani EG, Ghoumid J, Gibbon F, Goel H, Hilmarsen HT, Hughes I, Jacob A, Jones EA, Kumar R, Leventer RJ, MacDonald S, Maroofian R, Mehta SG, Metz I, Monfrini E, Neumann D, Noetzel M, O'Driscoll M, Õunap K, Panzer A, Parikh S, Prabhakar P, Ramond F, Sandford R, Saneto R, Soh C, Stutterd CA, Subramanian GM, Talbot K, Thomas RH, Toro C, Touraine R, Wakeling E, Wassmer E, Whitney A, Livingston JH, O'Keefe RT, Badrock AP. Leukoencephalopathy with calcifications and cysts: Genetic and phenotypic spectrum. Am J Med Genet A 2021; 185:15-25. [PMID: 33029936 DOI: 10.1002/ajmg.a.61907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5' end and 3' extension of precursor-U8. There was no obvious genotype-phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3' end processing of precursor-U8.
Collapse
Affiliation(s)
- Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Heather Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Emma M Jenkinson
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Kristin Baranano
- Department of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Andrea Berger
- Department of Neuropediatrics, Kliniken Nordoberpfalz AG, Germany
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas Blauwblomme
- Paediatric Neurosurgery Department, Necker-Enfants Malades Hospital, APHP, Université de Paris, Paris, France
| | - Francois Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Natalie Boddaert
- Paediatric Radiology Department, Hôpital Necker Enfants Malades, AP-HP, University de Paris, INSERM U1163, Institut Imagine, Paris, France
| | - Johannes Buckard
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum am EVK Düsseldorf, Düsseldorf, Germany
| | | | - Sophie Calvert
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Roseline Caumes
- Clinique de Génétique Guy Fontaine, CHU Lille, Lille, France
| | - Andy Cheuk-Him Ng
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Diana Chiang
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - David B Clifford
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Duccio M Cordelli
- Child Neurology and Psychiatry Unit, Department of Medical and Surgical Sciences (DIMEC), S. Orsola Hospital, University of Bologna, Italy
| | - Anna de Burca
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natasha Demic
- Department of Neurology, Vestfold Hospital, Tønsberg, Norway
| | - Isabelle Desguerre
- Department of Paediatric Neurology, Université de Paris, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Liesbeth De Waele
- Department of Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Alessio Di Fonzo
- Foundation IRCCS Ca 'Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - S Richard Dunham
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Dyack
- Division of Medical Genetics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frances Elmslie
- South West Thames Regional Genetics Service, St George's, University of London, London, UK
| | | | - Gemma Fisher
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamal Ghoumid
- Clinique de Génétique Guy Fontaine, CHU Lille, Lille, France
| | - Frances Gibbon
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, UK
| | - Himanshu Goel
- Hunter Genetics, Hunter New England Local Health District, Waratah, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Hilde T Hilmarsen
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Imelda Hughes
- Department of Paediatric Neurology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Anu Jacob
- Department of Neurology, The Walton Centre NHS Trust, Liverpool, UK
- Department of Neurology, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Elizabeth A Jones
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical Genetic Service, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ram Kumar
- Department of Paediatric Neurology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Richard J Leventer
- Department of Neurology Royal Children's Hospital, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Shelley MacDonald
- Maritime Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London, UK
| | - Sarju G Mehta
- East Anglian Regional Genetics Service, Addenbrookes Hospital, Cambridge, UK
| | - Imke Metz
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Edoardo Monfrini
- Foundation IRCCS Ca 'Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daniela Neumann
- Klinikum Wilhelmshaven, Department of Neuropediatrics, Germany
| | - Michael Noetzel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Washington, USA
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service, Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Axel Panzer
- Paediatric Neurology, DRK Kliniken Berlin-Westend, Berlin, Germany
| | - Sumit Parikh
- Neurogenetics Program, Center for Pediatric Neurology, Neurosciences Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Prab Prabhakar
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Francis Ramond
- Service de Génétique, CHU-Hôpital Nord, Saint Etienne, France
| | - Richard Sandford
- Academic Department of Medical Genetics, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Russell Saneto
- Neuroscience Institute, Division of Paediatric Neurology, Seattle Children's Hospital and University of Washington, Seattle, Washington, USA
- Department of Neurology, Seattle Children's Hospital and University of Washington, Seattle, Washington, USA
| | - Calvin Soh
- Radiology Department, Manchester University Foundation NHS Trust, Manchester, UK
| | | | - Gopinath M Subramanian
- Department of Paediatric Neurology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Camilo Toro
- NIH Undiagnosed Diseases Program (UDP), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renaud Touraine
- Neuroscience Institute, Division of Paediatric Neurology, Seattle Children's Hospital and University of Washington, Seattle, Washington, USA
| | - Emma Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Evangeline Wassmer
- Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Andrea Whitney
- University Hospital Southampton NHS Foundation Trust, Department of Paediatric Neurology, Southampton, UK
| | - John H Livingston
- Department of Paediatric Neurology, Leeds General Infirmary, Leeds, UK
| | - Raymond T O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew P Badrock
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Morgado F, Batista M, Moreno A, Coutinho I. Coats plus syndrome (cerebroretinal microangiopathy with calcifications and cysts-1): A case report. Pediatr Dermatol 2021; 38:191-193. [PMID: 33010065 DOI: 10.1111/pde.14366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
We present a 6-year-old girl with skin hyperpigmentation, leukoplakia, and onychodystrophy, the classic mucocutaneous triad usually associated with dyskeratosis congenita. The patient also had premature graying of the hair, bone marrow failure, hepatitis, exudative retinopathy, osteopenia with multiple long bone fractures, and intracranial calcifications and brain cysts. Coats plus syndrome is a rare disease with a clinical and genetic overlap with dyskeratosis congenita. This disease is reviewed, with a focus on the pathogenesis of the genetic anomalies and its background as a telomere biology disorder.
Collapse
Affiliation(s)
- Francisca Morgado
- Department of Dermatology, Hospital da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Mariana Batista
- Department of Dermatology, Hospital da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Moreno
- Department of Dermatology, Hospital da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Inês Coutinho
- Department of Dermatology, Hospital da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Karremann M, Neumaier-Probst E, Schlichtenbrede F, Beier F, Brümmendorf TH, Cremer FW, Bader P, Dürken M. Revesz syndrome revisited. Orphanet J Rare Dis 2020; 15:299. [PMID: 33097095 PMCID: PMC7583287 DOI: 10.1186/s13023-020-01553-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Revesz syndrome (RS) is an extremely rare variant of dyskeratosis congenita (DKC) with only anecdotal reports in the literature. Methods To further characterize the typical features and natural course of the disease, we screened the English literature and summarized the clinical and epidemiological features of previously published RS cases. In addition, we herein describe the first recorded patient in central Europe. Results The literature review included 18 children. Clinical features are summarized, indicating a low prevalence of the classical DKC triad. All patients experienced early bone marrow failure, in most cases within the second year of life (median age 1.5 years; 95% CI 1.4–1.6). Retinopathy occurred typically between 6 and 18 months of age (median age 1.1 years; 95% CI 0.7–1.5). The incidence of seizures was low and was present in an estimated 20% of patients. The onset of seizures was exclusively during early childhood. The Kaplan–Meier estimate of survival was dismal (median survival 6.5 years; 95% CI 3.6–9.4), and none of the patients survived beyond the age of 12 years. Stem cell transplantation (SCT) was performed in eight children, and after a median of 22 months from SCT four of these patients were alive at the last follow up visit. Conclusion RS is a severe variant of DKC with early bone marrow failure and retinopathy in all patients. Survival is dismal, but stem cell transplantation may be performed successfully and might improve prognosis in the future.
Collapse
Affiliation(s)
- Michael Karremann
- Department of Pediatrics, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Eva Neumaier-Probst
- Department of Neuroradiology, University Medical Center Mannheim, Mannheim, Germany
| | | | - Fabian Beier
- Department of Hematology and Oncology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology and Oncology, University Hospital of RWTH Aachen, Aachen, Germany
| | | | - Peter Bader
- Department of Pediatrics, Pediatric Stem Cell Transplantation, University Hospital Frankfurt, Frankfurt, Germany
| | - Matthias Dürken
- Department of Pediatrics, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
44
|
Liang T, Zhang X, Xu Y, Zhao P. Ophthalmic findings and a novel CTC1 gene mutation in coats plus syndrome: a case report. Ophthalmic Genet 2020; 42:79-83. [PMID: 33034244 DOI: 10.1080/13816810.2020.1827443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coats plus syndrome is a rare multisystem disorder, and is also a telomere-related disorder caused by CTC1 gene mutation. We reported ophthalmic findings in a Chinese child with genetically confirmed Coats plus syndrome. MATERIALS AND METHODS The comprehensive ophthalmic findings were presented, as well as treatment history and systemic manifestations. In addition, genetic testing was performed to confirm the diagnosis. RESULTS Examination under anesthesia showed notable retinal vasculopathy, including vascular tortuosity and dilation, abnormal vascular anastomosis, retinal telangiectasias and mild exudation, extensive peripheral avascularity, as well as the presence of retinal neovascularization. The patient developed vitreous hemorrhage and tractional retinal detachment, and then underwent vitrectomy. Meanwhile, the patient was noted to have growth retardation and leukoencephalopathy. Gene testing identified a compound heterozygous mutation in CTC1 gene: a novel splicing site mutation (c.33 + 1 G > T) and a deletion mutation (c.2954_2956del, p.C985del), which were inherited from his mother and father, respectively. CONCLUSIONS The present report expanded the genotype and phenotype spectrum of CTC1 gene associated with Coats plus syndrome.
Collapse
Affiliation(s)
- Tingyi Liang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
45
|
Intracranial calcifications in childhood: Part 2. Pediatr Radiol 2020; 50:1448-1475. [PMID: 32642802 DOI: 10.1007/s00247-020-04716-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.
Collapse
|
46
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
47
|
Han E, Patel NA, Yannuzzi NA, Laura DM, Fan KC, Negron CI, Prakhunhungsit S, Thorson WL, Berrocal AM. A unique case of coats plus syndrome and dyskeratosis congenita in a patient with CTC1 mutations. Ophthalmic Genet 2020; 41:363-367. [PMID: 32543263 DOI: 10.1080/13816810.2020.1772315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coats plus syndrome (CP) is a rare condition characterized by bilateral exudative retinal telangiectasias with associated systemic disorders primarily affecting the brain, bone and gastrointestinal tract due to a mutation in the CTC1 gene. CTC1 mutations are also known to cause dyskeratosis congenita (DC), which is an inherited bone marrow failure syndrome characterized by skin pigmentation abnormalities, nail dystrophy, and oral leukoplakia. This is the first reported case of a patient diagnosed with both CP and DC caused by compound heterozygous CTC1 gene mutations. Moreover, one of the variant mutations found in this patient has never been published before.
Collapse
Affiliation(s)
- Elaine Han
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Diana M Laura
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Kenneth C Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Catherin I Negron
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Supalert Prakhunhungsit
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA.,Department of Ophthalmology, Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Willa L Thorson
- Department of Human Genetics, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| |
Collapse
|
48
|
Osman O, Labrune P, Reiner P, Sarov M, Nasser G, Riant F, Tournier-lasserve E, Chabriat H, Denier C. Leukoencephalopathy with calcifications and cysts (LCC): 5 cases and literature review. Rev Neurol (Paris) 2020; 176:170-179. [DOI: 10.1016/j.neurol.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
|
49
|
Sarret C. Leukodystrophies and genetic leukoencephalopathies in children. Rev Neurol (Paris) 2020; 176:10-19. [DOI: 10.1016/j.neurol.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
50
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|