1
|
Kilic S, Bove J, So BN, Whitman MC. Strabismus in Genetic Syndromes: A Review. Clin Exp Ophthalmol 2025; 53:302-330. [PMID: 39948700 DOI: 10.1111/ceo.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 04/03/2025]
Abstract
Strabismus is a feature of many genetic syndromes, with highly variable penetrance. The congenital cranial dysinnervation disorders (CCDDs) result in paralytic strabismus, with limited eye movements. CCDDs result from either deficits in differentiation of the cranial motor neuron precursors or from abnormal axon guidance of the cranial nerves. Although most individuals with comitant strabismus are otherwise healthy, strabismus is a variable feature of many genetic syndromes, most commonly those associated with intellectual disability. We review 255 genetic syndromes in which strabismus has been described and discuss the variable penetrance. The association with intellectual disability and neurological disorders underscores the likely neurological basis of strabismus, but the variable penetrance emphasises the complexity of strabismus pathophysiology. The syndromes described here mostly result from loss of function or change in function of the responsible genes; one hypothesis is that nonsyndromic strabismus may result from altered expression or regulation of the same genes.
Collapse
Affiliation(s)
- Seyda Kilic
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jillian Bove
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Orthoptic Fellowship Program, Boston, Massachusetts, USA
| | | | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- F.M. Kirby Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhang Y, He M, Pan J. Axonemal microtubule dynamics in the assembly and disassembly of cilia. Biochem Soc Trans 2025; 53:BST20240688. [PMID: 39889304 DOI: 10.1042/bst20240688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Cilia and eukaryotic flagella (exchangeable terms) function in cell motility and signaling, which are pivotal for development and physiology. Cilia dysfunction can lead to ciliopathies. Cilia are usually assembled in quiescent and/or differentiated cells and undergo disassembly when cells enter cell cycle or in response to environmental stresses. Cilia contain a microtubule-based structure termed axoneme that comprises nine outer doublet microtubules with or without a pair of central microtubules, which is ensheathed by the ciliary membrane. Regulation of the axonemal microtubule dynamics is tightly associated with ciliary assembly and disassembly. In this short review, we discuss recent findings on the regulation of axonemal microtubules by microtubule-binding proteins and microtubule modulating kinesins during ciliary assembly and disassembly.
Collapse
Affiliation(s)
- Yi Zhang
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mu He
- School of Biomedical Sciences, The University of Hong Kong, Hongkong, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Saunders HAJ, van den Berg CM, Hoogebeen RA, Schweizer D, Stecker KE, Roepman R, Howes SC, Akhmanova A. A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth. Nat Struct Mol Biol 2025:10.1038/s41594-025-01483-y. [PMID: 39856351 DOI: 10.1038/s41594-025-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome. We show that CEP104, a protein with a tubulin-binding TOG domain, and its luminal partner CSPP1 inhibit microtubule growth and shortening. Another TOG-domain protein, TOGARAM1, overcomes growth inhibition imposed by CEP104 and CSPP1. CCDC66 and ARMC9 do not affect microtubule dynamics but act as scaffolds for their partners. Cryo-electron tomography demonstrated that, together, ciliary tip module members form plus-end-specific cork-like structures that reduce protofilament flaring. The combined effect of these proteins is very slow processive microtubule elongation, which recapitulates axonemal dynamics in cells.
Collapse
Affiliation(s)
- Harriet A J Saunders
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robin A Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Donna Schweizer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stuart C Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Mapelli M. CSPP1 preserves quiescent microtubule functions by dual-end capping. J Mol Cell Biol 2024; 16:mjae022. [PMID: 38772741 PMCID: PMC11492122 DOI: 10.1093/jmcb/mjae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024] Open
Affiliation(s)
- Marina Mapelli
- European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
5
|
Şimşek-Kiper PÖ, Karaosmanoğlu B, Taşkıran EZ, Türer ÖB, Utine GE, Soyer T. A novel GRK2 variant in a patient with Jeune asphyxiating thoracic dysplasia accompanied by Morgagni hernia. Am J Med Genet A 2024; 194:e63629. [PMID: 38647386 DOI: 10.1002/ajmg.a.63629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Skeletal ciliopathies constitute a subgroup of ciliopathies characterized by various skeletal anomalies arising from mutations in genes impacting cilia, ciliogenesis, intraflagellar transport process, or various signaling pathways. Short-rib thoracic dysplasias, previously known as Jeune asphyxiating thoracic dysplasia (ATD), stand out as the most prevalent and prototypical form of skeletal ciliopathies, often associated with semilethality. Recently, pathogenic variants in GRK2, a subfamily of mammalian G protein-coupled receptor kinases, have been identified as one of the underlying causes of Jeune ATD. In this study, we report a new patient with Jeune ATD, in whom exome sequencing revealed a novel homozygous GRK2 variant, and we review the clinical features and radiographic findings. In addition, our findings introduce Morgagni hernia and an organoaxial-type rotation anomaly of the stomach and midgut malrotation for the first time in the context of this recently characterized GRK2-related skeletal ciliopathy.
Collapse
Affiliation(s)
- Pelin Özlem Şimşek-Kiper
- Department of Pediatrics, Division of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Beren Karaosmanoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Zihni Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Özlem Boybeyi Türer
- Department of Pediatric Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Department of Pediatrics, Division of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tutku Soyer
- Department of Pediatric Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Wang Z, Wang W, Liu S, Yang F, Liu X, Hua S, Zhu L, Xu A, Hill DL, Wang D, Jiang K, Lippincott-Schwartz J, Liu X, Yao X. CSPP1 stabilizes microtubules by capping both plus and minus ends. J Mol Cell Biol 2024; 16:mjae007. [PMID: 38389254 PMCID: PMC11285173 DOI: 10.1093/jmcb/mjae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting polymerization. Importantly, CSPP1-bound MTs were resistant to mitotic centromere-associated kinesin-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.
Collapse
Affiliation(s)
- Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Shasha Hua
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Aoqing Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35233, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Kai Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | | | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
7
|
Wei C, Zhang H, Fu M, Ye J, Yao B. Novel compound heterozygous variants in the CSPP1 gene causes Joubert syndrome: case report and literature review of the CSPP1 gene's pathogenic mechanism. Front Pediatr 2024; 12:1305754. [PMID: 38586154 PMCID: PMC10995352 DOI: 10.3389/fped.2024.1305754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive neurodevelopmental condition characterized by congenital mid-hindbrain abnormalities and a variety of clinical manifestations. This article describes a case of Joubert syndrome type 21 with microcephaly, seizures, developmental delay and language regression, caused by a CSPP1 gene variant and examines the contributing variables. This paper advances the understanding of JS by summarizing the literature and offering detection patterns for practitioners with clinical suspicions of JS.
Collapse
Affiliation(s)
| | | | | | - Jingping Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Romeiro Motta M, Biswas S, Schaedel L. Beyond uniformity: Exploring the heterogeneous and dynamic nature of the microtubule lattice. Eur J Cell Biol 2023; 102:151370. [PMID: 37922811 DOI: 10.1016/j.ejcb.2023.151370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
A fair amount of research on microtubules since their discovery in 1963 has focused on their dynamic tips. In contrast, the microtubule lattice was long believed to be highly regular and static, and consequently received far less attention. Yet, as it turned out, the microtubule lattice is neither as regular, nor as static as previously believed: structural studies uncovered the remarkable wealth of different conformations the lattice can accommodate. In the last decade, the microtubule lattice was shown to be labile and to spontaneously undergo renovation, a phenomenon that is intimately linked to structural defects and was called "microtubule self-repair". Following this breakthrough discovery, further recent research provided a deeper understanding of the lattice self-repair mechanism, which we review here. Instrumental to these discoveries were in vitro microtubule reconstitution assays, in which microtubules are grown from the minimal components required for their dynamics. In this review, we propose a shift from the term "lattice self-repair" to "lattice dynamics", since this phenomenon is an inherent property of microtubules and can happen without microtubule damage. We focus on how in vitro microtubule reconstitution assays helped us learn (1) which types of structural variations microtubules display, (2) how these structural variations influence lattice dynamics and microtubule damage caused by mechanical stress, (3) how lattice dynamics impact tip dynamics, and (4) how microtubule-associated proteins (MAPs) can play a role in structuring the lattice. Finally, we discuss the unanswered questions about lattice dynamics and how technical advances will help us tackle these questions.
Collapse
Affiliation(s)
- Mariana Romeiro Motta
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Lyon 69364, France
| | - Subham Biswas
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany
| | - Laura Schaedel
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
9
|
van den Berg CM, Volkov VA, Schnorrenberg S, Huang Z, Stecker KE, Grigoriev I, Gilani S, Frikstad KAM, Patzke S, Zimmermann T, Dogterom M, Akhmanova A. CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side. J Cell Biol 2023; 222:213861. [PMID: 36752787 PMCID: PMC9948759 DOI: 10.1083/jcb.202208062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.
Collapse
Affiliation(s)
- Cyntha M. van den Berg
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Vladimir A. Volkov
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Ziqiang Huang
- EMBL Imaging Centre, EMBL-Heidelberg, Heidelberg, Germany
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ilya Grigoriev
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sania Gilani
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Department of Molecular Cell Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M. Frikstad
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sebastian Patzke
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Marileen Dogterom
- https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Anna Akhmanova
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,Correspondence to Anna Akhmanova:
| |
Collapse
|
10
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:023-032. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
11
|
Hua K, Ferland RJ. Fixation methods and immunolabeling for cilia proteins in ciliary and extraciliary locations. Methods Cell Biol 2023; 176:43-57. [PMID: 37164542 DOI: 10.1016/bs.mcb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Primary cilia are complex organelles, usually singularly located on cell surfaces that are now known to be important for signaling and whose defect is implicated in a category of developmental diseases known as ciliopathies. They are composed of a microtubule axoneme and contain a cilia membrane that is unique and distinct from the plasma membrane. Primary cilia also have their own transport system termed the intraflagellar transport (IFT) system that allows for proteins to be trafficked along the microtubule axoneme in either an anterograde or retrograde manner. Proteins that localize to the primary cilium are referred to as ciliary proteins and have been implicated directly or indirectly in ciliogenesis or ciliary function. It is now recognized that cilia proteins can localize to different compartments of cilia, but can also localize to multiple sites outside of cilia (extraciliary sites). This complexity results in a need for a better understanding of ciliary protein fixation and immunolabeling protocols, as different methods are required to visualize different cilia proteins and reveal novel or unique localizations. Here, we detail a variety of fixation methods and their effects on ciliary protein immunolabeling.
Collapse
Affiliation(s)
- Kiet Hua
- Montefiore Medical Center, Albert Einstein College of Medicine, Department of Neurology, Bronx, NY, United States.
| | - Russell J Ferland
- University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Biddeford, ME, United States.
| |
Collapse
|
12
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
13
|
Wang W, Zhang J, Wang Y, Xu Y, Zhang S. Identifies microtubule-binding protein CSPP1 as a novel cancer biomarker associated with ferroptosis and tumor microenvironment. Comput Struct Biotechnol J 2022; 20:3322-3335. [PMID: 35832625 PMCID: PMC9253833 DOI: 10.1016/j.csbj.2022.06.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Centrosome and spindle pole-associated protein (CSPP1) is a centrosome and microtubule-binding protein that plays a role in cell cycle-dependent cytoskeleton organization and cilia formation. Previous studies have suggested that CSPP1 plays a role in tumorigenesis; however, no pan-cancer analysis has been performed. This study systematically investigates the expression of CSPP1 and its potential clinical outcomes associated with diagnosis, prognosis, and therapy. CSPP1 is widely present in tissues and cells and its aberrant expression serves as a diagnostic biomarker for cancer. CSPP1 dysregulation is driven by multi-dimensional mechanisms involving genetic alterations, DNA methylation, and miRNAs. Phosphorylation of CSPP1 at specific sites may play a role in tumorigenesis. In addition, CSPP1 correlates with clinical features and outcomes in multiple cancers. Take brain low-grade gliomas (LGG) with a poor prognosis as an example, functional enrichment analysis implies that CSPP1 may play a role in ferroptosis and tumor microenvironment (TME), including regulating epithelial-mesenchymal transition, stromal response, and immune response. Further analysis confirms that CSPP1 dysregulates ferroptosis in LGG and other cancers, making it possible for ferroptosis-based drugs to be used in the treatment of these cancers. Importantly, CSPP1-associated tumors are infiltrated in different TMEs, rendering immune checkpoint blockade therapy beneficial for these cancer patients. Our study is the first to demonstrate that CSPP1 is a potential diagnostic and prognostic biomarker associated with ferroptosis and TME, providing a new target for drug therapy and immunotherapy in specific cancers.
Collapse
Key Words
- ACC, adrenocortical carcinoma
- BP, biological pathways
- BRCA, breast invasive carcinoma
- Biomarker
- C-index, concordance index
- CAF, cancer-associated fibroblasts
- CC, cellular component
- CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma
- CHOL, cholangiocarcinoma
- CNA, copy number alteration
- COAD, colon adenocarcinoma
- CPTAC, Clinical Proteomic Tumor Analysis Consortium
- CSPP1
- CSPP1, centrosome and spindle pole-associated protein
- CTL, cytotoxic T lymphocyte
- DEGs, differentially expressed genes
- DLBC, diffuse large B-cell lymphoma
- DSS, disease-specific survival
- EMT, epithelial-mesenchymal transition
- ENCORI, Encyclopedia of RNA Interactomes
- ESCA, esophageal carcinoma
- FAG, ferroptosis-associated gene
- FDG, ferroptosis-driver gene
- FSG, ferroptosis-suppressor gene
- Ferroptosis
- GBM, glioblastoma multiforme
- GO, Gene Ontology
- GSEA, Gene Set Enrichment Analysis
- GSVA, gene set variation analysis
- GTEx, Genotype-Tissue Expression
- HNSC, head and neck squamous cell carcinoma
- ICB, immune checkpoint blockade
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- KICH, kidney chromophobe
- KIRC, renal clear cell carcinoma
- KM, Kaplan-Meier
- LAML, acute myeloid leukemia
- LGG, low-grade gliomas
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- MF, molecular functions
- MHC, major histocompatibility complex
- MSI, microsatellite instability
- OS, overall survival
- OV, ovarian serous cystadenocarcinoma
- PAAD, pancreatic adenocarcinoma
- PFI, progression-free interval
- PFS, progression-free survival
- PRAD, prostate cancer
- Pan-cancer
- READ, rectum adenocarcinoma
- ROC, receiver operating characteristics
- SKCM, skin cutaneous melanoma
- TCGA, The Cancer Genome Atlas
- TGCT, testicular germ cell tumors, STAD, stomach adenocarcinoma
- THCA, thyroid cancer
- THYM, thymoma
- TIDE, Tumor Immune Dysfunction and Exclusion
- TIMER, Tumor Immune Estimation Resource
- TISIDB, Tumor-Immune System Interactions DataBase
- TMB, tumor mutation burden
- TME, tumor microenvironment
- Tumor microenvironment
- UCEC, endometrial cancer uterine corpus endometrial carcinoma
- UCS, uterine carcinosarcoma
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingjing Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuqing Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yasi Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet 2022; 23:301-329. [PMID: 35655331 DOI: 10.1146/annurev-genom-121321-093528] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA;
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
15
|
Cilia and their role in neural tube development and defects. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Pervasive occurrence of splice-site-creating mutations and their possible involvement in genetic disorders. NPJ Genom Med 2022; 7:22. [PMID: 35304488 PMCID: PMC8933504 DOI: 10.1038/s41525-022-00294-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/15/2022] [Indexed: 01/06/2023] Open
Abstract
The search for causative mutations in human genetic disorders has mainly focused on mutations that disrupt coding regions or splice sites. Recently, however, it has been reported that mutations creating splice sites can also cause a range of genetic disorders. In this study, we identified 5656 candidate splice-site-creating mutations (SCMs), of which 3942 are likely to be pathogenic, in 4054 genes responsible for genetic disorders. Reanalysis of exome data obtained from ciliopathy patients led us to identify 38 SCMs as candidate causative mutations. We estimate that, by focusing on SCMs, the increase in diagnosis rate is approximately 5.9–8.5% compared to the number of already known pathogenic variants. This finding suggests that SCMs are mutations worth focusing on in the search for causative mutations of genetic disorders.
Collapse
|
17
|
Salman MS, Bunge M. Head Thrusts in Two Children With Unusual Neuroimaging Findings. J Neuroophthalmol 2022; 42:e427-e429. [PMID: 33770004 DOI: 10.1097/wno.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael S Salman
- Section of Pediatric Neurology (MSS), Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Section of Pediatric Radiology (MB), Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
18
|
Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:72-88. [PMID: 35238134 PMCID: PMC9314610 DOI: 10.1002/ajmg.c.31963] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 01/20/2023]
Abstract
Joubert syndrome (JS) is a genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the “molar tooth sign,” and variable organ involvement. Over 40 causative genes have been identified to date, explaining up to 94% of cases. To date, gene‐phenotype correlates have been delineated only for a handful of genes, directly translating into improved counseling and clinical care. For instance, JS individuals harboring pathogenic variants in TMEM67 have a significantly higher risk of liver fibrosis, while pathogenic variants in NPHP1, RPGRIP1L, and TMEM237 are frequently associated to JS with renal involvement, requiring a closer monitoring of liver parameters, or renal functioning. On the other hand, individuals with causal variants in the CEP290 or AHI1 need a closer surveillance for retinal dystrophy and, in case of CEP290, also for chronic kidney disease. These examples highlight how an accurate description of the range of clinical symptoms associated with defects in each causative gene, including the rare ones, would better address prognosis and help guiding a personalized management. This review proposes to address this issue by assessing the available literature, to confirm known, as well as to propose rare gene‐phenotype correlates in JS.
Collapse
Affiliation(s)
- Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Boschen KE, Fish EW, Parnell SE. Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod Toxicol 2021; 105:136-147. [PMID: 34492310 PMCID: PMC8529623 DOI: 10.1016/j.reprotox.2021.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Neurulation-stage alcohol exposure (NAE; embryonic day [E] 8-10) is associated with midline craniofacial and CNS defects that likely arise from disruption of morphogen pathways, such as Sonic hedgehog (Shh). Notably, midline anomalies are also a hallmark of genetic ciliopathies such as Joubert syndrome. We tested whether NAE alters Shh pathway signaling and the number and function of primary cilia, organelles critical for Shh pathway transduction. Female C57BL/6 J mice were administered two doses of alcohol (2.9 g/kg/dose) or vehicle on E9. Embryos were collected 6, 12, or 24 h later, and changes to Shh, cell cycle genes, and primary cilia were measured in the rostroventral neural tube (RVNT). Within the first 24 h post-NAE, reductions in Shh pathway and cell cycle gene expression and the ratio of Gli3 forms in the full-length activator state were observed. RVNT volume and cell layer width were reduced at 12 h. In addition, altered expression of multiple cilia-related genes was observed at 6 h post-NAE. As a further test of cilia gene-ethanol interaction, mice heterozygous for Kif3a exhibited perturbed behavior during adolescence following NAE compared to vehicle-treated mice, and Kif3a heterozygosity exacerbated the hyperactive effects of NAE on exploratory activity. These data demonstrate that NAE downregulates the Shh pathway in a region of the neural tube that gives rise to alcohol-sensitive brain structures and identifies disruption of primary cilia function, or a "transient ciliopathy", as a possible cellular mechanism of prenatal alcohol pathogenesis.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Parnell
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Arslanhan MD, Rauniyar N, Yates JR, Firat-Karalar EN. Aurora Kinase A proximity map reveals centriolar satellites as regulators of its ciliary function. EMBO Rep 2021; 22:e51902. [PMID: 34169630 PMCID: PMC8339716 DOI: 10.15252/embr.202051902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Aurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient. Previous proteomic studies were limited in monitoring dynamic and non-mitotic AURKA interactions. Here, we generate the proximity interactome of AURKA in asynchronous cells, which consists of 440 proteins involving multiple biological processes and cellular compartments. Importantly, AURKA has extensive proximate and physical interactions to centriolar satellites, key regulators of the primary cilium. Loss-of-function experiments identify satellites as negative regulators of AURKA activity, abundance, and localization in quiescent cells. Notably, loss of satellites activates AURKA at the basal body, decreases centrosomal IFT88 levels, and causes ciliogenesis defects. Collectively, our results provide a resource for dissecting spatiotemporal regulation of AURKA and uncover its proteostatic regulation by satellites as a new mechanism for its ciliary functions.
Collapse
Affiliation(s)
- Melis D Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Navin Rauniyar
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
21
|
Sena RM, Twiss JL, Gardiner AS, Dell’Orco M, Linsenbardt DN, Perrone-Bizzozero NI. The RNA-Binding Protein HuD Regulates Alternative Splicing and Alternative Polyadenylation in the Mouse Neocortex. Molecules 2021; 26:2836. [PMID: 34064652 PMCID: PMC8151252 DOI: 10.3390/molecules26102836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca M. Sena
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Jeffery L. Twiss
- Department Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Amy S. Gardiner
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
- Department Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michela Dell’Orco
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - David N. Linsenbardt
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Nora I. Perrone-Bizzozero
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| |
Collapse
|
22
|
Wiegering A, Dildrop R, Vesque C, Khanna H, Schneider-Maunoury S, Gerhardt C. Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone. Mol Biol Cell 2021; 32:675-689. [PMID: 33625872 PMCID: PMC8108517 DOI: 10.1091/mbc.e20-03-0190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Hemant Khanna
- Department of Ophthalmology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Latour BL, Van De Weghe JC, Rusterholz TD, Letteboer SJ, Gomez A, Shaheen R, Gesemann M, Karamzade A, Asadollahi M, Barroso-Gil M, Chitre M, Grout ME, van Reeuwijk J, van Beersum SE, Miller CV, Dempsey JC, Morsy H, Bamshad MJ, Nickerson DA, Neuhauss SC, Boldt K, Ueffing M, Keramatipour M, Sayer JA, Alkuraya FS, Bachmann-Gagescu R, Roepman R, Doherty D. Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. J Clin Invest 2021; 130:4423-4439. [PMID: 32453716 DOI: 10.1172/jci131656] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.
Collapse
Affiliation(s)
- Brooke L Latour
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tamara Ds Rusterholz
- Institute of Medical Genetics, and.,Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Stef Jf Letteboer
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Arezou Karamzade
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Asadollahi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Manali Chitre
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Megan E Grout
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jeroen van Reeuwijk
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sylvia Ec van Beersum
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caitlin V Miller
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,The University of Washington Center for Mendelian Genomics is detailed in Supplemental Acknowledgments.,University of Washington Center for Mendelian Genomics, Seattle, Washington, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Deborah A Nickerson
- The University of Washington Center for Mendelian Genomics is detailed in Supplemental Acknowledgments.,University of Washington Center for Mendelian Genomics, Seattle, Washington, USA
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, and.,Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
24
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
25
|
A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling. Cell Rep 2020; 28:1907-1922.e6. [PMID: 31412255 PMCID: PMC6702141 DOI: 10.1016/j.celrep.2019.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/21/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
CEP104 is an evolutionarily conserved centrosomal and ciliary tip protein. CEP104 loss-of-function mutations are reported in patients with Joubert syndrome, but their function in the etiology of ciliopathies is poorly understood. Here, we show that cep104 silencing in zebrafish causes cilia-related manifestations: shortened cilia in Kupffer’s vesicle, heart laterality, and cranial nerve development defects. We show that another Joubert syndrome-associated cilia tip protein, CSPP1, interacts with CEP104 at microtubules for the regulation of axoneme length. We demonstrate in human telomerase reverse transcriptase-immortalized retinal pigmented epithelium (hTERT-RPE1) cells that ciliary translocation of Smoothened in response to Hedgehog pathway stimulation is both CEP104 and CSPP1 dependent. However, CEP104 is not required for the ciliary recruitment of CSPP1, indicating that an intra-ciliary CEP104-CSPP1 complex controls axoneme length and Hedgehog signaling competence. Our in vivo and in vitro analyses of CEP104 define its interaction with CSPP1 as a requirement for the formation of Hedgehog signaling-competent cilia, defects that underlie Joubert syndrome. cep104-depleted zebrafish display shortened KV cilia and defective brain development CEP104 interacts with CSPP1 at the tip of the primary cilium to regulate cilia length CEP104 or CSPP1 loss in human cells leads to defective Hedgehog signaling Impaired signaling is linked to reduction of ciliary SMO but not ARL13B or INPP5E
Collapse
|
26
|
Conkar D, Firat-Karalar EN. Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J 2020; 288:786-798. [PMID: 32627332 DOI: 10.1111/febs.15473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The primary cilium is a microtubule-based structure that protrudes from the cell surface in diverse eukaryotic organisms. It functions as a key signaling center that decodes a variety of mechanical and chemical stimuli and plays fundamental roles in development and homeostasis. Accordingly, structural and functional defects of the primary cilium have profound effects on the physiology of multiple organ systems including kidney, retina, and central nervous system. At the core of the primary cilium is the microtubule-based axoneme, which supports the cilium shape and acts as the scaffold for bidirectional transport of cargoes into and out of cilium. Advances in imaging, proteomics, and structural biology have revealed new insights into the ultrastructural organization and composition of the primary cilium, the mechanisms that underlie its biogenesis and functions, and the pathologies that result from their deregulation termed ciliopathies. In this viewpoint, we first discuss the recent studies that identified the three-dimensional native architecture of the ciliary axoneme and revealed that it is considerably different from the well-known '9 + 0' paradigm. Moving forward, we explore emerging themes in the assembly and maintenance of the axoneme, with a focus on how microtubule-associated proteins regulate its structure, length, and stability. This far more complex picture of the primary cilium structure and composition, as well as the recent technological advances, open up new avenues for future research.
Collapse
Affiliation(s)
- Deniz Conkar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
27
|
Vinod S, Ghaly E, Cruz Soriano P, Sampath H, February M, Gupta A. A variable presentation of Joubert syndrome: Case report and a brief review. J Neonatal Perinatal Med 2020; 13:587-591. [PMID: 32651337 DOI: 10.3233/npm-180144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Joubert syndrome is a rare neurological manifestation usually present in late infancy or early childhood with characteristic episodes of abnormal breathing pattern along with the neurological and other systemic involvement.We report a case of confirmed Joubert syndrome present in the immediate neonatal period with isolated spells of oxygen desaturations not accompanied by the classically described breathing pattern and absent neurological symptoms causing delay in the diagnosis. Isolated oxygen desaturation episodes could be a presenting manifestation of Joubert syndrome in a neonatal period.
Collapse
Affiliation(s)
- S Vinod
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Metropolitan Hospital Center, New York, NY, USA
| | - E Ghaly
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Metropolitan Hospital Center, New York, NY, USA
| | - P Cruz Soriano
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Metropolitan Hospital Center, New York, NY, USA
| | - H Sampath
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Metropolitan Hospital Center, New York, NY, USA
| | - M February
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Metropolitan Hospital Center, New York, NY, USA
| | - A Gupta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Metropolitan Hospital Center, New York, NY, USA
| |
Collapse
|
28
|
Cebeci AN, Zou M, BinEssa HA, Alzahrani AS, Al-Rijjal RA, Al-Enezi AF, Al-Mohanna FA, Cavalier E, Meyer BF, Shi Y. Mutation of SGK3, a Novel Regulator of Renal Phosphate Transport, Causes Autosomal Dominant Hypophosphatemic Rickets. J Clin Endocrinol Metab 2020; 105:5672651. [PMID: 31821448 DOI: 10.1210/clinem/dgz260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypophosphatemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3. OBJECTIVE A large kindred with 5 HR patients was recruited with dominant inheritance. The study was undertaken to investigate underlying genetic defects in HR patients. DESIGN Patients and their family members were initially analyzed for PHEX and FGF23 mutations using polymerase chain reaction sequencing and copy number analysis. Exome sequencing was subsequently performed to identify novel candidate genes. RESULTS PHEX and FGF23 mutations were not detected in the patients. No copy number variation was observed in the genome using CytoScan HD array analysis. Mutations in DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3 were also not found by exome sequencing. A novel c.979-96 T>A mutation in the SGK3 gene was found to be strictly segregated in a heterozygous pattern in patients and was not present in normal family members. The mutation is located 1 bp downstream of a highly conserved adenosine branch point, resulted in exon 13 skipping and in-frame deletion of 29 amino acids, which is part of the protein kinase domain and contains a Thr-320 phosphorylation site that is required for its activation. Protein tertiary structure modelling showed significant structural change in the protein kinase domain following the deletion. CONCLUSIONS The c.979-96 T>A splice mutation in the SGK3 gene causes exon 13 skipping and deletion of 29 amino acids in the protein kinase domain. The SGK3 mutation may cause autosomal dominant HR.
Collapse
Affiliation(s)
- Ayşe Nurcan Cebeci
- Department of Pediatric Endocrinology, Istanbul Bilim University, Istanbul, Turkey
| | - Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Huda A BinEssa
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ali S Alzahrani
- Department of Medicine King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Anwar F Al-Enezi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Handa A, Voss U, Hammarsjö A, Grigelioniene G, Nishimura G. Skeletal ciliopathies: a pattern recognition approach. Jpn J Radiol 2020; 38:193-206. [PMID: 31965514 DOI: 10.1007/s11604-020-00920-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Ciliopathy encompasses a diverse group of autosomal recessive genetic disorders caused by mutations in genes coding for components of the primary cilia. Skeletal ciliopathy forms a subset of ciliopathies characterized by distinctive skeletal changes. Common skeletal ciliopathies include Jeune asphyxiating thoracic dysplasia, Ellis-van Creveld syndrome, Sensenbrenner syndrome, and short-rib polydactyly syndromes. These disorders share common clinical and radiological features. The clinical hallmarks comprise thoracic hypoplasia with respiratory failure, body disproportion with a normal trunk length and short limbs, and severely short digits occasionally accompanied by polydactyly. Reflecting the clinical features, the radiological hallmarks consist of a narrow thorax caused by extremely short ribs, normal or only mildly affected spine, shortening of the tubular bones, and severe brachydactyly with or without polydactyly. Other radiological clues include trident ilia/pelvis and cone-shaped epiphysis. Skeletal ciliopathies are commonly associated with extraskeletal anomalies, such as progressive renal degeneration, liver disease, retinopathy, cardiac anomalies, and cerebellar abnormalities. In this article, we discuss the radiological pattern recognition approach to skeletal ciliopathies. We also describe the clinical and genetic features of skeletal ciliopathies that the radiologists should know for them to play an appropriate role in multidisciplinary care and scientific advancement of these complicated disorders.
Collapse
Affiliation(s)
- Atsuhiko Handa
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Ulrika Voss
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan
| |
Collapse
|
30
|
Bachmann-Gagescu R, Dempsey JC, Bulgheroni S, Chen ML, D'Arrigo S, Glass IA, Heller T, Héon E, Hildebrandt F, Joshi N, Knutzen D, Kroes HY, Mack SH, Nuovo S, Parisi MA, Snow J, Summers AC, Symons JM, Zein WM, Boltshauser E, Sayer JA, Gunay-Aygun M, Valente EM, Doherty D. Healthcare recommendations for Joubert syndrome. Am J Med Genet A 2019; 182:229-249. [PMID: 31710777 DOI: 10.1002/ajmg.a.61399] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.
Collapse
Affiliation(s)
- Ruxandra Bachmann-Gagescu
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Sara Bulgheroni
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maida L Chen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Stefano D'Arrigo
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elise Héon
- Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Nirmal Joshi
- Department of Anesthesia, Deaconess Hospital, Evansville, Indiana.,Anesthesia Dynamics, LLC, Evansville, Indiana
| | - Dana Knutzen
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas.,The Children's Hospital of San Antonio, San Antonio, Texas
| | - Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephen H Mack
- Joubert Syndrome and Related Disorders Foundation, Petaluma, California
| | - Sara Nuovo
- Neurogenetics Lab, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Melissa A Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Angela C Summers
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.,Department of Psychology, Fordham University, Bronx, New York
| | - Jordan M Symons
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Division of Nephrology, Seattle Children's Hospital, Seattle, Washington
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Eugen Boltshauser
- Department of Pediatric Neurology (emeritus), Children's University Hospital, Zürich, Switzerland
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Enza Maria Valente
- Neurogenetics Lab, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
31
|
Wheway G, Lord J, Baralle D. Splicing in the pathogenesis, diagnosis and treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194433. [PMID: 31698098 DOI: 10.1016/j.bbagrm.2019.194433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are essential signalling organelles found on the apical surface of epithelial cells, where they coordinate chemosensation, mechanosensation and light sensation. Motile cilia play a central role in establishing fluid flow in the respiratory tract, reproductive tract, brain ventricles and ear. Genetic defects affecting the structure or function of cilia can lead to a broad range of developmental and degenerative diseases known as ciliopathies. Splicing contributes to the pathogenesis, diagnosis and treatment of ciliopathies. Tissue-specific alternative splicing contributes to the tissue-specific manifestation of ciliopathy phenotypes, for example the retinal-specific effects of some genetic defects, due to specific transcript expression in the highly specialised ciliated cells of the retina, the photoreceptor cells. Ciliopathies can arise both as a result of genetic variants in spliceosomal proteins, or as a result of variants affecting splicing of specific cilia genes. Here we discuss the opportunities and challenges in diagnosing ciliopathies using RNA sequence analysis and the potential for treating ciliopathies in a relatively mutation-neutral way by targeting splicing. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Jenny Lord
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
32
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
33
|
Robbins SM, Thimm MA, Valle D, Jelin AC. Genetic diagnosis in first or second trimester pregnancy loss using exome sequencing: a systematic review of human essential genes. J Assist Reprod Genet 2019; 36:1539-1548. [PMID: 31273585 PMCID: PMC6707996 DOI: 10.1007/s10815-019-01499-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Non-aneuploid recurrent pregnancy loss (RPL) affects approximately 100,000 pregnancies worldwide annually. Exome sequencing (ES) may help uncover the genetic etiology of RPL and, more generally, pregnancy loss as a whole. Previous studies have attempted to predict the genes that, when disrupted, may cause human embryonic lethality. However, predictions by these early studies rarely point to the same genes. Case reports of pathogenic variants identified in RPL cases offer another clue. We evaluated known genetic etiologies of RPL identified by ES. METHODS We gathered primary research articles from PubMed and Embase involving case reports of RPL reporting variants identified by ES. Two authors independently reviewed all articles for eligibility and extracted data based on predetermined criteria. Preliminary and amended analysis isolated 380 articles; 15 met all inclusion criteria. RESULTS These 15 articles described 74 families with 279 reported RPLs with 34 candidate pathogenic variants in 19 genes (NOP14, FOXP3, APAF1, CASP9, CHRNA1, NLRP5, MMP10, FGA, FLT1, EPAS1, IDO2, STIL, DYNC2H1, IFT122, PADI6, CAPS, MUSK, NLRP2, NLRP7) and 26 variants of unknown significance in 25 genes. These genes cluster in four essential pathways: (1) gene expression, (2) embryonic development, (3) mitosis and cell cycle progression, and (4) inflammation and immunity. CONCLUSIONS For future studies of RPL, we recommend trio-based ES in cases with normal parental karyotypes. In vitro fertilization with preimplantation genetic diagnosis can be pursued if causative variants are found. Utilization of other sequencing technologies in concert with ES should improve understanding of the causes of early embryonic lethality in humans.
Collapse
Affiliation(s)
- Sarah M Robbins
- McKusick-Nathans Institute in the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Matthew A Thimm
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Institute in the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity. ACTA ACUST UNITED AC 2019; 4:25-49. [PMID: 31763177 PMCID: PMC6864416 DOI: 10.3233/trd-190041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare, typically autosomal recessive disorder characterized by cerebellar vermis hypoplasia and a distinctive malformation of the cerebellum and brainstem identified as the “molar tooth sign” on brain MRI. Other universal features include hypotonia with later ataxia and intellectual disability/developmental delay, with additional features consisting of oculomotor apraxia and abnormal respiratory pattern. Notably, other, more variable features include renal cystic disease, typically nephronophthisis, retinal dystrophy, and congenital hepatic fibrosis; skeletal changes such as polydactyly and findings consistent with short-rib skeletal dysplasias are also seen in many subjects. These pleiotropic features are typical of a number of disorders of the primary cilium, and make the identification of causal genes challenging given the significant overlap between JS and other ciliopathy conditions such as nephronophthisis and Meckel, Bardet-Biedl, and COACH syndromes. This review will describe the features of JS, characterize the 35 known genes associated with the condition, and describe some of the genetic conundrums of JS, such as the heterogeneity of founder effects, lack of genotype-phenotype correlations, and role of genetic modifiers. Finally, aspects of JS and related ciliopathies that may pave the way for development of therapeutic interventions, including gene therapy, will be described.
Collapse
Affiliation(s)
- Melissa A Parisi
- Chief, Intellectual & Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
35
|
Cabaud O, Roubin R, Comte A, Bascunana V, Sergé A, Sedjaï F, Birnbaum D, Rosnet O, Acquaviva C. Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum Mol Genet 2019; 27:3377-3391. [PMID: 29982567 DOI: 10.1093/hmg/ddy246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. A total of 436 skeletal dysplasias are listed in the 2015 revised version of the nosology and classification of genetic skeletal disorders, of which nearly 20% are still genetically and molecularly uncharacterized. We report the clinical and molecular characterization of a lethal skeletal dysplasia of the short-rib group caused by mutation of the mouse Fop gene. Fop encodes a centrosomal and centriolar satellite (CS) protein. We show that Fop mutation perturbs ciliogenesis in vivo and that this leads to the alteration of the Hedgehog signaling pathway. Fop mutation reduces CSs movements and affects pericentriolar material composition, which probably participates to the ciliogenesis defect. This study highlights the role of a centrosome and CSs protein producing phenotypes in mice that recapitulate a short rib-polydactyly syndrome when mutated.
Collapse
Affiliation(s)
- Olivier Cabaud
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Régine Roubin
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Audrey Comte
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Virginie Bascunana
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fatima Sedjaï
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Olivier Rosnet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Claire Acquaviva
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
36
|
Ott T, Kaufmann L, Granzow M, Hinderhofer K, Bartram CR, Theiß S, Seitz A, Paramasivam N, Schulz A, Moog U, Blum M, Evers CM. The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Front Physiol 2019; 10:134. [PMID: 30858804 PMCID: PMC6397843 DOI: 10.3389/fphys.2019.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Joubert syndrome (JS) is a congenital autosomal-recessive or—in rare cases–X-linked inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level, JS is associated with the compromised biogenesis of sensory cilia, which identifies JS as a member of the large group of ciliopathies. Here we report on the identification of novel compound heterozygous variants (p.Y503C and p.Q485*) in the centrosomal gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied the underlying disease mechanism in the frog Xenopus, which offers fast assessment of cilia functions in a number of embryological contexts. Morpholino oligomer (MO) mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in the larval skin: the p.Q485* nonsense mutation resulted in a disturbed localization of PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in attenuated rescue capacity compared to the wild type allele. Based on these results, we conclude that in the case of this patient, JS is the result of a pathogenic combination of an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of the Xenopus model to study ciliopathies such as JS in a rapid and cost-effective manner, which should render this animal model attractive for future studies of human ciliopathies.
Collapse
Affiliation(s)
- Tim Ott
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- Genomics & Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Christina M Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
37
|
Review of Ocular Manifestations of Joubert Syndrome. Genes (Basel) 2018; 9:genes9120605. [PMID: 30518138 PMCID: PMC6315342 DOI: 10.3390/genes9120605] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Joubert syndrome is a group of rare disorders that stem from defects in a sensory organelle, the primary cilia. Affected patients often present with disorders involving multiple organ systems, including the brain, eyes, and kidneys. Common symptoms include breathing abnormalities, mental developmental delays, loss of voluntary muscle coordination, and abnormal eye movements, with a diagnostic “molar tooth” sign observed by magnetic resonance imaging (MRI) of the midbrain. We reviewed the ocular phenotypes that can be found in patients with Joubert syndrome. Ocular motor apraxia is the most frequent (80% of patients), followed by strabismus (74%) and nystagmus (72%). A minority of patients also present with ptosis (43%), chorioretinal coloboma (30%), and optic nerve atrophy (22%). Although mutations in 34 genes have been found to be associated with Joubert syndrome, retinal degeneration has been reported in only 38% of patients. Mutations in AHI1 and CEP290, genes critical to primary cilia function, have been linked to retinal degeneration. In conclusion, Joubert syndrome is a rare pleiotropic group of disorders with variable ocular presentations.
Collapse
|
38
|
Joseph N, Al-Jassar C, Johnson CM, Andreeva A, Barnabas DD, Freund SMV, Gergely F, van Breugel M. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis. Cell Rep 2018; 23:2805-2818. [PMID: 29847808 PMCID: PMC5990496 DOI: 10.1016/j.celrep.2018.04.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles.
Collapse
Affiliation(s)
- Nimesh Joseph
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
39
|
Shearer RF, Frikstad KAM, McKenna J, McCloy RA, Deng N, Burgess A, Stokke T, Patzke S, Saunders DN. The E3 ubiquitin ligase UBR5 regulates centriolar satellite stability and primary cilia. Mol Biol Cell 2018; 29:1542-1554. [PMID: 29742019 PMCID: PMC6080653 DOI: 10.1091/mbc.e17-04-0248] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Primary cilia are crucial for signal transduction in a variety of pathways, including hedgehog and Wnt. Disruption of primary cilia formation (ciliogenesis) is linked to numerous developmental disorders (known as ciliopathies) and diseases, including cancer. The ubiquitin-proteasome system (UPS) component UBR5 was previously identified as a putative positive regulator of ciliogenesis in a functional genomics screen. UBR5 is an E3 ubiquitin ligase that is frequently deregulated in tumors, but its biological role in cancer is largely uncharacterized, partly due to a lack of understanding of interacting proteins and pathways. We validated the effect of UBR5 depletion on primary cilia formation using a robust model of ciliogenesis, and identified CSPP1, a centrosomal and ciliary protein required for cilia formation, as a UBR5-interacting protein. We show that UBR5 ubiquitylates CSPP1, and that UBR5 is required for cytoplasmic organization of CSPP1-comprising centriolar satellites in centrosomal periphery, suggesting that UBR5-mediated ubiquitylation of CSPP1 or associated centriolar satellite constituents is one underlying requirement for cilia expression. Hence, we have established a key role for UBR5 in ciliogenesis that may have important implications in understanding cancer pathophysiology.
Collapse
Affiliation(s)
- Robert F Shearer
- Garvan Institute of Medical Research, Kinghorn Cancer Centre, Darlinghurst 2010, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney 2052, Australia
| | - Kari-Anne Myrum Frikstad
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | - Jessie McKenna
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Rachael A McCloy
- Garvan Institute of Medical Research, Kinghorn Cancer Centre, Darlinghurst 2010, Australia
| | - Niantao Deng
- Garvan Institute of Medical Research, Kinghorn Cancer Centre, Darlinghurst 2010, Australia
| | - Andrew Burgess
- Garvan Institute of Medical Research, Kinghorn Cancer Centre, Darlinghurst 2010, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney 2052, Australia
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | - Darren N Saunders
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
40
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
41
|
Specific retinal phenotype in early IQCB1-related disease. Eye (Lond) 2017; 32:646-651. [PMID: 29219953 DOI: 10.1038/eye.2017.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/21/2017] [Indexed: 11/08/2022] Open
Abstract
PurposeTo describe the ocular and systemic phenotype in IQCB1-related disease.MethodsFour cases (3 males, 1 female) with molecularly confirmed IQCB1-related disease underwent ophthalmological examination including best-corrected visual acuity (BCVA) measurement, fundus evaluation, electroretinography (ERG), and spectral-domain optical coherence tomography (SD-OCT). Systemic evaluation including abdominal ultrasound was performed in all cases.ResultsBCVA ranged from perception of light (Case-2; 1 year) to 20/125 (Case-1; 9 years). Fundus evaluation showed whitish or silvery reflex outside the vascular arcades in all cases; the reflex was circumferential, irregular and covered at-least 6 clock hours at younger ages (3 cases; 1-4 years). The reflex was less conspicuous with increasing age (Case-1 (9 years) and Case-4 (20 years)). The peripheral retinal SD-OCT scans showed evidence of extensive deposition at the level of retinal pigment epithelium with complete absence of overlying photoreceptor outer segments and myoid zone. The ERG was non-detectable in all cases. All cases harbored biallelic nonsense (p.R364*, p. R455*) or frameshifting (p.M370Yfs*49, p.C253Afs*9) mutations in IQCB1. Case-1 additionally had developmental delay, hemi-hyperplasia, toe syndactyly, and kidney cysts.ConclusionIQCB1-related syndromic or non-syndromic Leber congenital amaurosis (LCA) carries unique retinal characteristics which helps differentiate IQCB1-retinopathy from other genetic forms of LCA in childhood.
Collapse
|
42
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
43
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
44
|
A nonsense mutation inCEP55defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy. Clin Genet 2017; 92:510-516. [DOI: 10.1111/cge.13012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/03/2017] [Indexed: 01/05/2023]
|
45
|
Ozkinay F, Atik T, Isik E, Gormez Z, Sagiroglu M, Sahin OA, Corduk N, Onay H. A further family of Stromme syndrome carrying CENPF
mutation. Am J Med Genet A 2017; 173:1668-1672. [DOI: 10.1002/ajmg.a.38173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Ferda Ozkinay
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine; Ege University; Izmir Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine; Ege University; Izmir Turkey
| | - Esra Isik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine; Ege University; Izmir Turkey
| | - Zeliha Gormez
- Advanced Genomics and Bioinformatics Research Center; TUBITAK-BILGEM; Kocaeli Turkey
| | - Mahmut Sagiroglu
- Advanced Genomics and Bioinformatics Research Center; TUBITAK-BILGEM; Kocaeli Turkey
| | - Ozlem Atan Sahin
- Biochemistry and Molecular Biology, Institude of Health Sciences; Acibadem University; Istanbul Turkey
| | - Nergul Corduk
- Department of Pediatric Surgery, Faculty of Medicine; Pamukkale University; Denizli Turkey
| | - Huseyin Onay
- Department of Medical Genetics, Faculty of Medicine; Ege University; Izmir Turkey
| |
Collapse
|
46
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
47
|
Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA. Meckel-Gruber Syndrome: An Update on Diagnosis, Clinical Management, and Research Advances. Front Pediatr 2017; 5:244. [PMID: 29209597 PMCID: PMC5701918 DOI: 10.3389/fped.2017.00244] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
Meckel-Gruber syndrome (MKS) is a lethal autosomal recessive congenital anomaly syndrome caused by mutations in genes encoding proteins that are structural or functional components of the primary cilium. Conditions that are caused by mutations in ciliary genes are collectively termed the ciliopathies, and MKS represents the most severe condition in this group of disorders. The primary cilium is a microtubule-based organelle, projecting from the apical surface of vertebrate cells. It acts as an "antenna" that receives and transduces chemosensory and mechanosensory signals, but also regulates diverse signaling pathways, such as Wnt and Shh, that have important roles during embryonic development. Most MKS proteins localize to a distinct ciliary compartment called the transition zone (TZ) that regulates the trafficking of cargo proteins or lipids. In this review, we provide an up-to-date summary of MKS clinical features, molecular genetics, and clinical diagnosis. MKS has a highly variable phenotype, extreme genetic heterogeneity, and displays allelism with other related ciliopathies such as Joubert syndrome, presenting significant challenges to diagnosis. Recent advances in genetic technology, with the widespread use of multi-gene panels for molecular testing, have significantly improved diagnosis, genetic counseling, and the clinical management of MKS families. These include the description of some limited genotype-phenotype correlations. We discuss recent insights into the molecular basis of disease in MKS, since the functions of some of the relevant ciliary proteins have now been determined. A common molecular etiology appears to be disruption of ciliary TZ structure and function, affecting essential developmental signaling and the regulation of secondary messengers.
Collapse
Affiliation(s)
- Verity Hartill
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Saghira Malik Sharif
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Gabrielle Wheway
- Faculty of Health and Applied Sciences, Department of Applied Sciences, UWE Bristol, Bristol, United Kingdom
| | - Colin A Johnson
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
48
|
Suzuki T, Miyake N, Tsurusaki Y, Okamoto N, Alkindy A, Inaba A, Sato M, Ito S, Muramatsu K, Kimura S, Ieda D, Saitoh S, Hiyane M, Suzumura H, Yagyu K, Shiraishi H, Nakajima M, Fueki N, Habata Y, Ueda Y, Komatsu Y, Yan K, Shimoda K, Shitara Y, Mizuno S, Ichinomiya K, Sameshima K, Tsuyusaki Y, Kurosawa K, Sakai Y, Haginoya K, Kobayashi Y, Yoshizawa C, Hisano M, Nakashima M, Saitsu H, Takeda S, Matsumoto N. Molecular genetic analysis of 30 families with Joubert syndrome. Clin Genet 2016; 90:526-535. [PMID: 27434533 DOI: 10.1111/cge.12836] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
Abstract
Joubert syndrome (JS) is rare recessive disorders characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles, and a deep interpeduncular fossa which is defined by neuroimaging and is termed the 'molar tooth sign'. JS is genetically highly heterogeneous, with at least 29 disease genes being involved. To further understand the genetic causes of JS, we performed whole-exome sequencing in 24 newly recruited JS families. Together with six previously reported families, we identified causative mutations in 25 out of 30 (24 + 6) families (83.3%). We identified eight mutated genes in 27 (21 + 6) Japanese families, TMEM67 (7/27, 25.9%) and CEP290 (6/27, 22.2%) were the most commonly mutated. Interestingly, 9 of 12 CEP290 disease alleles were c.6012-12T>A (75.0%), an allele that has not been reported in non-Japanese populations. Therefore c.6012-12T>A is a common allele in the Japanese population. Importantly, one Japanese and one Omani families carried compound biallelic mutations in two distinct genes (TMEM67/RPGRIP1L and TMEM138/BBS1, respectively). BBS1 is the causative gene in Bardet-Biedl syndrome. These concomitant mutations led to severe and/or complex clinical features in the patients, suggesting combined effects of different mutant genes.
Collapse
Affiliation(s)
- T Suzuki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Y Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - N Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - A Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - A Inaba
- Yokohama City University Medical Center, Children's Medical Center, Yokohama, Japan
| | - M Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - S Ito
- Department of Pediatrics, Graduate school of Medicine, Yokohama City University, Yokohama, Japan
| | - K Muramatsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - S Kimura
- Kumamoto City Child Development Support Center, Kumamoto, Japan
| | - D Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - S Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - M Hiyane
- Division of Child Neurology, Okinawa Prefectural Southern Medical Center & Children's Medical Center, Okinawa, Japan
| | - H Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - K Yagyu
- Department of Child and Adolescent Psychiatry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - H Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - M Nakajima
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - N Fueki
- Division of Rehabilitation, Nagano Children's Hospital, Nagano, Japan
| | - Y Habata
- Department of Pediatric Rehabilitation, Hokkaido Medical Center for Child Health and Rehabilitation, Hokkaido, Japan
| | - Y Ueda
- Nire-no-kai Children's Clinic, Hokkaido, Japan
| | - Y Komatsu
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Y Shitara
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - S Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Aichi, Japan
| | - K Ichinomiya
- Department of Neonatology, Gunma Children's Medical Center, Gunma, Japan
| | - K Sameshima
- Division of Medical Genetics, Gunma Children's Medical Center, Gunma, Japan
| | - Y Tsuyusaki
- Division of Neurology, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - K Kurosawa
- Division of Medical Genetics, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Y Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Y Kobayashi
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan.,Academic Renal Unit, School of Clinical Science, University of Bristol, Bristol, UK
| | - C Yoshizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - M Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - S Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
49
|
Roosing S, Romani M, Isrie M, Rosti RO, Micalizzi A, Musaev D, Mazza T, Al-gazali L, Altunoglu U, Boltshauser E, D'Arrigo S, De Keersmaecker B, Kayserili H, Brandenberger S, Kraoua I, Mark PR, McKanna T, Van Keirsbilck J, Moerman P, Poretti A, Puri R, Van Esch H, Gleeson JG, Valente EM. Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes. J Med Genet 2016; 53:608-15. [PMID: 27208211 PMCID: PMC5013089 DOI: 10.1136/jmedgenet-2016-103832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/16/2016] [Accepted: 04/02/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ciliopathies are an extensive group of autosomal recessive or X-linked disorders with considerable genetic and clinical overlap, which collectively share multiple organ involvement and may result in lethal or viable phenotypes. In large numbers of cases the genetic defect remains yet to be determined. The aim of this study is to describe the mutational frequency and phenotypic spectrum of the CEP120 gene. METHODS Exome sequencing was performed in 145 patients with Joubert syndrome (JS), including 15 children with oral-facial-digital syndrome type VI (OFDVI) and 21 Meckel syndrome (MKS) fetuses. Moreover, exome sequencing was performed in one fetus with tectocerebellar dysraphia with occipital encephalocele (TCDOE), molar tooth sign and additional skeletal abnormalities. As a parallel study, 346 probands with a phenotype consistent with JS or related ciliopathies underwent next-generation sequencing-based targeted sequencing of 120 previously described and candidate ciliopathy genes. RESULTS We present six probands carrying nine distinct mutations (of which eight are novel) in the CEP120 gene, previously found mutated only in Jeune asphyxiating thoracic dystrophy (JATD). The CEP120-associated phenotype ranges from mild classical JS in four patients to more severe conditions in two fetuses, with overlapping features of distinct ciliopathies that include TCDOE, MKS, JATD and OFD syndromes. No obvious correlation is evident between the type or location of identified mutations and the ciliopathy phenotype. CONCLUSION Our findings broaden the spectrum of phenotypes caused by CEP120 mutations that account for nearly 1% of patients with JS as well as for more complex ciliopathy phenotypes. The lack of clear genotype-phenotype correlation highlights the relevance of comprehensive genetic analyses in the diagnostics of ciliopathies.
Collapse
Affiliation(s)
- Susanne Roosing
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Marta Romani
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Mala Isrie
- Department of Human Genetics, Laboratory for the Genetics of Cognition, Center for Human Genetics, KU Leuven, Belgium
| | - Rasim Ozgur Rosti
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
| | - Alessia Micalizzi
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
- Department of Biological and Environmental Science, University of Messina, Messina, Italy
| | - Damir Musaev
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Lihadh Al-gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Umut Altunoglu
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Eugen Boltshauser
- Division of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Stefano D'Arrigo
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bart De Keersmaecker
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, AZ Groeninge, Kortrijk, Belgium
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | | | - Ichraf Kraoua
- Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology of Tunis, La Rabta, Tunisia
| | - Paul R Mark
- Spectrum Health Medical Genetics, Grand Rapids, Michigan, USA
| | - Trudy McKanna
- Spectrum Health Medical Genetics, Grand Rapids, Michigan, USA
| | | | - Philippe Moerman
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Andrea Poretti
- Division of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ratna Puri
- Center of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Hilde Van Esch
- Department of Human Genetics, Laboratory for the Genetics of Cognition, Center for Human Genetics, KU Leuven, Belgium
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Enza Maria Valente
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| |
Collapse
|
50
|
Triggs-Raine B, Dyck T, Boycott KM, Innes AM, Ober C, Parboosingh JS, Botkin A, Greenberg CR, Spriggs EL. Development of a diagnostic DNA chip to screen for 30 autosomal recessive disorders in the Hutterite population. Mol Genet Genomic Med 2016; 4:312-21. [PMID: 27247959 PMCID: PMC4867565 DOI: 10.1002/mgg3.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/03/2022] Open
Abstract
Background The Hutterites are a religious isolate living in colonies across the North American prairies. This population originated from approximately 90 founders, resulting in a number of genetic diseases that are overrepresented, underrepresented, or unique. The founder effect in this population increases the likelihood that Hutterite couples carry the same recessive mutations. We have designed a diagnostic chip on a fee‐for‐service basis with Asper Biotech to provide Hutterites with the option of comprehensive carrier screening. Methods A total of 32 disease‐causing mutations in 30 genes were selected and primers were designed for array primer extension‐based testing. Selected mutations were limited to those leading to autosomal recessive disorders, maintaining its primary use as a test for determining carrier status. Results The DNA chip was developed and validated using 59 DNA controls for all but one of the mutations, for which a synthetic control was used. All mutations were readily detected except for a duplication causing restrictive dermopathy where heterozygotes and homozygotes could only be distinguished by sequencing. Blinded testing of 12 additional samples from healthy Hutterites was performed by Asper Biotech using chip testing. All known mutations from previous molecular testing were detected on the chip. As well, additional mutations identified by the chip in these 12 samples were subsequently verified by a second method. Conclusions Our analysis indicates that the chip is a sensitive and specific means of carrier testing in the Hutterite population and can serve as a model for other founder populations.
Collapse
Affiliation(s)
- Barbara Triggs-Raine
- Departments of Biochemistry & Medical GeneticsUniversity of ManitobaWinnipegCanada; Pediatrics & Child HealthUniversity of Manitoba745 Bannatyne Ave.WinnipegMB R3E 0J9Canada; The Manitoba Institute of Child Health513-715 McDermot Ave.WinnipegMB R3E 3P4Canada
| | - Tamara Dyck
- Clinical Biochemistry and Genetics Diagnostic Services Manitoba at Health Sciences Centre Winnipeg MB R3A 1R9 Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa ON K1H 8L1 Canada
| | - A Micheil Innes
- Department of Medical Genetics Alberta Children's Hospital and Alberta Children's Hospital Research Institute for Child and Maternal Health Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Carole Ober
- Departments of Human Genetics and Obstetrics and Gynecology The University of Chicago Chicago Illinois
| | - Jillian S Parboosingh
- Department of Medical Genetics Alberta Children's Hospital and Alberta Children's Hospital Research Institute for Child and Maternal Health Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Alexis Botkin
- Pediatrics & Child Health University of Manitoba 745 Bannatyne Ave. Winnipeg MB R3E 0J9 Canada
| | - Cheryl R Greenberg
- Departments of Biochemistry & Medical GeneticsUniversity of ManitobaWinnipegCanada; Pediatrics & Child HealthUniversity of Manitoba745 Bannatyne Ave.WinnipegMB R3E 0J9Canada; The Manitoba Institute of Child Health513-715 McDermot Ave.WinnipegMB R3E 3P4Canada
| | - Elizabeth L Spriggs
- Departments of Biochemistry & Medical GeneticsUniversity of ManitobaWinnipegCanada; Pediatrics & Child HealthUniversity of Manitoba745 Bannatyne Ave.WinnipegMB R3E 0J9Canada; Clinical Biochemistry and GeneticsDiagnostic Services Manitoba at Health Sciences CentreWinnipegMB R3A 1R9Canada
| |
Collapse
|