1
|
Guha S. Binder and monomer valencies determine the extent of collapse and reswelling of chromatin. J Chem Phys 2025; 162:194904. [PMID: 40387774 DOI: 10.1063/5.0236102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
Multivalent DNA-bridging protein-mediated collapse of chromatin polymers have long been established as one of the driving factors in chromatin organization inside cells. These multivalent proteins can bind to distant binding sites along the chromatin backbone and bring them together in spatial proximity, leading to collapsed conformations. Recently, it has been suggested that these proteins not only drive the collapse of the chromatin polymer but also reswelling at higher concentrations. In this study, we investigate the physical mechanisms underlying this unexpected reswelling behavior. We use the Langevin dynamics simulation of a coarse-grained homopolymer to investigate the effects of the valencies of both the binders and the monomers on the polymer conformations. We find that while the extent of collapse of the polymer is strongly dependent on the binder valency, the extent of reswelling is largely determined by the monomer valency. Furthermore, we also discovered two different physical mechanisms that drive the reswelling of the polymer-excluded volume effects and loss of long-range loops. Finally, we obtain a classification map to determine the regimes in which each of these mechanisms is the dominant factor leading to polymer reswelling.
Collapse
Affiliation(s)
- Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India and INFN Napoli, Complesso Universitario di Monte S. Angelo, Napoli 80126, Italy
| |
Collapse
|
2
|
Hall J, Corton M, Fries FN, Obst J, Grünauer-Kloevekorn C, Seitz B, Waizel MDV, Jávorszky E, Tory K, Maka E, Amini M, Suiwal S, Stachon T, Szentmáry N. Comprehensive Analysis of Congenital Aniridia and Differential Diagnoses: Genetic Insights and Clinical Manifestations. Ophthalmol Ther 2025; 14:835-856. [PMID: 40138169 PMCID: PMC12006658 DOI: 10.1007/s40123-025-01122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Congenital aniridia (CA) is a severe and complex disorder involving the entire eye, primarily characterized by iris anomalies alongside other clinical features that pose significant risks to vision. This study seeks to offer a comprehensive overview of CA by detailing its clinical presentations, genetic underpinnings, associated phenotypes, and differential diagnoses. Additionally, it proposes a diagnostic framework to distinguish CA from other conditions that present with similar iris abnormalities. METHODS We conducted a comprehensive literature review to compile and analyze clinical and genetic data related to CA and its differential diagnoses. We included all studies describing the clinical characteristics, pathogenic variants, and associated syndromes of congenital aniridia. RESULTS CA presents a wide range of ocular symptoms. Pathogenic variants in the PAX6 gene are the primary genetic cause of CA, though variations in other genes, including FOXC1, PITX2, CYP1B1, FOXD3, PITX3, CPAMD8, ITPR1, TENM3, TRIM44, COL4A1, CRYAA, and PXDN may also be implicated. The differential diagnosis of CA requires careful consideration of conditions with overlapping symptoms, such as WAGR syndrome (which involves deletions affecting the PAX6 and WT1 genes on chromosome 11p13, and potentially BDNF on 11p14.1), Axenfeld-Rieger syndrome (FOXC1/PITX2), ring-chromosome 6 syndrome (which involves FOXC1 microdeletion), COL4A1-related anterior segment dysgenesis, Gillespie syndrome (ITPR1 gene) or Peters anomaly. Accurate diagnosis can be achieved by evaluating specific clinical features-including iris anomalies, aniridia-associated keratopathy, cataracts, glaucoma, foveal hypoplasia, nystagmus, and optic nerve head abnormalities-supplemented by genetic testing. CONCLUSIONS Understanding the diverse clinical presentations and genetic basis of diseases associated with iris abnormalities is essential for accurate diagnosis and effective management. Integrating genetic diagnostics into the evaluation process enables the development of tailored treatment strategies, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Hall
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany.
- Prof. Dr. Koss & Colleagues, Eye Center Nymphenburger Hoefe, Munich, Germany.
| | - Marta Corton
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Fabian Norbert Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Jessica Obst
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Clara Grünauer-Kloevekorn
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Maria Della Volpe Waizel
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Eszter Jávorszky
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kálmán Tory
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erika Maka
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| |
Collapse
|
3
|
Bayraktar R, Tang Y, Dragomir MP, Ivan C, Peng X, Fabris L, Zhang J, Carugo A, Aneli S, Liu J, Chen MJM, Srinivasan S, Sahnoune I, Bayraktar E, Akdemir KC, Chen M, Narayanan P, Huang W, Ott LF, Eterovic AK, Villarreal OE, Mohammad MM, Peoples MD, Walsh DM, Hernandez JA, Morgan MB, Shaw KR, Davis JS, Menter D, Tam CS, Yeh P, Dawson SJ, Rassenti LZ, Kipps TJ, Kunej T, Estrov Z, Joosse SA, Pagani L, Alix-Panabières C, Pantel K, Ferajoli A, Futreal A, Wistuba II, Radovich M, Kopetz S, Keating MJ, Draetta GF, Mattick JS, Liang H, Calin GA. The mutational landscape and functional effects of noncoding ultraconserved elements in human cancers. SCIENCE ADVANCES 2025; 11:eado2830. [PMID: 39970212 PMCID: PMC11837999 DOI: 10.1126/sciadv.ado2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The mutational landscape of phylogenetically ultraconserved elements (UCEs), especially those in noncoding DNAs (ncUCEs), and their functional relevance in cancers remain poorly characterized. Here, we perform a systematic analysis of whole-genome and in-house targeted UCE sequencing datasets from more than 3000 patients with cancer of 13,736 UCEs and demonstrate that ncUCE somatic alterations are common. Using a multiplexed CRISPR knockout screen in colorectal cancer cells, we show that the loss of several altered ncUCEs significantly affects cell proliferation. In-depth functional studies in vitro and in vivo further reveal that specific ncUCEs can be enhancers of tumor suppressors (such as ARID1B) and silencers of oncogenic proteins (such as RPS13). Moreover, several miRNAs located in ncUCEs are recurrently mutated. Mutations in miR-142 locus can affect the Drosha-mediated processing of precursor miRNAs, resulting in the down-regulation of the mature transcript. These results provide systematic evidence that specific ncUCEs play diverse regulatory roles in cancer.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
| | - Yitao Tang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute of Pathology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, CCM, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, 69210 Heidelberg, Germany
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Caris Life Science, Irving, TX 75039, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Carugo
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Serena Aneli
- Department of Biology, University of Padova, Padova, Italy
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Jintan Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M. Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanjana Srinivasan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iman Sahnoune
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emine Bayraktar
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C. Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranav Narayanan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Johns Hopkins Physical Science– Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Leonie Florence Ott
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agda Karina Eterovic
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Viracor Eurofins, Oncology Diagnostics, Lee's Summit, MO 64086, USA
| | - Oscar Eduardo Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohammad Moustaf Mohammad
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael D. Peoples
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danielle M. Walsh
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon Andrew Hernandez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Margaret B. Morgan
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R. Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Constantine S. Tam
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Yeh
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Laura Z. Rassenti
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domzale, Slovenia
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
| | - Catherine Alix-Panabières
- The Laboratory Rare Human Circulating Cells and Liquid Biopsy, The University Medical Center of Montpellier, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandra Ferajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milan Radovich
- Caris Life Science, Irving, TX 75039, USA
- Department of Surgery, Division of General Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio F. Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John S. Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Narducci DN, Hansen AS. Putative looping factor ZNF143/ZFP143 is an essential transcriptional regulator with no looping function. Mol Cell 2025; 85:9-23.e9. [PMID: 39708803 DOI: 10.1016/j.molcel.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Interactions between distal loci, including those involving enhancers and promoters, are a central mechanism of gene regulation in mammals, yet the protein regulators of these interactions remain largely undetermined. The zinc-finger transcription factor (TF) ZNF143/ZFP143 has been strongly implicated as a regulator of chromatin interactions, functioning either with or without CTCF. However, how ZNF143/ZFP143 functions as a looping factor is not well understood. Here, we tagged both CTCF and ZNF143/ZFP143 with dual-purpose degron/imaging tags to combinatorially assess their looping function and effect on each other. We find that ZNF143/ZFP143, contrary to prior reports, possesses no general looping function in mouse and human cells and that it largely functions independently of CTCF. Instead, ZNF143/ZFP143 is an essential and highly conserved transcription factor that largely binds promoters proximally, exhibits an extremely stable chromatin dwell time (>20 min), and regulates an important subset of mitochondrial and ribosomal genes.
Collapse
Affiliation(s)
- Domenic N Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Song T, Shi Y, Li Y, Hao D, Zhan K, Xu T, Chen R, He S. TOAnnoPriDB: an integrative database for trans-omic annotation and prioritization of non-coding variants across human genome. Sci Bull (Beijing) 2024:S2095-9273(24)00937-X. [PMID: 39736494 DOI: 10.1016/j.scib.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Affiliation(s)
- Tingrui Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Hao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaixin Zhan
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China.
| | - Runsheng Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shunmin He
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
7
|
Ceroni F, Cicekdal MB, Holt R, Sorokina E, Chassaing N, Clokie S, Naert T, Talbot LV, Muheisen S, Bax DA, Kesim Y, Kivuva EC, Vincent-Delorme C, Lienkamp SS, Plaisancié J, De Baere E, Calvas P, Vleminckx K, Semina EV, Ragge NK. Deletion upstream of MAB21L2 highlights the importance of evolutionarily conserved non-coding sequences for eye development. Nat Commun 2024; 15:9245. [PMID: 39455595 PMCID: PMC11511899 DOI: 10.1038/s41467-024-53553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Anophthalmia, microphthalmia and coloboma (AMC) comprise a spectrum of developmental eye disorders, accounting for approximately 20% of childhood visual impairment. While non-coding regulatory sequences are increasingly recognised as contributing to disease burden, characterising their impact on gene function and phenotype remains challenging. Furthermore, little is known of the nature and extent of their contribution to AMC phenotypes. We report two families with variants in or near MAB21L2, a gene where genetic variants are known to cause AMC in humans and animal models. The first proband, presenting with microphthalmia and coloboma, has a likely pathogenic missense variant (c.338 G > C; p.[Trp113Ser]), segregating within the family. The second individual, presenting with microphthalmia, carries an ~ 113.5 kb homozygous deletion 19.38 kb upstream of MAB21L2. Modelling of the deletion results in transient small lens and coloboma as well as midbrain anomalies in zebrafish, and microphthalmia and coloboma in Xenopus tropicalis. Using conservation analysis, we identify 15 non-coding conserved elements (CEs) within the deleted region, while ChIP-seq data from mouse embryonic stem cells demonstrates that two of these (CE13 and 14) bind Otx2, a protein with an established role in eye development. Targeted disruption of CE14 in Xenopus tropicalis recapitulates an ocular coloboma phenotype, supporting its role in eye development. Together, our data provides insights into regulatory mechanisms underlying eye development and highlights the importance of non-coding sequences as a source of genetic diagnoses in AMC.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Munevver B Cicekdal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Sorokina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Samuel Clokie
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Lidiya V Talbot
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Sanaa Muheisen
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Yesim Kesim
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma C Kivuva
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Julie Plaisancié
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Calvas
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Elena V Semina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA.
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
8
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
10
|
McDonnell AF, Plech M, Livesey BJ, Gerasimavicius L, Owen LJ, Hall HN, FitzPatrick DR, Marsh JA, Kudla G. Deep mutational scanning quantifies DNA binding and predicts clinical outcomes of PAX6 variants. Mol Syst Biol 2024; 20:825-844. [PMID: 38849565 PMCID: PMC11219921 DOI: 10.1038/s44320-024-00043-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements. Mutations in DNA-facing residues of the N-terminal subdomain and linker region were most detrimental, as were mutations to prolines and to negatively charged residues. Many variants caused sequence-specific molecular gain-of-function effects, including variants in position 71 that increased binding to the LE9 enhancer but decreased binding to a SELEX-derived binding site. In the absence of antibiotic selection, variants that retained DNA binding slowed yeast growth, likely because such variants perturbed the yeast transcriptome. Benchmarking against known patient variants and applying ACMG/AMP guidelines to variant classification, we obtained supporting-to-moderate evidence that 977 variants are likely pathogenic and 1306 are likely benign. Our analysis shows that most pathogenic mutations in the paired domain of PAX6 can be explained simply by the effects of these mutations on PAX6:DNA association, and establishes Y1H as a generalisable assay for the interpretation of variant effects in transcription factors.
Collapse
Affiliation(s)
- Alexander F McDonnell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Marcin Plech
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Liusaidh J Owen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hildegard Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
11
|
Zucco J, Baldan F, Allegri L, Bregant E, Passon N, Franzoni A, D'Elia AV, Faletra F, Damante G, Mio C. A bird's eye view on the use of whole exome sequencing in rare congenital ophthalmic diseases. J Hum Genet 2024; 69:271-282. [PMID: 38459225 PMCID: PMC11126393 DOI: 10.1038/s10038-024-01237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Phenotypic and genotypic heterogeneity in congenital ocular diseases, especially in anterior segment dysgenesis (ASD), have created challenges for proper diagnosis and classification of diseases. Over the last decade, genomic research has indeed boosted our understanding in the molecular basis of ASD and genes associated with both autosomal dominant and recessive patterns of inheritance have been described with a wide range of expressivity. Here we describe the molecular characterization of a cohort of 162 patients displaying isolated or syndromic congenital ocular dysgenesis. Samples were analyzed with diverse techniques, such as direct sequencing, multiplex ligation-dependent probe amplification, and whole exome sequencing (WES), over 20 years. Our data reiterate the notion that PAX6 alterations are primarily associated with ASD, mostly aniridia, since the majority of the cohort (66.7%) has a pathogenic or likely pathogenic variant in the PAX6 locus. Unexpectedly, a high fraction of positive samples (20.3%) displayed deletions involving the 11p13 locus, either partially/totally involving PAX6 coding region or abolishing its critical regulatory region, underlying its significance. Most importantly, the use of WES has allowed us to both assess variants in known ASD genes (i.e., CYP1B1, ITPR1, MAB21L1, PXDN, and PITX2) and to identify rarer phenotypes (i.e., MIDAS, oculogastrointestinal-neurodevelopmental syndrome and Jacobsen syndrome). Our data clearly suggest that WES allows expanding the analytical portfolio of ocular dysgenesis, both isolated and syndromic, and that is pivotal for the differential diagnosis of those conditions in which there may be phenotypic overlaps and in general in ASD.
Collapse
Affiliation(s)
- Jessica Zucco
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Federica Baldan
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Lorenzo Allegri
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Elisa Bregant
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Nadia Passon
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Alessandra Franzoni
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Angela Valentina D'Elia
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Flavio Faletra
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy.
| | - Giuseppe Damante
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Catia Mio
- Department of Medicine (DMED), University of Udine, Udine, Italy
| |
Collapse
|
12
|
van Heyningen V. Stochasticity in genetics and gene regulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230476. [PMID: 38432316 PMCID: PMC10909507 DOI: 10.1098/rstb.2023.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 03/05/2024] Open
Abstract
Development from fertilized egg to functioning multi-cellular organism requires precision. There is no precision, and often no survival, without plasticity. Plasticity is conferred partly by stochastic variation, present inherently in all biological systems. Gene expression levels fluctuate ubiquitously through transcription, alternative splicing, translation and turnover. Small differences in gene expression are exploited to trigger early differentiation, conferring distinct function on selected individual cells and setting in motion regulatory interactions. Non-selected cells then acquire new functions along the spatio-temporal developmental trajectory. The differentiation process has many stochastic components. Meiotic segregation, mitochondrial partitioning, X-inactivation and the dynamic DNA binding of transcription factor assemblies-all exhibit randomness. Non-random X-inactivation generally signals deleterious X-linked mutations. Correct neural wiring, such as retina to brain, arises through repeated confirmatory activity of connections made randomly. In immune system development, both B-cell antibody generation and the emergence of balanced T-cell categories begin through stochastic trial and error followed by functional selection. Aberrant selection processes lead to immune dysfunction. DNA sequence variants also arise through stochastic events: some involving environmental fluctuation (radiation or presence of pollutants), or genetic repair system malfunction. The phenotypic outcome of mutations is also fluid. Mutations may be advantageous in some circumstances, deleterious in others. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
13
|
Cheng YHH, Bohaczuk SC, Stergachis AB. Functional categorization of gene regulatory variants that cause Mendelian conditions. Hum Genet 2024; 143:559-605. [PMID: 38436667 PMCID: PMC11078748 DOI: 10.1007/s00439-023-02639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.
Collapse
Affiliation(s)
- Y H Hank Cheng
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
14
|
Plaisancié J, Chesneau B, Fares-Taie L, Rozet JM, Pechmeja J, Noero J, Gaston V, Bailleul-Forestier I, Calvas P, Chassaing N. Structural Variant Disrupting the Expression of the Remote FOXC1 Gene in a Patient with Syndromic Complex Microphthalmia. Int J Mol Sci 2024; 25:2669. [PMID: 38473917 DOI: 10.3390/ijms25052669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Ocular malformations (OMs) arise from early defects during embryonic eye development. Despite the identification of over 100 genes linked to this heterogeneous group of disorders, the genetic cause remains unknown for half of the individuals following Whole-Exome Sequencing. Diagnosis procedures are further hampered by the difficulty of studying samples from clinically relevant tissue, which is one of the main obstacles in OMs. Whole-Genome Sequencing (WGS) to screen for non-coding regions and structural variants may unveil new diagnoses for OM individuals. In this study, we report a patient exhibiting a syndromic OM with a de novo 3.15 Mb inversion in the 6p25 region identified by WGS. This balanced structural variant was located 100 kb away from the FOXC1 gene, previously associated with ocular defects in the literature. We hypothesized that the inversion disrupts the topologically associating domain of FOXC1 and impairs the expression of the gene. Using a new type of samples to study transcripts, we were able to show that the patient presented monoallelic expression of FOXC1 in conjunctival cells, consistent with the abolition of the expression of the inverted allele. This report underscores the importance of investigating structural variants, even in non-coding regions, in individuals affected by ocular malformations.
Collapse
Affiliation(s)
- Julie Plaisancié
- Laboratoire de Référence des Anomalies Malformatives de l'Œil, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), (CNRS), Université Toulouse III Paul Sabatier (UPS), Université de Toulouse, 31062 Toulouse, France
| | - Bertrand Chesneau
- Laboratoire de Référence des Anomalies Malformatives de l'Œil, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), (CNRS), Université Toulouse III Paul Sabatier (UPS), Université de Toulouse, 31062 Toulouse, France
| | - Lucas Fares-Taie
- Laboratoire de Génétique Ophtalmologique, Institut national de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, 75015 Paris, France
| | - Jean-Michel Rozet
- Laboratoire de Génétique Ophtalmologique, Institut national de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, 75015 Paris, France
| | - Jacmine Pechmeja
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Service d'Ophtalmologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
| | - Julien Noero
- Laboratoire de Référence des Anomalies Malformatives de l'Œil, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), (CNRS), Université Toulouse III Paul Sabatier (UPS), Université de Toulouse, 31062 Toulouse, France
| | - Véronique Gaston
- Laboratoire de Référence des Anomalies Malformatives de l'Œil, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
| | | | - Patrick Calvas
- Laboratoire de Référence des Anomalies Malformatives de l'Œil, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
| | - Nicolas Chassaing
- Laboratoire de Référence des Anomalies Malformatives de l'Œil, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Centre Hospitalier Universitaire de Toulouse, 31300 Toulouse, France
- Laboratoire AURAGEN, 69003 Lyon, France
| |
Collapse
|
15
|
Lopez Soriano V, Dueñas Rey A, Mukherjee R, Coppieters F, Bauwens M, Willaert A, De Baere E. Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci. Nat Commun 2024; 15:1600. [PMID: 38383453 PMCID: PMC10881467 DOI: 10.1038/s41467-024-45381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Cross-species genome comparisons have revealed a substantial number of ultraconserved non-coding elements (UCNEs). Several of these elements have proved to be essential tissue- and cell type-specific cis-regulators of developmental gene expression. Here, we characterize a set of UCNEs as candidate CREs (cCREs) during retinal development and evaluate the contribution of their genomic variation to rare eye diseases, for which pathogenic non-coding variants are emerging. Integration of bulk and single-cell retinal multi-omics data reveals 594 genes under potential cis-regulatory control of UCNEs, of which 45 are implicated in rare eye disease. Mining of candidate cis-regulatory UCNEs in WGS data derived from the rare eye disease cohort of Genomics England reveals 178 ultrarare variants within 84 UCNEs associated with 29 disease genes. Overall, we provide a comprehensive annotation of ultraconserved non-coding regions acting as cCREs during retinal development which can be targets of non-coding variation underlying rare eye diseases.
Collapse
Affiliation(s)
- Victor Lopez Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Frauke Coppieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
16
|
Hall HN, Parry D, Halachev M, Williamson KA, Donnelly K, Campos Parada J, Bhatia S, Joseph J, Holden S, Prescott TE, Bitoun P, Kirk EP, Newbury-Ecob R, Lachlan K, Bernar J, van Heyningen V, FitzPatrick DR, Meynert A. Short-read whole genome sequencing identifies causative variants in most individuals with previously unexplained aniridia. J Med Genet 2024; 61:250-261. [PMID: 38050128 PMCID: PMC7615962 DOI: 10.1136/jmg-2023-109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/25/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.
Collapse
Affiliation(s)
- Hildegard Nikki Hall
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - David Parry
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
- Illumina United Kingdom, Edinburgh, UK
| | - Mihail Halachev
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Kathleen A Williamson
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Kevin Donnelly
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Jose Campos Parada
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Shipra Bhatia
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Jeffrey Joseph
- MRC Human Genetics Unit, The University of Edinburgh, Edinburgh, UK
| | - Simon Holden
- East Anglia Regional Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Trine E Prescott
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Pierre Bitoun
- Consultations de Génétique médicale, Service de Pédiatrie, CHU Paris-Nord, Hôpital Jean Verdier, Bondy, France
| | - Edwin P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Randwick, New South Wales, Australia
| | - Ruth Newbury-Ecob
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Katherine Lachlan
- University Hospital Southampton, NHS Foundation Trust Wessex Clinical Genetics Service, Southampton, UK
| | - Juan Bernar
- Department of Genetics, Hospital Ruber Internacional, Madrid, Spain
| | - Veronica van Heyningen
- MRC Human Genetics Unit, The University of Edinburgh, Edinburgh, UK
- Institute of Ophthalmology, University College London, London, UK
| | - David R FitzPatrick
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Alison Meynert
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| |
Collapse
|
17
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300468. [PMID: 38234731 PMCID: PMC10793524 DOI: 10.1101/2023.12.22.23300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S. Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lauren J. Ayers
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Wai-Man Chan
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Lydia N. Fozo
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas E. Collins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Matthew F. Rose
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jack M. Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alan P. Tenney
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Cassia Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard College, Cambridge, MA
| | - Kristen M. Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Victoria R. Bradford
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael E. Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
20
|
Garza AB, Garcia R, Solis LM, Halfon MS, Girgis HZ. EnhancerTracker: Comparing cell-type-specific enhancer activity of DNA sequence triplets via an ensemble of deep convolutional neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573198. [PMID: 38187673 PMCID: PMC10769370 DOI: 10.1101/2023.12.23.573198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Motivation Transcriptional enhancers - unlike promoters - are unrestrained by distance or strand orientation with respect to their target genes, making their computational identification a challenge. Further, there are insufficient numbers of confirmed enhancers for many cell types, preventing robust training of machine-learning-based models for enhancer prediction for such cell types. Results We present EnhancerTracker , a novel tool that leverages an ensemble of deep separable convolutional neural networks to identify cell-type-specific enhancers with the need of only two confirmed enhancers. EnhancerTracker is trained, validated, and tested on 52,789 putative enhancers obtained from the FANTOM5 Project and control sequences derived from the human genome. Unlike available tools, which accept one sequence at a time, the input to our tool is three sequences; the first two are enhancers active in the same cell type. EnhancerTracker outputs 1 if the third sequence is an enhancer active in the same cell type(s) where the first two enhancers are active. It outputs 0 otherwise. On a held-out set (15%), EnhancerTracker achieved an accuracy of 64%, a specificity of 93%, a recall of 35%, a precision of 84%, and an F1 score of 49%. Availability and implementation https://github.com/BioinformaticsToolsmith/EnhancerTracker. Contact hani.girgis@tamuk.edu.
Collapse
|
21
|
Uttley K, Papanastasiou AS, Lahne M, Brisbane JM, MacDonald RB, Bickmore WA, Bhatia S. Unique activities of two overlapping PAX6 retinal enhancers. Life Sci Alliance 2023; 6:e202302126. [PMID: 37643867 PMCID: PMC10465922 DOI: 10.26508/lsa.202302126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo.
Collapse
Affiliation(s)
- Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Andrew S Papanastasiou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Manuela Lahne
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Jennifer M Brisbane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Ryan B MacDonald
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Allou L, Mundlos S. Disruption of regulatory domains and novel transcripts as disease-causing mechanisms. Bioessays 2023; 45:e2300010. [PMID: 37381881 DOI: 10.1002/bies.202300010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Deletions, duplications, insertions, inversions, and translocations, collectively called structural variations (SVs), affect more base pairs of the genome than any other sequence variant. The recent technological advancements in genome sequencing have enabled the discovery of tens of thousands of SVs per human genome. These SVs primarily affect non-coding DNA sequences, but the difficulties in interpreting their impact limit our understanding of human disease etiology. The functional annotation of non-coding DNA sequences and methodologies to characterize their three-dimensional (3D) organization in the nucleus have greatly expanded our understanding of the basic mechanisms underlying gene regulation, thereby improving the interpretation of SVs for their pathogenic impact. Here, we discuss the various mechanisms by which SVs can result in altered gene regulation and how these mechanisms can result in rare genetic disorders. Beyond changing gene expression, SVs can produce novel gene-intergenic fusion transcripts at the SV breakpoints.
Collapse
Affiliation(s)
- Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Wang Q, Wei WB, Shi XY, Rong WN. A novel PAX6 variant as the cause of aniridia in a Chinese patient with SRRRD. BMC Med Genomics 2023; 16:182. [PMID: 37542296 PMCID: PMC10401864 DOI: 10.1186/s12920-023-01620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The genotype characteristics and their associated clinical phenotypes in patients with aniridia were analyzed to explore pathogenic variants using whole-exome sequencing. METHODS One patient with aniridia was enrolled at the Beijing Tongren Hospital. Comprehensive ophthalmic and general examinations were performed on the patient. DNA was extracted from the patient, and whole-exome sequencing was performed to identify the causative variant. The pathogenicity of the variant was predicted using in silico analysis and evaluated according to American College of Medical Genetics and Genomics guidelines. Relationships between genetic variants and clinical features were analyzed. RESULTS In addition to the classical aniridia phenotype showing complete iris aplasia, foveal hypoplasia, and ectopic lentis, the patient also exhibited spontaneous reattachment rhegmatogenous retinal detachment (SRRRD). Whole-exome sequencing identified a novel heterozygous variant, exon8:c.640_646del:p.R214Pfs*28. CONCLUSIONS The present study broadens the range of genetic variants described in aniridia and presents an aniridia patient with SRRRD.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China
| | - Xiang Yu Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China.
| | - Wei Ning Rong
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Huanghe Road, Jinfeng District, the Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
25
|
Lenassi E, Carvalho A, Thormann A, Abrahams L, Arno G, Fletcher T, Hardcastle C, Lopez J, Hunt SE, Short P, Sergouniotis PI, Michaelides M, Webster A, Cunningham F, Ramsden SC, Kasperaviciute D, Fitzpatrick DR, Black GC, Ellingford JM. EyeG2P: an automated variant filtering approach improves efficiency of diagnostic genomic testing for inherited ophthalmic disorders. J Med Genet 2023; 60:810-818. [PMID: 36669873 PMCID: PMC10423522 DOI: 10.1136/jmg-2022-108618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.
Collapse
Affiliation(s)
- Eva Lenassi
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ana Carvalho
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Genetic Unit, Pediatric Hospital, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Tracy Fletcher
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Claire Hardcastle
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - David R Fitzpatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Genomics England Ltd, London, UK
| |
Collapse
|
26
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
27
|
Liang Q, Cheng X, Wang J, Owen L, Shakoor A, Lillvis JL, Zhang C, Farkas M, Kim IK, Li Y, DeAngelis M, Chen R. A multi-omics atlas of the human retina at single-cell resolution. CELL GENOMICS 2023; 3:100298. [PMID: 37388908 PMCID: PMC10300490 DOI: 10.1016/j.xgen.2023.100298] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 07/01/2023]
Abstract
Cell classes in the human retina are highly heterogeneous with their abundance varying by several orders of magnitude. Here, we generated and integrated a multi-omics single-cell atlas of the adult human retina, including more than 250,000 nuclei for single-nuclei RNA-seq and 137,000 nuclei for single-nuclei ATAC-seq. Cross-species comparison of the retina atlas among human, monkey, mice, and chicken revealed relatively conserved and non-conserved types. Interestingly, the overall cell heterogeneity in primate retina decreases compared with that of rodent and chicken retina. Through integrative analysis, we identified 35,000 distal cis-element-gene pairs, constructed transcription factor (TF)-target regulons for more than 200 TFs, and partitioned the TFs into distinct co-active modules. We also revealed the heterogeneity of the cis-element-gene relationships in different cell types, even from the same class. Taken together, we present a comprehensive single-cell multi-omics atlas of the human retina as a resource that enables systematic molecular characterization at individual cell-type resolution.
Collapse
Affiliation(s)
- Qingnan Liang
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leah Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
| | - Akbar Shakoor
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
| | - John L. Lillvis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Charles Zhang
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
| | - Michael Farkas
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yumei Li
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Rui Chen
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Damián A, Núñez-Moreno G, Jubin C, Tamayo A, de Alba MR, Villaverde C, Fund C, Delépine M, Leduc A, Deleuze JF, Mínguez P, Ayuso C, Corton M. Long-read genome sequencing identifies cryptic structural variants in congenital aniridia cases. Hum Genomics 2023; 17:45. [PMID: 37269011 DOI: 10.1186/s40246-023-00490-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Haploinsufficiency of the transcription factor PAX6 is the main cause of congenital aniridia, a genetic disorder characterized by iris and foveal hypoplasia. 11p13 microdeletions altering PAX6 or its downstream regulatory region (DRR) are present in about 25% of patients; however, only a few complex rearrangements have been described to date. Here, we performed nanopore-based whole-genome sequencing to assess the presence of cryptic structural variants (SVs) on the only two unsolved "PAX6-negative" cases from a cohort of 110 patients with congenital aniridia after unsuccessfully short-read sequencing approaches. RESULTS Long-read sequencing (LRS) unveiled balanced chromosomal rearrangements affecting the PAX6 locus at 11p13 in these two patients and allowed nucleotide-level breakpoint analysis. First, we identified a cryptic 4.9 Mb de novo inversion disrupting intron 7 of PAX6, further verified by targeted polymerase chain reaction amplification and sequencing and FISH-based cytogenetic analysis. Furthermore, LRS was decisive in correctly mapping a t(6;11) balanced translocation cytogenetically detected in a second proband with congenital aniridia and considered non-causal 15 years ago. LRS resolved that the breakpoint on chromosome 11 was indeed located at 11p13, disrupting the DNase I hypersensitive site 2 enhancer within the DRR of PAX6, 161 Kb from the causal gene. Patient-derived RNA expression analysis demonstrated PAX6 haploinsufficiency, thus supporting that the 11p13 breakpoint led to a positional effect by cleaving crucial enhancers for PAX6 transactivation. LRS analysis was also critical for mapping the exact breakpoint on chromosome 6 to the highly repetitive centromeric region at 6p11.1. CONCLUSIONS In both cases, the LRS-based identified SVs have been deemed the hidden pathogenic cause of congenital aniridia. Our study underscores the limitations of traditional short-read sequencing in uncovering pathogenic SVs affecting low-complexity regions of the genome and the value of LRS in providing insight into hidden sources of variation in rare genetic diseases.
Collapse
Affiliation(s)
- Alejandra Damián
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Claire Jubin
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057, Evry, France
| | - Alejandra Tamayo
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, Science and Technology Campus, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - Marta Rodríguez de Alba
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Cédric Fund
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057, Evry, France
| | - Marc Delépine
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057, Evry, France
| | - Aurélie Leduc
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057, Evry, France
| | - Jean François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057, Evry, France
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain.
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
29
|
Kuchalska K, Wawrocka A, Krawczynski MR. Novel variants in the PAX6 gene related to isolated aniridia. Congenit Anom (Kyoto) 2023. [PMID: 37191119 DOI: 10.1111/cga.12520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Aniridia, which is a rare congenital defect of the eye, consists of iris hypoplasia or aplasia, and additional ocular abnormalities. It is most commonly caused by autosomal dominant PAX6 gene mutations. However, in about 30% of cases, it is associated with chromosomal rearrangements in the 11p13 region. The aim of this study was to identify the potential PAX6 gene variants, which could cause the isolated aniridia. Eight patients with isolated aniridia were included in this study. MLPA analysis allowed in the past to exclude large structural rearrangements of the PAX6 and adjacent genes like WT1. Blood samples were collected from the patients (and their families in familial cases) and genomic DNA was extracted from peripheral blood leukocytes and buccal cells. The amplification of the 11 exons of the PAX6 gene was performed. Bidirectional Sanger Sequencing was conducted for the identification of the potentially pathogenic variants, and for the segregation analysis of the identified variant in the family. The results were analyzed with the use of CodonCode Aligner software. In three patients, aniridia was sporadic, whereas in another five cases, the eye defect was familial. The potentially pathogenic variants in the PAX6 gene were found in 6 out of 8 patients with aniridia. We identified four known (c.781C > T, c.607C > T, and c.949C > T twice), and two novel variants (c.258_265del and c.495_496insG). Point mutations in the PAX6 gene are the most frequent cause of aniridia. The investigation of the genetic background of the disease is essential for patients to evaluate recurrence risk in the offspring.
Collapse
Affiliation(s)
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Center of Medical Genetics "Genesis", Poznan, Poland
| |
Collapse
|
30
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
31
|
Chang W, Zhao Y, Rayêe D, Xie Q, Suzuki M, Zheng D, Cvekl A. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin 2023; 16:4. [PMID: 36698218 PMCID: PMC9875507 DOI: 10.1186/s13072-023-00478-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and its accessibility. Cytosine methylation of CpG dinucleotides regulates binding of methylation-sensitive DNA-binding transcription factors within regulatory regions of transcription, including promoters and distal enhancers. Ocular lens differentiation represents an advantageous model system to examine these processes as lens comprises only two cell types, the proliferating lens epithelium and postmitotic lens fiber cells all originating from the epithelium. RESULTS Using whole genome bisulfite sequencing (WGBS) and microdissected lenses, we investigated dynamics of DNA methylation and chromatin changes during mouse lens fiber and epithelium differentiation between embryos (E14.5) and newborns (P0.5). Histone H3.3 variant chromatin landscapes were also generated for both P0.5 lens epithelium and fibers by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Tissue-specific features of DNA methylation patterns are demonstrated via comparative studies with embryonic stem (ES) cells and neural progenitor cells (NPCs) at Nanog, Pou5f1, Sox2, Pax6 and Six3 loci. Comparisons with ATAC-seq and RNA-seq data demonstrate that reduced methylation is associated with increased expression of fiber cell abundant genes, including crystallins, intermediate filament (Bfsp1 and Bfsp2) and gap junction proteins (Gja3 and Gja8), marked by high levels of histone H3.3 within their transcribed regions. Interestingly, Pax6-binding sites exhibited predominantly DNA hypomethylation in lens chromatin. In vitro binding of Pax6 proteins showed Pax6's ability to interact with sites containing one or two methylated CpG dinucleotides. CONCLUSIONS Our study has generated the first data on methylation changes between two different stages of mammalian lens development and linked these data with chromatin accessibility maps, presence of histone H3.3 and gene expression. Reduced DNA methylation correlates with expression of important genes involved in lens morphogenesis and lens fiber cell differentiation.
Collapse
Affiliation(s)
- William Chang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Danielle Rayêe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Masako Suzuki
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
32
|
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases. Genes (Basel) 2023; 14:genes14010196. [PMID: 36672937 PMCID: PMC9858967 DOI: 10.3390/genes14010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.
Collapse
|
33
|
Van de Sompele S, Small KW, Cicekdal MB, Soriano VL, D'haene E, Shaya FS, Agemy S, Van der Snickt T, Rey AD, Rosseel T, Van Heetvelde M, Vergult S, Balikova I, Bergen AA, Boon CJF, De Zaeytijd J, Inglehearn CF, Kousal B, Leroy BP, Rivolta C, Vaclavik V, van den Ende J, van Schooneveld MJ, Gómez-Skarmeta JL, Tena JJ, Martinez-Morales JR, Liskova P, Vleminckx K, De Baere E. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. Am J Hum Genet 2022; 109:2029-2048. [PMID: 36243009 PMCID: PMC9674966 DOI: 10.1016/j.ajhg.2022.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Collapse
Affiliation(s)
- Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kent W Small
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Munevver Burcu Cicekdal
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Víctor López Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fadi S Shaya
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Steven Agemy
- Department of Ophthalmology, SUNY Downstate Medical Center University, Brooklyn, New York, USA
| | - Thijs Van der Snickt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Mattias Van Heetvelde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Irina Balikova
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; Queen Emma Centre of Precision Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan R Martinez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kris Vleminckx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
34
|
Orozco G, Schoenfelder S, Walker N, Eyre S, Fraser P. 3D genome organization links non-coding disease-associated variants to genes. Front Cell Dev Biol 2022; 10:995388. [PMID: 36340032 PMCID: PMC9631826 DOI: 10.3389/fcell.2022.995388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Genome sequencing has revealed over 300 million genetic variations in human populations. Over 90% of variants are single nucleotide polymorphisms (SNPs), the remainder include short deletions or insertions, and small numbers of structural variants. Hundreds of thousands of these variants have been associated with specific phenotypic traits and diseases through genome wide association studies which link significant differences in variant frequencies with specific phenotypes among large groups of individuals. Only 5% of disease-associated SNPs are located in gene coding sequences, with the potential to disrupt gene expression or alter of the function of encoded proteins. The remaining 95% of disease-associated SNPs are located in non-coding DNA sequences which make up 98% of the genome. The role of non-coding, disease-associated SNPs, many of which are located at considerable distances from any gene, was at first a mystery until the discovery that gene promoters regularly interact with distal regulatory elements to control gene expression. Disease-associated SNPs are enriched at the millions of gene regulatory elements that are dispersed throughout the non-coding sequences of the genome, suggesting they function as gene regulation variants. Assigning specific regulatory elements to the genes they control is not straightforward since they can be millions of base pairs apart. In this review we describe how understanding 3D genome organization can identify specific interactions between gene promoters and distal regulatory elements and how 3D genomics can link disease-associated SNPs to their target genes. Understanding which gene or genes contribute to a specific disease is the first step in designing rational therapeutic interventions.
Collapse
Affiliation(s)
- Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Stefan Schoenfelder
- Enhanc3D Genomics Ltd., Cambridge, United Kingdom
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, Cambridge, United Kingdom
| | | | - Stephan Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Peter Fraser
- Enhanc3D Genomics Ltd., Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
35
|
Downes DJ, Hughes JR. Natural and Experimental Rewiring of Gene Regulatory Regions. Annu Rev Genomics Hum Genet 2022; 23:73-97. [PMID: 35472292 DOI: 10.1146/annurev-genom-112921-010715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The successful development and ongoing functioning of complex organisms depend on the faithful execution of the genetic code. A critical step in this process is the correct spatial and temporal expression of genes. The highly orchestrated transcription of genes is controlled primarily by cis-regulatory elements: promoters, enhancers, and insulators. The medical importance of this key biological process can be seen by the frequency with which mutations and inherited variants that alter cis-regulatory elements lead to monogenic and complex diseases and cancer. Here, we provide an overview of the methods available to characterize and perturb gene regulatory circuits. We then highlight mechanisms through which regulatory rewiring contributes to disease, and conclude with a perspective on how our understanding of gene regulation can be used to improve human health.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
36
|
Miguel-Escalada I, Maestro MÁ, Balboa D, Elek A, Bernal A, Bernardo E, Grau V, García-Hurtado J, Sebé-Pedrós A, Ferrer J. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell 2022; 57:1922-1936.e9. [PMID: 35998583 PMCID: PMC9426562 DOI: 10.1016/j.devcel.2022.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations. The pancreas agenesis enhancer (EnhP) activates PTF1A in early pancreatic progenitors EnhP also activates other progenitor PTF1A enhancers This master key function explains why EnhP is vulnerable to loss-of-function mutations Transient PTF1A expression in progenitors controls pancreas growth and endocrinogenesis
Collapse
Affiliation(s)
- Irene Miguel-Escalada
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| | - Miguel Ángel Maestro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Diego Balboa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Aina Bernal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Edgar Bernardo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Vanessa Grau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Javier García-Hurtado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Genetics and Genomics Section, Department of Metabolism, Digestion and Reproduction, National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London W12 0NN, UK; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
37
|
Wang Q, Zhang X, Qin T, Wang D, Lin X, Zhu Y, Tan H, Zhao L, Li J, Lin Z, Lin H, Chen W. Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes (Basel) 2022; 13:genes13081431. [PMID: 36011342 PMCID: PMC9408430 DOI: 10.3390/genes13081431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The deletion of chromosome 11p13 involving the WT1 and PAX6 genes has been shown to cause WAGR syndrome (OMIM #194072), a rare genetic disorder that features Wilms’ tumor, aniridia, genitourinary anomalies, as well as mental retardation. In this study, we expand the genotypic and phenotypic spectrum of WAGR syndrome by reporting on six patients from six unrelated families with different de novo deletions located on chromosome 11p13. Very rare phenotypes of lens automated absorption and lens thinning were detected in four of the six patients. We assessed the involvement of the ARL14EP gene in patients with and without severe lens abnormalities and found that its deletion may worsen the lens abnormalities in these patients.
Collapse
Affiliation(s)
- Qiwei Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Tingfeng Qin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoshan Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuanyuan Zhu
- Aegicare, 3803 Building 11A, Shenzhen Bay Ecological Technology Park, Nanshan District, Shenzhen 518063, China
| | - Haowen Tan
- Aegicare, 3803 Building 11A, Shenzhen Bay Ecological Technology Park, Nanshan District, Shenzhen 518063, China
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
- Correspondence:
| |
Collapse
|
38
|
Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, Campbell C, Downes K, Ellard S, Duff-Farrier C, FitzPatrick DR, Greally JM, Ingles J, Krishnan N, Lord J, Martin HC, Newman WG, O'Donnell-Luria A, Ramsden SC, Rehm HL, Richardson E, Singer-Berk M, Taylor JC, Williams M, Wood JC, Wright CF, Harrison SM, Whiffin N. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med 2022; 14:73. [PMID: 35850704 PMCID: PMC9295495 DOI: 10.1186/s13073-022-01073-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts. METHODS We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups. RESULTS We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants. CONCLUSIONS These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.
Collapse
Affiliation(s)
- Jamie M Ellingford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, M13 9PT, UK.
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
- Genomics England, London, UK.
| | - Joo Wook Ahn
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Chris Campbell
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- South West Genomic Laboratory Hub, Exeter Genomic Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Celia Duff-Farrier
- South West NHS Genomic Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic, Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert, Einstein College of Medicine, Bronx, NY, USA
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - William G Newman
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ebony Richardson
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Maggie Williams
- South West NHS Genomic Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Jordan C Wood
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Steven M Harrison
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Nicola Whiffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
39
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
40
|
Thomas ED, Timms AE, Giles S, Harkins-Perry S, Lyu P, Hoang T, Qian J, Jackson VE, Bahlo M, Blackshaw S, Friedlander M, Eade K, Cherry TJ. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 2022; 57:820-836.e6. [PMID: 35303433 PMCID: PMC9126240 DOI: 10.1016/j.devcel.2022.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Cis-regulatory elements (CREs) play a critical role in the development and disease-states of all human cell types. In the retina, CREs have been implicated in several inherited disorders. To better characterize human retinal CREs, we performed single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-nucleus RNA sequencing (snRNA-seq) on the developing and adult human retina and on induced pluripotent stem cell (iPSC)-derived retinal organoids. These analyses identified developmentally dynamic, cell-class-specific CREs, enriched transcription-factor-binding motifs, and putative target genes. CREs in the retina and organoids are highly correlated at the single-cell level, and this supports the use of organoids as a model for studying disease-associated CREs. As a proof of concept, we disrupted a disease-associated CRE at 5q14.3, confirming its principal target gene as the miR-9-2 primary transcript and demonstrating its role in neurogenesis and gene regulation in mature glia. This study provides a resource for characterizing human retinal CREs and showcases organoids as a model to study the function of CREs that influence development and disease.
Collapse
Affiliation(s)
- Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pin Lyu
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
42
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
43
|
Chesneau B, Aubert-Mucca M, Fremont F, Pechmeja J, Soler V, Isidor B, Nizon M, Dollfus H, Kaplan J, Fares-Taie L, Rozet JM, Busa T, Lacombe D, Naudion S, Amiel J, Rio M, Attie-Bitach T, Lesage C, Thouvenin D, Odent S, Morel G, Vincent-Delorme C, Boute O, Vanlerberghe C, Dieux A, Boussion S, Faivre L, Pinson L, Laffargue F, Le Guyader G, Le Meur G, Prieur F, Lambert V, Laudier B, Cottereau E, Ayuso C, Corton-Pérez M, Bouneau L, Le Caignec C, Gaston V, Jeanton-Scaramouche C, Dupin-Deguine D, Calvas P, Chassaing N, Plaisancié J. First evidence of SOX2 mutations in Peters' anomaly: lessons from molecular screening of 95 patients. Clin Genet 2022; 101:494-506. [PMID: 35170016 DOI: 10.1111/cge.14123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some Copy Number Variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of Comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bertrand Chesneau
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | | | - Félix Fremont
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Jacmine Pechmeja
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Vincent Soler
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Bertrand Isidor
- Génétique Médicale, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Nizon
- Génétique Médicale, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpitaux Universitaires, Strasbourg, France
| | - Josseline Kaplan
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Lucas Fares-Taie
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Jean-Michel Rozet
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Tiffany Busa
- Génétique Clinique, AP- HM CHU Timone Enfants, Marseille, France
| | - Didier Lacombe
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Sophie Naudion
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Jeanne Amiel
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Marlène Rio
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Tania Attie-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-, HP, Paris, France
| | | | | | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, CHU Rennes; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN ITHACA, France
| | - Godelieve Morel
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, CHU Rennes; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN ITHACA, France
| | | | | | | | | | | | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU, Dijon, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, France
| | | | | | | | | | - Victor Lambert
- Service d'ophtalmologie, Hôpital Nord, Saint-Etienne, France
| | | | | | - Carmen Ayuso
- Genetics & Genomics Department, Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD-UAM). Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Corton-Pérez
- Genetics & Genomics Department, Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD-UAM). Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | | | | | | | | | - Patrick Calvas
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | - Nicolas Chassaing
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | - Julie Plaisancié
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,INSERM U1214, ToNIC, Université Toulouse III, France
| |
Collapse
|
44
|
Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open 2022; 11:bio058896. [PMID: 35089335 PMCID: PMC8801891 DOI: 10.1242/bio.058896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many human birth defects and neurodevelopmental disorders are caused by loss-of-function mutations in a single copy of transcription factor (TF) and chromatin regulator genes. Although this dosage sensitivity has long been known, how and why haploinsufficiency (HI) of transcriptional regulators leads to developmental disorders (DDs) is unclear. Here I propose the hypothesis that such DDs result from defects in cell fate determination that are based on disrupted bistability in the underlying gene regulatory network (GRN). Bistability, a crucial systems biology concept to model binary choices such as cell fate decisions, requires both positive feedback and ultrasensitivity, the latter often achieved through TF cooperativity. The hypothesis explains why dosage sensitivity of transcriptional regulators is an inherent property of fate decisions, and why disruption of either positive feedback or cooperativity in the underlying GRN is sufficient to cause disease. I present empirical and theoretical evidence in support of this hypothesis and discuss several issues for which it increases our understanding of disease, such as incomplete penetrance. The proposed framework provides a mechanistic, systems-level explanation of HI of transcriptional regulators, thus unifying existing theories, and offers new insights into outstanding issues of human disease. This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
45
|
Bhatia S, Kleinjan DJ, Uttley K, Mann A, Dellepiane N, Bickmore WA. Quantitative spatial and temporal assessment of regulatory element activity in zebrafish. eLife 2021; 10:65601. [PMID: 34796872 PMCID: PMC8604437 DOI: 10.7554/elife.65601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations or genetic variation in noncoding regions of the genome harbouring cis-regulatory elements (CREs), or enhancers, have been widely implicated in human disease and disease risk. However, our ability to assay the impact of these DNA sequence changes on enhancer activity is currently very limited because of the need to assay these elements in an appropriate biological context. Here, we describe a method for simultaneous quantitative assessment of the spatial and temporal activity of wild-type and disease-associated mutant human CRE alleles using live imaging in zebrafish embryonic development. We generated transgenic lines harbouring a dual-CRE dual-reporter cassette in a pre-defined neutral docking site in the zebrafish genome. The activity of each CRE allele is reported via expression of a specific fluorescent reporter, allowing simultaneous visualisation of where and when in development the wild-type allele is active and how this activity is altered by mutation.
Collapse
Affiliation(s)
- Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Jan Kleinjan
- Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Anita Mann
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nefeli Dellepiane
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Blanco-Kelly F, Tarilonte M, Villamar M, Damián A, Tamayo A, Moreno-Pelayo MA, Ayuso C, Cortón M. Genetics and epidemiology of aniridia: Updated guidelines for genetic study. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:4-14. [PMID: 34836588 DOI: 10.1016/j.oftale.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
Aniridia is a panocular disease characterized by iris hypoplasia, accompanied by other ocular manifestations, with a high clinical variability and overlapping with different abnormalities of the anterior and posterior segment. This review focuses on the genetic features of this autosomal dominant pathology, which is caused by the haploinsufficiency of the PAX6 gene. Mutations causing premature stop codons are the most frequent among the wider mutational spectrum of PAX6, with more than 600 different mutations identified so far. Recent advances in next-generation sequencing (NGS) have increased the diagnostic yield in aniridia and contributed to elucidate new etiopathogenic mechanisms leading to PAX6 haploinsufficiency. Here, we also update good practices and recommendations to improve genetic testing and clinical management of aniridia using more cost-effective NGS analysis. Those new approaches also allow studying simultaneously both structural variants and point-mutations in PAX6 as well as other genes for differential diagnosis, simultaneously. Some patients with atypical phenotypes might present mutations in FOXC1 and PITX2, both genes causing a wide spectrum of anterior segment dysgenesis, or in ITPR1, which is responsible for a distinctive form of circumpupillary iris aplasia present in Gillespie syndrome, or other mutations in minor genes. Since aniridia can also associate extraocular anomalies, as it occurs in carriers of PAX6 and WT1 microdeletions leading to WAGR syndrome, genetic studies are crucial to assure a correct diagnosis and clinical management, besides allowing prenatal and preimplantational genetic testing in families.
Collapse
Affiliation(s)
- F Blanco-Kelly
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - M Tarilonte
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M Villamar
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - A Damián
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - A Tamayo
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M A Moreno-Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - C Ayuso
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - M Cortón
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
48
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
49
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
50
|
Bengani H, Grozeva D, Moyon L, Bhatia S, Louros SR, Hope J, Jackson A, Prendergast JG, Owen LJ, Naville M, Rainger J, Grimes G, Halachev M, Murphy LC, Spasic-Boskovic O, van Heyningen V, Kind P, Abbott CM, Osterweil E, Raymond FL, Roest Crollius H, FitzPatrick DR. Identification and functional modelling of plausibly causative cis-regulatory variants in a highly-selected cohort with X-linked intellectual disability. PLoS One 2021; 16:e0256181. [PMID: 34388204 PMCID: PMC8362966 DOI: 10.1371/journal.pone.0256181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Institute of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Lambert Moyon
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Shipra Bhatia
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Susana R. Louros
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Jilly Hope
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Jackson
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Liusaidh J. Owen
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Magali Naville
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Jacqueline Rainger
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Graeme Grimes
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mihail Halachev
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura C. Murphy
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivera Spasic-Boskovic
- East Midlands and East of England NHS Genomic Laboratory Hub, Molecular Genetics, Adden brooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge, Cambridge, United Kingdom
| | | | - Peter Kind
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine M. Abbott
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Osterweil
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - F. Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|