1
|
He G, Liu C, Wang M. Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era. Forensic Sci Int 2025; 367:112370. [PMID: 39813779 DOI: 10.1016/j.forsciint.2025.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research. Recent developments in multiplexed array sequencing have introduced a highly efficient and programmable technique to overcome the limitations of short forensic marker lengths in LRS platforms. This technique enables the concatenation of short RNA transcripts and DNA fragments into LRS-optimal molecules for sequencing, assembly, and genotyping. The integration of new pangenome reference coordinates and corresponding computational algorithms will benefit forensic integrative genomics by facilitating new marker identification, accurate genotyping, high-resolution panel development, and the updating of statistical algorithms. This review highlights the necessity of integrating LRS-based platforms, pangenome-based study designs, and graph-based pangenome references in short-read mapping and LRS-based innovations to achieve precision forensic science.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| |
Collapse
|
2
|
Silcocks M, Dunstan SJ. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun Biol 2023; 6:1037. [PMID: 37833496 PMCID: PMC10575886 DOI: 10.1038/s42003-023-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Two Layer hypothesis is fast becoming the favoured narrative describing East Asian population history. Under this model, hunter-gatherer groups who initially peopled East Asia via a route south of the Himalayas were assimilated by agriculturalist migrants who arrived via a northern route across Eurasia. A lack of ancient samples from tropical East Asia limits the resolution of this model. We consider insight afforded by patterns of variation within the human pathogen Mycobacterium tuberculosis (Mtb) by analysing its phylogeographic signatures jointly with the human Y-chromosome. We demonstrate the Y-chromosome lineages enriched in the traditionally hunter-gatherer groups associated with East Asia's first layer of peopling to display deep roots, low long-term effective population size, and diversity patterns consistent with a southern entry route. These characteristics mirror those of the evolutionarily ancient Mtb lineage 1. The remaining East Asian Y-chromosome lineage is almost entirely absent from traditionally hunter-gatherer groups and displays spatial and temporal characteristics which are incompatible with a southern entry route, and which link it to the development of agriculture in modern-day China. These characteristics mirror those of the evolutionarily modern Mtb lineage 2. This model paves the way for novel host-pathogen coevolutionary research hypotheses in East Asia.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Sarah J Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
3
|
Taufik L, Teixeira JC, Llamas B, Sudoyo H, Tobler R, Purnomo GA. Human Genetic Research in Wallacea and Sahul: Recent Findings and Future Prospects. Genes (Basel) 2022; 13:genes13122373. [PMID: 36553640 PMCID: PMC9778601 DOI: 10.3390/genes13122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Genomic sequence data from worldwide human populations have provided a range of novel insights into our shared ancestry and the historical migrations that have shaped our global genetic diversity. However, a comprehensive understanding of these fundamental questions has been impeded by the lack of inclusion of many Indigenous populations in genomic surveys, including those from the Wallacean archipelago (which comprises islands of present-day Indonesia located east and west of Wallace's and Lydekker's Lines, respectively) and the former continent of Sahul (which once combined New Guinea and Australia during lower sea levels in the Pleistocene). Notably, these regions have been important areas of human evolution throughout the Late Pleistocene, as documented by diverse fossil and archaeological records which attest to the regional presence of multiple hominin species prior to the arrival of anatomically modern human (AMH) migrants. In this review, we collate and discuss key findings from the past decade of population genetic and phylogeographic literature focussed on the hominin history in Wallacea and Sahul. Specifically, we examine the evidence for the timing and direction of the ancient AMH migratory movements and subsequent hominin mixing events, emphasising several novel but consistent results that have important implications for addressing these questions. Finally, we suggest potentially lucrative directions for future genetic research in this key region of human evolution.
Collapse
Affiliation(s)
- Leonard Taufik
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
- Correspondence: (L.T.); (G.A.P.)
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
- Centre for Interdisciplinary Studies, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 2601, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, SA 5001, Australia
| | - Herawati Sudoyo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
| | - Gludhug A. Purnomo
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (L.T.); (G.A.P.)
| |
Collapse
|
4
|
Zhang X, Ji X, Li C, Yang T, Huang J, Zhao Y, Wu Y, Ma S, Pang Y, Huang Y, He Y, Su B. A Late Pleistocene human genome from Southwest China. Curr Biol 2022; 32:3095-3109.e5. [PMID: 35839766 DOI: 10.1016/j.cub.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Southern East Asia is the dispersal center regarding the prehistoric settlement and migrations of modern humans in Asia-Pacific regions. However, the settlement pattern and population structure of paleolithic humans in this region remain elusive, and ancient DNA can provide direct information. Here, we sequenced the genome of a Late Pleistocene hominin (MZR), dated ∼14.0 thousand years ago from Red Deer Cave located in Southwest China, which was previously reported possessing mosaic features of modern and archaic hominins. MZR is the first Late Pleistocene genome from southern East Asia. Our results indicate that MZR is a modern human who represents an early diversified lineage in East Asia. The mtDNA of MZR belongs to an extinct basal lineage of the M9 haplogroup, reflecting a rich matrilineal diversity in southern East Asia during the Late Pleistocene. Combined with the published data, we detected clear genetic stratification in ancient southern populations of East/Southeast Asia and some degree of south-versus-north divergency during the Late Pleistocene, and MZR was identified as a southern East Asian who exhibits genetic continuity to present day populations. Markedly, MZR is linked deeply to the East Asian ancestry that contributed to First Americans.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xueping Ji
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China.
| | - Chunmei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyu Yang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiahui Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhui Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wu
- Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; School of History, Wuhan University, Wuhan 430072, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Shiwu Ma
- Mengzi Institute of Cultural Relics, Mengzi, Yunnan Province 661100, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
5
|
An in-depth analysis of the mitochondrial phylogenetic landscape of Cambodia. Sci Rep 2021; 11:10816. [PMID: 34031453 PMCID: PMC8144189 DOI: 10.1038/s41598-021-90145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Cambodia harbours a variety of human aboriginal populations that have scarcely been studied in terms of genetic diversity of entire mitochondrial genomes. Here we present the matrilineal gene pool of 299 Cambodian refugees from three different ethnic groups (Cham, Khmer, and Khmer Loeu) deriving from 16 Cambodian districts. After establishing a DNA-saving high-throughput strategy for mitochondrial whole-genome Sanger sequencing, a HaploGrep based workflow was used for quality control, haplogroup classification and phylogenetic reconstruction. The application of diverse phylogenetic algorithms revealed an exciting picture of the genetic diversity of Cambodia, especially in relation to populations from Southeast Asia and from the whole world. A total of 224 unique haplotypes were identified, which were mostly classified under haplogroups B5a1, F1a1, or categorized as newly defined basal haplogroups or basal sub-branches of R, N and M clades. The presence of autochthonous maternal lineages could be confirmed as reported in previous studies. The exceptional homogeneity observed between and within the three investigated Cambodian ethnic groups indicates genetic isolation of the whole population. Between ethnicities, genetic barriers were not detected. The mtDNA data presented here increases the phylogenetic resolution in Cambodia significantly, thereby highlighting the need for an update of the current human mtDNA phylogeny.
Collapse
|
6
|
Pugach I, Hübner A, Hung HC, Meyer M, Carson MT, Stoneking M. Ancient DNA from Guam and the peopling of the Pacific. Proc Natl Acad Sci U S A 2021; 118:e2022112118. [PMID: 33443177 PMCID: PMC7817125 DOI: 10.1073/pnas.2022112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Hsiao-Chun Hung
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT 2601, Australia
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Mike T Carson
- Micronesian Area Research Center, University of Guam, 96923 Mangilao, Guam
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany;
| |
Collapse
|
7
|
Hathazi D, Griffin H, Jennings MJ, Giunta M, Powell C, Pearce SF, Munro B, Wei W, Boczonadi V, Poulton J, Pyle A, Calabrese C, Gomez‐Duran A, Schara U, Pitceathly RDS, Hanna MG, Joost K, Cotta A, Paim JF, Navarro MM, Duff J, Mattman A, Chapman K, Servidei S, Della Marina A, Uusimaa J, Roos A, Mootha V, Hirano M, Tulinius M, Giri M, Hoffmann EP, Lochmüller H, DiMauro S, Minczuk M, Chinnery PF, Müller JS, Horvath R. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J 2020; 39:e105364. [PMID: 33128823 PMCID: PMC7705457 DOI: 10.15252/embj.2020105364] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.
Collapse
|
8
|
Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. You Will Never Walk Alone: Codispersal of JC Polyomavirus with Human Populations. Mol Biol Evol 2020; 37:442-454. [PMID: 31593241 DOI: 10.1093/molbev/msz227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
JC polyomavirus (JCPyV) is one of the most prevalent human viruses. Findings based on the geographic distribution of viral subtypes suggested that JCPyV codiverged with human populations. This view was however challenged by data reporting a much more recent origin and expansion of JCPyV. We collected information on ∼1,100 worldwide strains and we show that their geographic distribution roughly corresponds to major human migratory routes. Bayesian phylogeographic analysis inferred a Subsaharan origin for JCPyV, although with low posterior probability. High confidence inference at internal nodes provided strong support for a long-standing association between the virus and human populations. In line with these data, pairwise FST values for JCPyV and human mtDNA sampled from the same areas showed a positive and significant correlation. Likewise, very strong relationships were found when node ages in the JCPyV phylogeny were correlated with human population genetic distances (nuclear-marker based FST). Reconciliation analysis detected a significant cophylogenetic signal for the human population and JCPyV trees. Notably, JCPyV also traced some relatively recent migration events such as the expansion of people from the Philippines/Taiwan area into Remote Oceania, the gene flow between North-Eastern Siberian and Ainus, and the Koryak contribution to Circum-Arctic Americans. Finally, different molecular dating approaches dated the origin of JCPyV in a time frame that precedes human out-of-Africa migration. Thus, JCPyV infected early human populations and accompanied our species during worldwide dispersal. JCPyV typing can provide reliable geographic information and the virus most likely adapted to the genetic background of human populations.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| |
Collapse
|
9
|
Papuan mitochondrial genomes and the settlement of Sahul. J Hum Genet 2020; 65:875-887. [PMID: 32483274 PMCID: PMC7449881 DOI: 10.1038/s10038-020-0781-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50–65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania.
Collapse
|
10
|
Brucato N, Fernandes V, Kusuma P, Černý V, Mulligan CJ, Soares P, Rito T, Besse C, Boland A, Deleuze JF, Cox MP, Sudoyo H, Stoneking M, Pereira L, Ricaut FX. Evidence of Austronesian Genetic Lineages in East Africa and South Arabia: Complex Dispersal from Madagascar and Southeast Asia. Genome Biol Evol 2019; 11:748-758. [PMID: 30715341 PMCID: PMC6423374 DOI: 10.1093/gbe/evz028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The Austronesian dispersal across the Indonesian Ocean to Madagascar and the Comoros has been well documented, but in an unexplained anomaly, few to no traces have been found of the Austronesian expansion in East Africa or the Arabian Peninsula. To revisit this peculiarity, we surveyed the Western Indian Ocean rim populations to identify potential Austronesian genetic ancestry. We generated full mitochondrial DNA genomes and genome-wide genotyping data for these individuals and compared them with the Banjar, the Indonesian source population of the westward Austronesian dispersal. We find strong support for Asian genetic contributions to maternal lineages and autosomal variation in modern day Somalia and Yemen. Surprisingly, this input reveals two apparently different geographic origins and timings of admixture for the Austronesian contact; one at a very early phase (likely associated with the early Austronesian dispersals), and a later movement dating to the end of nineteenth century. These Austronesian gene flows come, respectively, from Madagascar and directly from an unidentified location in Island Southeast Asia. This result reveals a far more complex dynamic of Austronesian dispersals through the Western Indian Ocean than has previously been understood and suggests that Austronesian movements within the Indian Ocean may have been part of a lengthy process, probably continuing well into the modern era.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Veronica Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal
| | - Pradiptajati Kusuma
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Viktor Černý
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal.,Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine & ICVS/3B, PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Céline Besse
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.,Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal
| | - François-Xavier Ricaut
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| |
Collapse
|
11
|
Skelly E, Kapellas K, Cooper A, Weyrich LS. Consequences of colonialism: A microbial perspective to contemporary Indigenous health. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:423-437. [DOI: 10.1002/ajpa.23637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Skelly
- Australian Centre for Ancient DNA, School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health, Adelaide Dental School University of Adelaide Adelaide South Australia Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Laura S. Weyrich
- Australian Centre for Ancient DNA, School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
12
|
Tucci S, Vohr SH, McCoy RC, Vernot B, Robinson MR, Barbieri C, Nelson BJ, Fu W, Purnomo GA, Sudoyo H, Eichler EE, Barbujani G, Visscher PM, Akey JM, Green RE. Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. Science 2018; 361:511-516. [PMID: 30072539 PMCID: PMC6709593 DOI: 10.1126/science.aar8486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Flores Island, Indonesia, was inhabited by the small-bodied hominin species Homo floresiensis, which has an unknown evolutionary relationship to modern humans. This island is also home to an extant human pygmy population. Here we describe genome-scale single-nucleotide polymorphism data and whole-genome sequences from a contemporary human pygmy population living on Flores near the cave where H. floresiensis was found. The genomes of Flores pygmies reveal a complex history of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins. Modern individuals bear the signatures of recent positive selection encompassing the FADS (fatty acid desaturase) gene cluster, likely related to diet, and polygenic selection acting on standing variation that contributed to their short-stature phenotype. Thus, multiple independent instances of hominin insular dwarfism occurred on Flores.
Collapse
Affiliation(s)
- Serena Tucci
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Samuel H Vohr
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Rajiv C McCoy
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew R Robinson
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Génopode, Quatier Sorge, Lausanne, Switzerland
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Brad J Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gludhug A Purnomo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Guido Barbujani
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua M Akey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
13
|
Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia. Sci Rep 2018; 8:11651. [PMID: 30076323 PMCID: PMC6076260 DOI: 10.1038/s41598-018-29989-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Vietnam is an important crossroads within Mainland Southeast Asia (MSEA) and a gateway to Island Southeast Asia, and as such exhibits high levels of ethnolinguistic diversity. However, comparatively few studies have been undertaken of the genetic diversity of Vietnamese populations. In order to gain comprehensive insights into MSEA mtDNA phylogeography, we sequenced 609 complete mtDNA genomes from individuals belonging to five language families (Austroasiatic, Tai-Kadai, Hmong-Mien, Sino-Tibetan and Austronesian) and analyzed them in comparison with sequences from other MSEA countries and Taiwan. Within Vietnam, we identified 399 haplotypes belonging to 135 haplogroups; among the five language families, the sequences from Austronesian groups differ the most from the other groups. Phylogenetic analysis revealed 111 novel Vietnamese mtDNA lineages. Bayesian estimates of coalescence times and associated 95% HPD for these show a peak of mtDNA diversification around 2.5–3 kya, which coincides with the Dong Son culture, and thus may be associated with the agriculturally-driven expansion of this culture. Networks of major MSEA haplogroups emphasize the overall distinctiveness of sequences from Taiwan, in keeping with previous studies that suggested at most a minor impact of the Austronesian expansion from Taiwan on MSEA. We also see evidence for population expansions across MSEA geographic regions and language families.
Collapse
|
14
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
15
|
Pugach I, Duggan AT, Merriwether DA, Friedlaender FR, Friedlaender JS, Stoneking M. The Gateway from Near into Remote Oceania: New Insights from Genome-Wide Data. Mol Biol Evol 2018; 35:871-886. [PMID: 29301001 PMCID: PMC5889034 DOI: 10.1093/molbev/msx333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A widely accepted two-wave scenario of human settlement of Oceania involves the first out-of-Africa migration circa 50,000 years ago (ya), and the more recent Austronesian expansion, which reached the Bismarck Archipelago by 3,450 ya. Whereas earlier genetic studies provided evidence for extensive sex-biased admixture between the incoming and the indigenous populations, some archaeological, linguistic, and genetic evidence indicates a more complicated picture of settlement. To study regional variation in Oceania in more detail, we have compiled a genome-wide data set of 823 individuals from 72 populations (including 50 populations from Oceania) and over 620,000 autosomal single nucleotide polymorphisms (SNPs). We show that the initial dispersal of people from the Bismarck Archipelago into Remote Oceania occurred in a "leapfrog" fashion, completely by-passing the main chain of the Solomon Islands, and that the colonization of the Solomon Islands proceeded in a bidirectional manner. Our results also support a divergence between western and eastern Solomons, in agreement with the sharp linguistic divide known as the Tryon-Hackman line. We also report substantial post-Austronesian gene flow across the Solomons. In particular, Santa Cruz (in Remote Oceania) exhibits extraordinarily high levels of Papuan ancestry that cannot be explained by a simple bottleneck/founder event scenario. Finally, we use simulations to show that discrepancies between different methods for dating admixture likely reflect different sensitivities of the methods to multiple admixture events from the same (or similar) sources. Overall, this study points to the importance of fine-scale sampling to understand the complexities of human population history.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ana T Duggan
- Department of Anthropology, McMaster University, Hamilton, Canada
| | | | | | | | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
New insights from Thailand into the maternal genetic history of Mainland Southeast Asia. Eur J Hum Genet 2018; 26:898-911. [PMID: 29483671 PMCID: PMC5974021 DOI: 10.1038/s41431-018-0113-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.
Collapse
|
17
|
Investigating the origins of eastern Polynesians using genome-wide data from the Leeward Society Isles. Sci Rep 2018; 8:1823. [PMID: 29379068 PMCID: PMC5789021 DOI: 10.1038/s41598-018-20026-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
The debate concerning the origin of the Polynesian speaking peoples has been recently reinvigorated by genetic evidence for secondary migrations to western Polynesia from the New Guinea region during the 2nd millennium BP. Using genome-wide autosomal data from the Leeward Society Islands, the ancient cultural hub of eastern Polynesia, we find that the inhabitants' genomes also demonstrate evidence of this episode of admixture, dating to 1,700-1,200 BP. This supports a late settlement chronology for eastern Polynesia, commencing ~1,000 BP, after the internal differentiation of Polynesian society. More than 70% of the autosomal ancestry of Leeward Society Islanders derives from Island Southeast Asia with the lowland populations of the Philippines as the single largest potential source. These long-distance migrants into Polynesia experienced additional admixture with northern Melanesians prior to the secondary migrations of the 2nd millennium BP. Moreover, the genetic diversity of mtDNA and Y chromosome lineages in the Leeward Society Islands is consistent with linguistic evidence for settlement of eastern Polynesia proceeding from the central northern Polynesian outliers in the Solomon Islands. These results stress the complex demographic history of the Leeward Society Islands and challenge phylogenetic models of cultural evolution predicated on eastern Polynesia being settled from Samoa.
Collapse
|
18
|
Fehren-Schmitz L, Jarman CL, Harkins KM, Kayser M, Popp BN, Skoglund P. Genetic Ancestry of Rapanui before and after European Contact. Curr Biol 2017; 27:3209-3215.e6. [PMID: 29033334 DOI: 10.1016/j.cub.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 11/22/2022]
Abstract
The origins and lifeways of the inhabitants of Rapa Nui (Easter Island), a remote island in the southeast Pacific Ocean, have been debated for generations. Archaeological evidence substantiates the widely accepted view that the island was first settled by people of Polynesian origin, as late as 1200 CE [1-4]. What remains controversial, however, is the nature of events in the island's population history prior to the first historic contact with Europeans in 1722 CE. Purported contact between Rapa Nui and South America is particularly contentious, and recent studies have reported genetic evidence for Native American admixture in present-day indigenous inhabitants of Rapa Nui [5-8]. Statistical modeling has suggested that this genetic contribution might have occurred prior to European contact [6]. Here we directly test the hypothesis that the Native American admixture of the current Rapa Nui population predates the arrival of Europeans with a paleogenomic analysis of five individual samples excavated from Ahu Nau Nau, Anakena, dating to pre- and post-European contact, respectively. Complete mitochondrial genomes and low-coverage autosomal genomes show that the analyzed individuals fall within the genetic diversity of present-day and ancient Polynesians, and we can reject the hypothesis that any of these individuals had substantial Native American ancestry. Our data thus suggest that the Native American ancestry in contemporary Easter Islanders was not present on the island prior to European contact and may thus be due to events in more recent history.
Collapse
Affiliation(s)
- Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; UCSC Genomics Institute, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Catrine L Jarman
- Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU, UK
| | - Kelly M Harkins
- UCSC Paleogenomics Lab, Department of Anthropology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Brian N Popp
- Department of Geology & Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA
| | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
19
|
Thaler DS, Stoeckle MY. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies. Ecol Evol 2017; 6:6824-6835. [PMID: 28725363 PMCID: PMC5513234 DOI: 10.1002/ece3.2394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.
Collapse
Affiliation(s)
- David S Thaler
- Biozentrum University of Basel CH 4056 Basel Switzerland
| | - Mark Y Stoeckle
- Program for the Human Environment The Rockefeller University New York New York 10065
| |
Collapse
|
20
|
West K, Collins C, Kardailsky O, Kahn J, Hunt TL, Burley DV, Matisoo-Smith E. The Pacific Rat Race to Easter Island: Tracking the Prehistoric Dispersal of Rattus exulans Using Ancient Mitochondrial Genomes. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
21
|
Nagle N, van Oven M, Wilcox S, van Holst Pellekaan S, Tyler-Smith C, Xue Y, Ballantyne KN, Wilcox L, Papac L, Cooke K, van Oorschot RAH, McAllister P, Williams L, Kayser M, Mitchell RJ. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity. Sci Rep 2017; 7:43041. [PMID: 28287095 PMCID: PMC5347126 DOI: 10.1038/srep43041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Sheila van Holst Pellekaan
- Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Kaye N. Ballantyne
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Luka Papac
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - R. John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai-Kadai languages. Hum Genet 2016; 136:85-98. [PMID: 27837350 PMCID: PMC5214972 DOI: 10.1007/s00439-016-1742-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
The Tai–Kadai (TK) language family is thought to have originated in southern China and spread to Thailand and Laos, but it is not clear if TK languages spread by demic diffusion (i.e., a migration of people from southern China) or by cultural diffusion, with native Austroasiatic (AA) speakers switching to TK languages. To address this and other questions, we obtained 1234 complete mtDNA genome sequences from 51 TK and AA groups from Thailand and Laos. We find high genetic heterogeneity across the region, with 212 different haplogroups, and significant genetic differentiation among different samples from the same ethnolinguistic group. TK groups are more genetically homogeneous than AA groups, with the latter exhibiting more ancient/basal mtDNA lineages, and showing more drift effects. Modeling of demic diffusion, cultural diffusion, and admixture scenarios consistently supports the spread of TK languages by demic diffusion.
Collapse
|
23
|
Skoglund P, Posth C, Sirak K, Spriggs M, Valentin F, Bedford S, Clark GR, Reepmeyer C, Petchey F, Fernandes D, Fu Q, Harney E, Lipson M, Mallick S, Novak M, Rohland N, Stewardson K, Abdullah S, Cox MP, Friedlaender FR, Friedlaender JS, Kivisild T, Koki G, Kusuma P, Merriwether DA, Ricaut FX, Wee JTS, Patterson N, Krause J, Pinhasi R, Reich D. Genomic insights into the peopling of the Southwest Pacific. Nature 2016; 538:510-513. [PMID: 27698418 PMCID: PMC5515717 DOI: 10.1038/nature19844] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.
Collapse
Affiliation(s)
- Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Cosimo Posth
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72070, Germany
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Kendra Sirak
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
- Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Frederique Valentin
- Maison de l'Archéologie et de l'Ethnologie, CNRS, UMR 7041, 92023 Nanterre, France
| | - Stuart Bedford
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Geoffrey R Clark
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christian Reepmeyer
- College of Arts, Society and Education, James Cook University, Queensland 4870, Australia
| | - Fiona Petchey
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton 3240, New Zealand
| | - Daniel Fernandes
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Qiaomei Fu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Eadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mario Novak
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Murray P Cox
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | | - Jonathan S Friedlaender
- Department of Anthropology, Temple University, Gladfelter Hall, Philadelphia, Pennsylvania 19122, USA
| | - Toomas Kivisild
- Estonian Biocentre, Evolutionary Biology group, Tartu, 51010, Estonia
- Division of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK
| | - George Koki
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province 441, Papua New Guinea
| | | | - D Andrew Merriwether
- Department of Anthropology, Binghamton University, Binghamton, New York 13902, USA
| | - Francois-X Ricaut
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse UMR 5288 CNRS, Université de Toulouse, Toulouse 31073, France
| | - Joseph T S Wee
- National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Ron Pinhasi
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Rathbun MM, McElhoe JA, Parson W, Holland MM. Considering DNA damage when interpreting mtDNA heteroplasmy in deep sequencing data. Forensic Sci Int Genet 2016; 26:1-11. [PMID: 27718383 DOI: 10.1016/j.fsigen.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Resolution of mitochondrial (mt) DNA heteroplasmy is now possible when applying a massively parallel sequencing (MPS) approach, including minor components down to 1%. However, reporting thresholds and interpretation criteria will need to be established for calling heteroplasmic variants that address a number of important topics, one of which is DNA damage. We assessed the impact of increasing amounts of DNA damage on the interpretation of minor component sequence variants in the mtDNA control region, including low-level mixed sites. A passive approach was used to evaluate the impact of storage conditions, and an active approach was employed to accelerate the process of hydrolytic damage (for example, replication errors associated with depurination events). The patterns of damage were compared and assessed in relation to damage typically encountered in poor quality samples. As expected, the number of miscoding lesions increased as conditions worsened. Single nucleotide polymorphisms (SNPs) associated with miscoding lesions were indistinguishable from innate heteroplasmy and were most often observed as 1-2% of the total sequencing reads. Numerous examples of miscoding lesions above 2% were identified, including two complete changes in the nucleotide sequence, presenting a challenge when assessing the placement of reporting thresholds for heteroplasmy. To mitigate the impact, replication of miscoding lesions was not observed in stored samples, and was rarely seen in data associated with accelerated hydrolysis. In addition, a significant decrease in the expected transition:transversion ratio was observed, providing a useful tool for predicting the presence of damage-induced lesions. The results of this study directly impact MPS analysis of minor sequence variants from poorly preserved DNA extracts, and when biological samples have been exposed to agents that induce DNA damage. These findings are particularly relevant to clinical and forensic investigations.
Collapse
Affiliation(s)
- Molly M Rathbun
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
| | - Jennifer A McElhoe
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
| | - Walther Parson
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States; The Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Mitchell M Holland
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States.
| |
Collapse
|
25
|
Norton HL, Hanna M, Werren E, Friedlaender J. The rs387907171 SNP in TYRP1is not associated with blond hair color on the Island of Bougainville. Am J Hum Biol 2016; 28:431-5. [DOI: 10.1002/ajhb.22795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/13/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Heather L. Norton
- Department of Anthropology; University of Cincinnati; Cincinnati Ohio
| | - Megan Hanna
- Department of Anthropology; University of Cincinnati; Cincinnati Ohio
| | - Elizabeth Werren
- Department of Anthropology; University of Cincinnati; Cincinnati Ohio
| | | |
Collapse
|
26
|
Logue K, Keven JB, Cannon MV, Reimer L, Siba P, Walker ED, Zimmerman PA, Serre D. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing. PLoS Negl Trop Dis 2016; 10:e0004512. [PMID: 26963245 PMCID: PMC4786206 DOI: 10.1371/journal.pntd.0004512] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/13/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources.
Collapse
Affiliation(s)
- Kyle Logue
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John Bosco Keven
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Matthew V. Cannon
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lisa Reimer
- Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Peter A. Zimmerman
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (PAZ); (DS)
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (PAZ); (DS)
| |
Collapse
|
27
|
Resolving the ancestry of Austronesian-speaking populations. Hum Genet 2016; 135:309-26. [PMID: 26781090 PMCID: PMC4757630 DOI: 10.1007/s00439-015-1620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023]
Abstract
There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The "out-of-Taiwan" model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.
Collapse
|
28
|
Valentin F, Détroit F, Spriggs MJT, Bedford S. Early Lapita skeletons from Vanuatu show Polynesian craniofacial shape: Implications for Remote Oceanic settlement and Lapita origins. Proc Natl Acad Sci U S A 2016; 113:292-7. [PMID: 26712019 PMCID: PMC4720332 DOI: 10.1073/pnas.1516186113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With a cultural and linguistic origin in Island Southeast Asia the Lapita expansion is thought to have led ultimately to the Polynesian settlement of the east Polynesian region after a time of mixing/integration in north Melanesia and a nearly 2,000-y pause in West Polynesia. One of the major achievements of recent Lapita research in Vanuatu has been the discovery of the oldest cemetery found so far in the Pacific at Teouma on the south coast of Efate Island, opening up new prospects for the biological definition of the early settlers of the archipelago and of Remote Oceania in general. Using craniometric evidence from the skeletons in conjunction with archaeological data, we discuss here four debated issues: the Lapita-Asian connection, the degree of admixture, the Lapita-Polynesian connection, and the question of secondary population movement into Remote Oceania.
Collapse
Affiliation(s)
- Frédérique Valentin
- Maison de l'Archéologie et de l'Ethnologie, CNRS, UMR 7041, 92023 Nanterre, France;
| | - Florent Détroit
- Département de Préhistoire, Muséum National d'Histoire Naturelle, Musée de l'Homme, CNRS, UMR7194, 75116 Paris, France
| | - Matthew J T Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Stuart Bedford
- School of Culture, History and Language, College of Asia & the Pacific, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
29
|
Pacifiplex : an ancestry-informative SNP panel centred on Australia and the Pacific region. Forensic Sci Int Genet 2016; 20:71-80. [DOI: 10.1016/j.fsigen.2015.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022]
|
30
|
Norton HL, Werren E, Friedlaender J. MC1R diversity in Northern Island Melanesia has not been constrained by strong purifying selection and cannot explain pigmentation phenotype variation in the region. BMC Genet 2015; 16:122. [PMID: 26482799 PMCID: PMC4615358 DOI: 10.1186/s12863-015-0277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Variation in human skin pigmentation evolved in response to the selective pressure of ultra-violet radiation (UVR). Selection to maintain darker skin in high UVR environments is expected to constrain pigmentation phenotype and variation in pigmentation loci. Consistent with this hypothesis, the gene MC1R exhibits reduced diversity in African populations from high UVR regions compared to low-UVR non-African populations. However, MC1R diversity in non-African populations that have evolved under high-UVR conditions is not well characterized. METHODS In order to test the hypothesis that MC1R variation has been constrained in Melanesians the coding region of the MC1R gene was sequenced in 188 individuals from Northern Island Melanesia. The role of purifying selection was assessed using a modified McDonald Kreitman's test. Pairwise FST was calculated between Melanesian populations and populations from the 1000 Genomes Project. The SNP rs2228479 was genotyped in a larger sample (n = 635) of Melanesians and tested for associations with skin and hair pigmentation. RESULTS We observe three nonsynonymous and two synonymous mutations. A modified McDonald Kreitman's test failed to detect a significant signal of purifying selection. Pairwise FST values calculated between the four islands sampled here indicate little regional substructure in MC1R. When compared to African, European, East and South Asian populations, Melanesians do not exhibit reduced population divergence (measured as FST) or a high proportion of haplotype sharing with Africans, as one might expect if ancestral haplotypes were conserved across high UVR populations in and out of Africa. The only common nonsynonymous polymorphism observed, rs2228479, is not significantly associated with skin or hair pigmentation in a larger sample of Melanesians. CONCLUSIONS The pattern of sequence diversity here does not support a model of strong selective constraint on MC1R in Northern Island Melanesia This absence of strong constraint, as well as the recent population history of the region, may explain the observed frequencies of the derived rs2228479 allele. These results emphasize the complex genetic architecture of pigmentation phenotypes, which are controlled by multiple, possibly interacting loci. They also highlight the role that population history can play in influencing phenotypic diversity in the absence of strong natural selection.
Collapse
Affiliation(s)
- Heather L Norton
- Department of Anthropology, University of Cincinnati, 481 Braunstein Hall, PO Box 210380, Cincinnati, OH, 45221, USA.
| | - Elizabeth Werren
- Department of Anthropology, 101 West Hall, University of Michigan, 1085 South University Ave, Ann Arbor, MI, 48109, USA.
| | - Jonathan Friedlaender
- Department of Anthropology, Temple University, Gladfelter Hall, 1115 West Berks Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
31
|
Abstract
Although initial studies suggested that Denisovan ancestry was found only in modern human populations from island Southeast Asia and Oceania, more recent studies have suggested that Denisovan ancestry may be more widespread. However, the geographic extent of Denisovan ancestry has not been determined, and moreover the relationship between the Denisovan ancestry in Oceania and that elsewhere has not been studied. Here we analyze genome-wide single nucleotide polymorphism data from 2,493 individuals from 221 worldwide populations, and show that there is a widespread signal of a very low level of Denisovan ancestry across Eastern Eurasian and Native American (EE/NA) populations. We also verify a higher level of Denisovan ancestry in Oceania than that in EE/NA; the Denisovan ancestry in Oceania is correlated with the amount of New Guinea ancestry, but not the amount of Australian ancestry, indicating that recent gene flow from New Guinea likely accounts for signals of Denisovan ancestry across Oceania. However, Denisovan ancestry in EE/NA populations is equally correlated with their New Guinea or their Australian ancestry, suggesting a common source for the Denisovan ancestry in EE/NA and Oceanian populations. Our results suggest that Denisovan ancestry in EE/NA is derived either from common ancestry with, or gene flow from, the common ancestor of New Guineans and Australians, indicating a more complex history involving East Eurasians and Oceanians than previously suspected.
Collapse
Affiliation(s)
- Pengfei Qin
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
32
|
Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, Coe BP, Baker C, Nordenfelt S, Bamshad M, Jorde LB, Posukh OL, Sahakyan H, Watkins WS, Yepiskoposyan L, Abdullah MS, Bravi CM, Capelli C, Hervig T, Wee JTS, Tyler-Smith C, van Driem G, Romero IG, Jha AR, Karachanak-Yankova S, Toncheva D, Comas D, Henn B, Kivisild T, Ruiz-Linares A, Sajantila A, Metspalu E, Parik J, Villems R, Starikovskaya EB, Ayodo G, Beall CM, Di Rienzo A, Hammer MF, Khusainova R, Khusnutdinova E, Klitz W, Winkler C, Labuda D, Metspalu M, Tishkoff SA, Dryomov S, Sukernik R, Patterson N, Reich D, Eichler EE. Global diversity, population stratification, and selection of human copy-number variation. Science 2015; 349:aab3761. [PMID: 26249230 PMCID: PMC4568308 DOI: 10.1126/science.aab3761] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
Collapse
Affiliation(s)
- Peter H Sudmant
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Swapan Mallick
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Niklas Krumm
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Susanne Nordenfelt
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98119, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Olga L Posukh
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Novosibirsk State University, Novosibirsk 630090, Russia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - W Scott Watkins
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - M Syafiq Abdullah
- Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Claudio M Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), Centro Científico y Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata B1906APO, Argentina
| | | | - Tor Hervig
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | | | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - George van Driem
- Institute of Linguistics, University of Bern, Bern CH-3012, Switzerland
| | | | - Aashish R Jha
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria
| | - David Comas
- Institut de Biologia Evolutiva [Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra (CSIC-UPF)], Departament de Ciències Experimentals i de la Salut, UPF, Barcelona 08003, Spain
| | - Brenna Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Antti Sajantila
- University of Helsinki, Department of Forensic Medicine, Helsinki 00014, Finland
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. University of Tartu, Department of Evolutionary Biology, Tartu 5101, Estonia
| | - Jüri Parik
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Richard Villems
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Elena B Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - George Ayodo
- Center for Global Health and Child Development, Kisumu 40100, Kenya
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106-7125, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia
| | - William Klitz
- Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Cheryl Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Incorporated, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Damian Labuda
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, QC H3T 1C5, Canada
| | - Mait Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Sarah A Tishkoff
- Departments of Biology and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stanislav Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Department of Paleolithic Archaeology, Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Rem Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Altai State University, Barnaul 656000, Russia
| | - Nick Patterson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David Reich
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Pugach I, Stoneking M. Genome-wide insights into the genetic history of human populations. INVESTIGATIVE GENETICS 2015; 6:6. [PMID: 25834724 PMCID: PMC4381409 DOI: 10.1186/s13323-015-0024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Although mtDNA and the non-recombining Y chromosome (NRY) studies continue to provide valuable insights into the genetic history of human populations, recent technical, methodological and computational advances and the increasing availability of large-scale, genome-wide data from contemporary human populations around the world promise to reveal new aspects, resolve finer points, and provide a more detailed look at our past demographic history. Genome-wide data are particularly useful for inferring migrations, admixture, and fine structure, as well as for estimating population divergence and admixture times and fluctuations in effective population sizes. In this review, we highlight some of the stories that have emerged from the analyses of genome-wide SNP genotyping data concerning the human history of Southern Africa, India, Oceania, Island South East Asia, Europe and the Americas and comment on possible future study directions. We also discuss advantages and drawbacks of using SNP-arrays, with a particular focus on the ascertainment bias, and ways to circumvent it.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| |
Collapse
|
34
|
Genetic structure among Fijian island populations. J Hum Genet 2015; 60:69-75. [PMID: 25566758 DOI: 10.1038/jhg.2014.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 11/08/2022]
Abstract
We examined nine Y chromosome short tandem repeats (Y-STRs) and the mitochondrial DNA (mtDNA) hypervariable segment 1 region in the Fijian island populations of Viti Levu, Vanua Levu, Kadavu, the Lau islands and Rotuma. We found significant genetic structure among these populations for the Y-STRs, both with and without the Rotumans, but not for the mtDNA. We also found that all five populations exhibited the sex-biased admixture associated with areas settled by Austronesian-speaking people, with paternal lineages more strongly associated with Melanesian populations and maternal lineages more strongly associated with Polynesian populations. We also found that the Rotumans in the north and the Lau Islanders in the east were genetically more similar to Polynesian populations than were the other Fijians, but only for the mtDNA. For the Y-STRs, the Rotumans and the Lau Islanders were genetically as similar to Melanesian populations as were the other three populations. Of the five populations, the Rotumans were the most different in almost every regard. Although past genetic studies treated the Fijians as being genetically homogenous despite known geographic, phenotypic, cultural and linguistic variation, our findings show significant genetic variation and a need for a closer examination of individual island populations within Fiji, particularly the Rotumans, in order to better understand the process of the peopling of Fiji and of the surrounding regions.
Collapse
|
35
|
Matisoo-Smith E. Ancient DNA and the human settlement of the Pacific: a review. J Hum Evol 2015; 79:93-104. [PMID: 25556846 DOI: 10.1016/j.jhevol.2014.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/01/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
The Pacific region provides unique opportunities to study human evolution including through analyses of ancient DNA. While some of the earliest studies involving ancient DNA from skeletal remains focused on Pacific samples, in the following 25 years, several factors meant that little aDNA research, particularly research focused on human populations, has emerged. This paper briefly presents the genetic evidence for population origins, reviews what ancient DNA work has been undertaken to address human history and evolution in the Pacific region, and argues that the future is bright but research requires a collaborative approach between academic disciplines but also with local communities.
Collapse
Affiliation(s)
- Elizabeth Matisoo-Smith
- Department of Anatomy and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
36
|
Nemat-Gorgani N, Edinur HA, Hollenbach JA, Traherne JA, Dunn PPJ, Chambers GK, Parham P, Norman PJ. KIR diversity in Māori and Polynesians: populations in which HLA-B is not a significant KIR ligand. Immunogenetics 2014; 66:597-611. [PMID: 25139336 PMCID: PMC4198482 DOI: 10.1007/s00251-014-0794-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 12/25/2022]
Abstract
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Māori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Māori and 34 Polynesians. Eighty KIR variants, including four 'new' alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Māori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Māori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Māori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA94305. USA
| | - Hisham A. Edinur
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco School of Medicine, San Francisco, CA94158, USA
| | - James A. Traherne
- Division of Immunology, Department of Pathology and Cambridge Institute for Medical Research, University of Cambridge, CB2 1QP, UK
| | - Paul P. J. Dunn
- Tissue Typing Laboratory, New Zealand Blood Service, Auckland, New Zealand
| | | | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA94305. USA
| | - Paul J. Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA94305. USA
| |
Collapse
|
37
|
Lippold S, Xu H, Ko A, Li M, Renaud G, Butthof A, Schröder R, Stoneking M. Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences. INVESTIGATIVE GENETICS 2014; 5:13. [PMID: 25254093 PMCID: PMC4174254 DOI: 10.1186/2041-2223-5-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023]
Abstract
Background Comparisons of maternally-inherited mitochondrial DNA (mtDNA) and paternally-inherited non-recombining Y chromosome (NRY) variation have provided important insights into the impact of sex-biased processes (such as migration, residence pattern, and so on) on human genetic variation. However, such comparisons have been limited by the different molecular methods typically used to assay mtDNA and NRY variation (for example, sequencing hypervariable segments of the control region for mtDNA vs. genotyping SNPs and/or STR loci for the NRY). Here, we report a simple capture array method to enrich Illumina sequencing libraries for approximately 500 kb of NRY sequence, which we use to generate NRY sequences from 623 males from 51 populations in the CEPH Human Genome Diversity Panel (HGDP). We also obtained complete mtDNA genome sequences from the same individuals, allowing us to compare maternal and paternal histories free of any ascertainment bias. Results We identified 2,228 SNPs in the NRY sequences and 2,163 SNPs in the mtDNA sequences. Our results confirm the controversial assertion that genetic differences between human populations on a global scale are bigger for the NRY than for mtDNA, although the differences are not as large as previously suggested. More importantly, we find substantial regional variation in patterns of mtDNA versus NRY variation. Model-based simulations indicate very small ancestral effective population sizes (<100) for the out-of-Africa migration as well as for many human populations. We also find that the ratio of female effective population size to male effective population size (Nf/Nm) has been greater than one throughout the history of modern humans, and has recently increased due to faster growth in Nf than Nm. Conclusions The NRY and mtDNA sequences provide new insights into the paternal and maternal histories of human populations, and the methods we introduce here should be widely applicable for further such studies.
Collapse
Affiliation(s)
- Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Hongyang Xu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Department of Computational Genetics, CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
| | - Albert Ko
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Present address: Fondation Mérieux, 17 rue Bourgelat, Lyon 69002, France
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Anne Butthof
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Present address: Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig D04103, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| |
Collapse
|
38
|
Duggan AT, Stoneking M. Recent developments in the genetic history of East Asia and Oceania. Curr Opin Genet Dev 2014; 29:9-14. [PMID: 25170982 DOI: 10.1016/j.gde.2014.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
Abstract
Recent developments in our understanding of the genetic history of Asia and Oceania have been driven by technological advances. Specifically, our understanding of the past has been augmented by: genome sequences from ancient hominins and ancient modern humans; more comprehensive studies of existing populations (e.g., complete mtDNA genome sequences and genome-wide data) and the development of new statistics and analytical methods to interpret the abundance of new data. We review some of the new discoveries since we entered the age of archaic and modern genomics and how they have changed our understanding of the settlement and subsequent population dynamics in Asia and the Pacific.
Collapse
Affiliation(s)
- Ana T Duggan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany.
| |
Collapse
|
39
|
Isolation, contact and social behavior shaped genetic diversity in West Timor. J Hum Genet 2014; 59:494-503. [PMID: 25078354 PMCID: PMC4521296 DOI: 10.1038/jhg.2014.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/17/2023]
Abstract
Timor, an eastern Indonesian island linking mainland Asia with Australia and the Pacific world, had a complex history, including its role as a contact zone between two language families (Austronesian and Trans-New Guinean), as well as preserving elements of a rich Austronesian cultural heritage, such as matrilocal marriage practices. Using an array of biparental (autosomal and X-chromosome single-nucleotide polymorphisms) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstruct a broad genetic profile of Timorese in the Belu regency of West Timor, including the traditional princedom of Wehali, focusing on the effects of cultural practices, such as language and social change, on patterns of genetic diversity. Sex-linked data highlight the different histories and social pressures experienced by women and men. Measures of diversity and population structure show that Timorese men had greater local mobility than women, as expected in matrilocal communities, where women remain in their natal village, whereas men move to the home village of their wife. Reaching further back in time, maternal loci (mitochondrial DNA and the X chromosome) are dominated by lineages with immigrant Asian origins, whereas paternal loci (Y chromosome) tend to exhibit lineages of the earliest settlers in the eastern Indonesian region. The dominance of Asian female lineages is especially apparent in the X chromosome compared with the autosomes, suggesting that women played a paramount role during and after the period of Asian immigration into Timor, perhaps driven by the matrilocal marriage practices of expanding Austronesian communities.
Collapse
|