1
|
Zachayus A, Loup-Forest J, Cura V, Poterszman A. Nucleotide Excision Repair: Insights into Canonical and Emerging Functions of the Transcription/DNA Repair Factor TFIIH. Genes (Basel) 2025; 16:231. [PMID: 40004560 PMCID: PMC11855273 DOI: 10.3390/genes16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key player of the NER pathway in eukaryotes. This 10-subunit multiprotein complex notably verifies the presence of a lesion and opens the DNA around the damage via its XPB and XPD subunits, two proteins identified in patients suffering from Xeroderma Pigmentosum syndrome. Isolated as a class II gene transcription factor in the late 1980s, TFIIH is a prototypic molecular machine that plays an essential role in both DNA repair and transcription initiation and harbors a DNA helicase, a DNA translocase, and kinase activity. More recently, TFIIH subunits have been identified as participating in other cellular processes, including chromosome segregation during mitosis, maintenance of mitochondrial DNA integrity, and telomere replication.
Collapse
Affiliation(s)
- Amélie Zachayus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Jules Loup-Forest
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
2
|
Barbour JA, Ou T, Yang H, Fang H, Yue NC, Zhu X, Wong-Brown MW, Wong YT, Bowden NA, Wu S, Wong JWH. ERCC2 mutations alter the genomic distribution pattern of somatic mutations and are independently prognostic in bladder cancer. CELL GENOMICS 2024; 4:100627. [PMID: 39096913 PMCID: PMC11406173 DOI: 10.1016/j.xgen.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Excision repair cross-complementation group 2 (ERCC2) encodes the DNA helicase xeroderma pigmentosum group D, which functions in transcription and nucleotide excision repair. Point mutations in ERCC2 are putative drivers in around 10% of bladder cancers (BLCAs) and a potential positive biomarker for cisplatin therapy response. Nevertheless, the prognostic significance directly attributed to ERCC2 mutations and its pathogenic role in genome instability remain poorly understood. We first demonstrated that mutant ERCC2 is an independent predictor of prognosis in BLCA. We then examined its impact on the somatic mutational landscape using a cohort of ERCC2 wild-type (n = 343) and mutant (n = 39) BLCA whole genomes. The genome-wide distribution of somatic mutations is significantly altered in ERCC2 mutants, including T[C>T]N enrichment, altered replication time correlations, and CTCF-cohesin binding site mutation hotspots. We leverage these alterations to develop a machine learning model for predicting pathogenic ERCC2 mutations, which may be useful to inform treatment of patients with BLCA.
Collapse
Affiliation(s)
- Jayne A Barbour
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Ou
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haocheng Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hu Fang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Institute of Biomedical Data, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Noel C Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle W Wong-Brown
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yuen T Wong
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Song Wu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China; Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:72-81. [PMID: 37545038 PMCID: PMC10903506 DOI: 10.1002/em.22568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.
Collapse
Affiliation(s)
- Allyson Hoag
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Du R, Chen P, Li M, Zhu Y, He Z, Huang X. Developing a novel immune infiltration-associated mitophagy prediction model for amyotrophic lateral sclerosis using bioinformatics strategies. Front Immunol 2024; 15:1360527. [PMID: 38601155 PMCID: PMC11005030 DOI: 10.3389/fimmu.2024.1360527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which leads to muscle weakness and eventual paralysis. Numerous studies have indicated that mitophagy and immune inflammation have a significant impact on the onset and advancement of ALS. Nevertheless, the possible diagnostic and prognostic significance of mitophagy-related genes associated with immune infiltration in ALS is uncertain. The purpose of this study is to create a predictive model for ALS using genes linked with mitophagy-associated immune infiltration. Methods ALS gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Univariate Cox analysis and machine learning methods were applied to analyze mitophagy-associated genes and develop a prognostic risk score model. Subsequently, functional and immune infiltration analyses were conducted to study the biological attributes and immune cell enrichment in individuals with ALS. Additionally, validation of identified feature genes in the prediction model was performed using ALS mouse models and ALS patients. Results In this study, a comprehensive analysis revealed the identification of 22 mitophagy-related differential expression genes and 40 prognostic genes. Additionally, an 18-gene prognostic signature was identified with machine learning, which was utilized to construct a prognostic risk score model. Functional enrichment analysis demonstrated the enrichment of various pathways, including oxidative phosphorylation, unfolded proteins, KRAS, and mTOR signaling pathways, as well as other immune-related pathways. The analysis of immune infiltration revealed notable distinctions in certain congenital immune cells and adaptive immune cells between the low-risk and high-risk groups, particularly concerning the T lymphocyte subgroup. ALS mouse models and ALS clinical samples demonstrated consistent expression levels of four mitophagy-related immune infiltration genes (BCKDHA, JTB, KYNU, and GTF2H5) with the results of bioinformatics analysis. Conclusion This study has successfully devised and verified a pioneering prognostic predictive risk score for ALS, utilizing eighteen mitophagy-related genes. Furthermore, the findings indicate that four of these genes exhibit promising roles in the context of ALS prognostic.
Collapse
Affiliation(s)
- Rongrong Du
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yahui Zhu
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Zhengqing He
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xusheng Huang
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| |
Collapse
|
5
|
Stehnach WC, Cantor A, Bongiorno M. Characterisation of a novel missense mutation in the ERCC5 gene leading to group G xeroderma pigmentosum/Cockayne syndrome overlap. BMJ Case Rep 2023; 16:e253358. [PMID: 37848274 PMCID: PMC10583051 DOI: 10.1136/bcr-2022-253358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Xeroderma pigmentosum-Cockayne syndrome complex (XP-CS) is exceedingly rare, with 43 cases described over the past five decades; 21 of these cases exhibited mutations in the ERCC5 endonuclease associated with xeroderma pigmentosum, group G.We report the first known phenotypic characterisation of the homozygous chromosome 13 ERCC5, Exon 11, c.2413G>A (p.Gly805Arg) missense mutation in a female toddler presenting with findings of both XP and CS.Her severe presentation also questions previous hypotheses that only truncating mutations and early missense mutations of XPG are capable of producing the dire findings of XP-CS.
Collapse
Affiliation(s)
- William Christopher Stehnach
- Graduate Medical Education, Edward Via College of Osteopathic Medicine, Virginia Campus, Blacksburg, Virginia, USA
| | - Aaron Cantor
- Dermatology, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA
| | | |
Collapse
|
6
|
Penagos-Puig A, Claudio-Galeana S, Stephenson-Gussinye A, Jácome-López K, Aguilar-Lomas A, Chen X, Pérez-Molina R, Furlan-Magaril M. RNA polymerase II pausing regulates chromatin organization in erythrocytes. Nat Struct Mol Biol 2023; 30:1092-1104. [PMID: 37500929 DOI: 10.1038/s41594-023-01037-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Chicken erythrocytes are nucleated cells often considered to be transcriptionally inactive, although the epigenetic changes and chromatin remodeling that would mediate transcriptional repression and the extent of gene silencing during avian terminal erythroid differentiation are not fully understood. Here, we characterize the changes in gene expression, chromatin accessibility, genome organization and chromatin nuclear disposition during the terminal stages of erythropoiesis in chicken and uncover complex chromatin reorganization at different genomic scales. We observe a robust decrease in transcription in erythrocytes, but a set of genes maintains their expression, including genes involved in RNA polymerase II (Pol II) promoter-proximal pausing. Erythrocytes exhibit a reoriented nuclear architecture, with accessible chromatin positioned towards the nuclear periphery together with the paused RNA Pol II. In erythrocytes, chromatin domains are partially lost genome-wide, except at minidomains retained around paused promoters. Our results suggest that promoter-proximal pausing of RNA Pol II contributes to the transcriptional regulation of the erythroid genome and highlight the role of RNA polymerase in the maintenance of local chromatin organization.
Collapse
Affiliation(s)
- Andrés Penagos-Puig
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura Stephenson-Gussinye
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karina Jácome-López
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Amaury Aguilar-Lomas
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rosario Pérez-Molina
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
7
|
Zhu G, Khalid F, Zhang D, Cao Z, Maity P, Kestler HA, Orioli D, Scharffetter-Kochanek K, Iben S. Ribosomal Dysfunction Is a Common Pathomechanism in Different Forms of Trichothiodystrophy. Cells 2023; 12:1877. [PMID: 37508541 PMCID: PMC10377840 DOI: 10.3390/cells12141877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.
Collapse
Affiliation(s)
- Gaojie Zhu
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Danhui Zhang
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Zhouli Cao
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Hans A Kestler
- Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Donata Orioli
- Istituto di Genetica Molecolare L.L. Cavalli-Sforza CNR, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
8
|
Yu J, Yan C, Dodd T, Tsai CL, Tainer JA, Tsutakawa SE, Ivanov I. Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases. Nat Commun 2023; 14:2758. [PMID: 37179334 PMCID: PMC10183003 DOI: 10.1038/s41467-023-38416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Khalid F, Phan T, Qiang M, Maity P, Lasser T, Wiese S, Penzo M, Alupei M, Orioli D, Scharffetter-Kochanek K, Iben S. TFIIH mutations can impact on translational fidelity of the ribosome. Hum Mol Genet 2023; 32:1102-1113. [PMID: 36308430 PMCID: PMC10026254 DOI: 10.1093/hmg/ddac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.
Collapse
Affiliation(s)
- Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Theresa Lasser
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Marius Alupei
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Donata Orioli
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
10
|
Baik AH, Haribowo AG, Chen X, Queliconi BB, Barrios AM, Garg A, Maishan M, Campos AR, Matthay MA, Jain IH. Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes. Mol Cell 2023; 83:942-960.e9. [PMID: 36893757 PMCID: PMC10148707 DOI: 10.1016/j.molcel.2023.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xuewen Chen
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ankur Garg
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA
| | - Alexandre R Campos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA; Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Minina V, Timofeeva A, Torgunakova A, Soboleva O, Bakanova M, Savchenko Y, Voronina E, Glushkov A, Prosekov A, Fucic A. Polymorphisms in DNA Repair and Xenobiotic Biotransformation Enzyme Genes and Lung Cancer Risk in Coal Mine Workers. Life (Basel) 2022; 12:life12020255. [PMID: 35207542 PMCID: PMC8874498 DOI: 10.3390/life12020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Currently coal mining employs over 7 million miners globally. This occupational setting is associated with exposure to dust particles, heavy metals, polycyclic aromatic hydrocarbons and radioactive radon, significantly increasing the risk of lung cancer (LC). The susceptibility for LC is modified by genetic variations in xenobiotic detoxification and DNA repair capacity. The aim of this study was to investigate the association between GSTM1 (deletion), APEX1 (rs1130409), XPD (rs13181) and NBS1 (rs1805794) gene polymorphisms and LC risk in patients who worked in coal mines. Methods: The study included 639 residents of the coal region of Western Siberia (Kemerovo region, Russia): 395 underground miners and 244 healthy men who do not work in industrial enterprises. Genotyping was performed using real-time and allele-specific PCR. Results: The results show that polymorphisms of APEX1 (recessive model: ORadj = 1.87; CI 95%: 1.01–3.48) and XPD (log additive model: ORadj = 2.25; CI 95%: 1.59–3.19) genes were associated with increased LC risk. GSTM1 large deletion l was linked with decreased risk of LC formation (ORadj = 0.59, CI 95%: 0.36–0.98). The multifactor dimensionality reduction method for 3-loci model of gene–gene interactions showed that the GSTM1 (large deletion)—APEX1 (rs1130409)—XPD (rs13181) model was related with a risk of LC development. Conclusions: The results of this study highlight an association between gene polymorphism combinations and LC risks in coal mine workers.
Collapse
Affiliation(s)
- Varvara Minina
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Anna Timofeeva
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Anastasya Torgunakova
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Olga Soboleva
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Marina Bakanova
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Yana Savchenko
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Elena Voronina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Pharmacogenomics Laboratoriey, Lavrentiev Ave 8, 630090 Novosibirsk, Russia;
| | - Andrey Glushkov
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Alexander Prosekov
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
12
|
Thijssen KL, van der Woude M, Davó-Martínez C, Dekkers DHW, Sabatella M, Demmers JAA, Vermeulen W, Lans H. C. elegans TFIIH subunit GTF-2H5/TTDA is a non-essential transcription factor indispensable for DNA repair. Commun Biol 2021; 4:1336. [PMID: 34824371 PMCID: PMC8617094 DOI: 10.1038/s42003-021-02875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
The 10-subunit TFIIH complex is vital to transcription and nucleotide excision repair. Hereditary mutations in its smallest subunit, TTDA/GTF2H5, cause a photosensitive form of the rare developmental disorder trichothiodystrophy. Some trichothiodystrophy features are thought to be caused by subtle transcription or gene expression defects. TTDA/GTF2H5 knockout mice are not viable, making it difficult to investigate TTDA/GTF2H5 in vivo function. Here we show that deficiency of C. elegans TTDA ortholog GTF-2H5 is, however, compatible with life, in contrast to depletion of other TFIIH subunits. GTF-2H5 promotes TFIIH stability in multiple tissues and is indispensable for nucleotide excision repair, in which it facilitates recruitment of TFIIH to DNA damage. Strikingly, when transcription is challenged, gtf-2H5 embryos die due to the intrinsic TFIIH fragility in absence of GTF-2H5. These results support the idea that TTDA/GTF2H5 mutations cause transcription impairment underlying trichothiodystrophy and establish C. elegans as model for studying pathogenesis of this disease.
Collapse
Affiliation(s)
- Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Mariangela Sabatella
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Mariangela Sabatella, Princess Máxima Center for pediatric oncology, Heidelberglaan 25, 3584 CT, Utrecht, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
14
|
Liver Cirrhosis in Chronic Hepatitis B Patients Is Associated with Genetic Variations in DNA Repair Pathway Genes. Cancers (Basel) 2020; 12:cancers12113295. [PMID: 33171788 PMCID: PMC7694950 DOI: 10.3390/cancers12113295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary As DNA repair enzymes affect dynamics of liver damage and are involved in HBV viral replication, this study focused on the role of genetic variations within genes representing key DNA-repair pathways in HBV-induced liver cirrhosis. The obtained results have demonstrated that SNPs within XRCC1, ERCC2 genes may confer susceptibility to liver cirrhosis in chronic hepatitis B patients. Abstract Liver cirrhosis (LC), contributing to more than 1 million of deaths annually, is a major healthcare concern worldwide. Hepatitis B virus (HBV) is a major LC etiological factor, and 15% of patients with chronic HBV infection (CHB) develop LC within 5 years. Recently, novel host genetic determinants were shown to influence HBV lifecycle and CHB course. DNA repair enzymes can affect dynamics of liver damage and are involved in HBV covalently closed circular DNA (cccDNA) formation, an essential step for viral replication. This study aimed to evaluate the possible role of genes representing key DNA-repair pathways in HBV-induced liver damage. MALDI-TOF MS genotyping platform was applied to evaluate variations within XRCC1, XRCC4, ERCC2, ERCC5, RAD52, Mre11, and NBN genes. Apart from older age (p < 0.001), female sex (p = 0.021), portal hypertension (p < 0.001), thrombocytopenia (p < 0.001), high HBV DNA (p = 0.001), and high aspartate aminotransferase (AST) (p < 0.001), we found that G allele at rs238406 (ERCC2, p = 0.025), T allele at rs25487 (XRCC1, p = 0.012), rs13181 GG genotype (ERCC2, p = 0.034), and C allele at rs2735383 (NBN, p = 0.042) were also LC risk factors. The multivariate logistic regression model showed that rs25487 CC (p = 0.005) and rs238406 TT (p = 0.027) were independently associated with lower risk of LC. This study provides evidence for the impact of functional and potentially functional variations in key DNA-repair genes XRCC1 and ERCC2 in HBV-induced liver damage in a Caucasian population.
Collapse
|
15
|
Afifah NN, Diantini A, Intania R, Abdulah R, Barliana MI. Genetic Polymorphisms and the Efficacy of Platinum-Based Chemotherapy: Review. Pharmgenomics Pers Med 2020; 13:427-444. [PMID: 33116759 PMCID: PMC7549502 DOI: 10.2147/pgpm.s267625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Previous studies have indicated that genetic variations in individuals may result in changes in gene expression and amino acids. The effect of these changes may lead to different responses to platinum-based chemotherapy. A vast response rate interval and a short survival rate indicate that the efficacy and efficiency of the selection of chemotherapy have not been optimized. This article aims to illustrate the potential relationship of various genetic polymorphisms in response to platinum-based chemotherapy for several types of cancer. This review was conducted using articles from the last three- and five-year periods (2014-2019) that use gene polymorphism and its relationship to the efficacy of platinum-based chemotherapy as their theme. A total of 26 out of 488 relevant articles were included based on specific criteria. Through various mechanisms, genes, including ERCC1, ERCC2/XPD, XPC, XPA, XRCC1, APE-1, PARP1, OGG1, ABCC2, MRP, GSTP1, GSTM1, GSTT1, MATE1, and OCT2, have been associated with patient response to platinum-based chemotherapy. We conclude that genetic polymorphism analysis is recommended for the management of cancer so that each patient can be administered therapy based on his or her genetic profile to achieve an effective and efficient outcome.
Collapse
Affiliation(s)
- Nadiya Nurul Afifah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ruri Intania
- Dr. H.A. Rotinsulu Lung Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa I Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
16
|
Buljan M, Ciuffa R, van Drogen A, Vichalkovski A, Mehnert M, Rosenberger G, Lee S, Varjosalo M, Pernas LE, Spegg V, Snijder B, Aebersold R, Gstaiger M. Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases. Mol Cell 2020; 79:504-520.e9. [PMID: 32707033 PMCID: PMC7427327 DOI: 10.1016/j.molcel.2020.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022]
Abstract
Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.
Collapse
Affiliation(s)
- Marija Buljan
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Anton Vichalkovski
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Mehnert
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - George Rosenberger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Columbia University Department of Systems Biology, New York, NY 10032, USA
| | - Sohyon Lee
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Lucia Espona Pernas
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Qiu C, Jin H, Vvedenskaya I, Llenas JA, Zhao T, Malik I, Visbisky AM, Schwartz SL, Cui P, Čabart P, Han KH, Lai WKM, Metz RP, Johnson CD, Sze SH, Pugh BF, Nickels BE, Kaplan CD. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biol 2020; 21:132. [PMID: 32487207 PMCID: PMC7265651 DOI: 10.1186/s13059-020-02040-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Huiyan Jin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Irina Vvedenskaya
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jordi Abante Llenas
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3128, USA
- Present Address: Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex M Visbisky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Scott L Schwartz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Ping Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Pavel Čabart
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: First Faculty of Medicine, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kang Hoo Han
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843-3127, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
18
|
Zurita M, Murillo-Maldonado JM. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. Int J Mol Sci 2020; 21:ijms21020630. [PMID: 31963603 PMCID: PMC7013941 DOI: 10.3390/ijms21020630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism for the interpretation of different phenotypes during development as well as the understanding of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH in different developmental processes. Furthermore, studies performed in Drosophila of mutations in different subunits of TFIIH that have not been linked to any human diseases, probably because they are more deleterious, have revealed its roles in differentiation and cell death. In this review, different achievements made through studies in the fly to understand the functions of TFIIH during development and its relationship with human diseases are analysed and discussed.
Collapse
|
19
|
Milanese C, Bombardieri CR, Sepe S, Barnhoorn S, Payán-Goméz C, Caruso D, Audano M, Pedretti S, Vermeij WP, Brandt RMC, Gyenis A, Wamelink MM, de Wit AS, Janssens RC, Leen R, van Kuilenburg ABP, Mitro N, Hoeijmakers JHJ, Mastroberardino PG. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat Commun 2019; 10:4887. [PMID: 31653834 PMCID: PMC6814737 DOI: 10.1038/s41467-019-12640-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. ERCC1 is involved in a number of DNA repair pathways including nucleotide excision repair. Here the authors showed that reduced transcription in Ercc1-deficient mouse livers and cells increases ATP levels, suppressing glycolysis and rerouting glucose into the pentose phosphate shunt that generates reductive stress.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cíntia R Bombardieri
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sara Sepe
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - César Payán-Goméz
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Akos Gyenis
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Mirjam M Wamelink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - Annelieke S de Wit
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Leen
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Oncode Institute, Princess Máxima Center, Utrecht, Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
20
|
Semer M, Bidon B, Larnicol A, Caliskan G, Catez P, Egly JM, Coin F, Le May N. DNA repair complex licenses acetylation of H2A.Z.1 by KAT2A during transcription. Nat Chem Biol 2019; 15:992-1000. [PMID: 31527837 DOI: 10.1038/s41589-019-0354-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Post-translational modifications of histone variant H2A.Z accompany gene transactivation, but its modifying enzymes still remain elusive. Here, we reveal a hitherto unknown function of human KAT2A (GCN5) as a histone acetyltransferase (HAT) of H2A.Z at the promoters of a set of transactivated genes. Expression of these genes also depends on the DNA repair complex XPC-RAD23-CEN2. We established that XPC-RAD23-CEN2 interacts both with H2A.Z and KAT2A to drive the recruitment of the HAT at promoters and license H2A.Z acetylation. KAT2A selectively acetylates H2A.Z.1 versus H2A.Z.2 in vitro on several well-defined lysines and we unveiled that alanine-14 in H2A.Z.2 is responsible for inhibiting the activity of KAT2A. Notably, the use of a nonacetylable H2A.Z.1 mutant shows that H2A.Z.1ac recruits the epigenetic reader BRD2 to promote RNA polymerase II recruitment. Our studies identify KAT2A as an H2A.Z.1 HAT in mammals and implicate XPC-RAD23-CEN2 as a transcriptional co-activator licensing the reshaping of the promoter epigenetic landscape.
Collapse
Affiliation(s)
- M Semer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - B Bidon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - A Larnicol
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - G Caliskan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Department of Pharmaceutical Biotechnology, Faculty of pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - P Catez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - J M Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - F Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| | - N Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
21
|
Donnio LM, Miquel C, Vermeulen W, Giglia-Mari G, Mari PO. Cell-type specific concentration regulation of the basal transcription factor TFIIH in XPB y/y mice model. Cancer Cell Int 2019; 19:237. [PMID: 31516394 PMCID: PMC6734240 DOI: 10.1186/s12935-019-0945-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/18/2019] [Indexed: 11/15/2022] Open
Abstract
Background The basal transcription/repair factor TFIIH is a ten sub-unit complex essential for RNA polymerase II (RNAP2) transcription initiation and DNA repair. In both these processes TFIIH acts as a DNA helix opener, required for promoter escape of RNAP2 in transcription initiation, and to set the stage for strand incision within the nucleotide excision repair (NER) pathway. Methods We used a knock-in mouse model that we generated and that endogenously expresses a fluorescent version of XPB (XPB-YFP). Using different microscopy, cellular biology and biochemistry approaches we quantified the steady state levels of this protein in different cells, and cells imbedded in tissues. Results Here we demonstrate, via confocal imaging of ex vivo tissues and cells derived from this mouse model, that TFIIH steady state levels are tightly regulated at the single cell level, thus keeping nuclear TFIIH concentrations remarkably constant in a cell type dependent manner. Moreover, we show that individual cellular TFIIH levels are proportional to the speed of mRNA production, hence to a cell’s transcriptional activity, which we can correlate to proliferation status. Importantly, cancer tissue presents a higher TFIIH than normal healthy tissues. Conclusion This study shows that TFIIH cellular concentration can be used as a bona-fide quantitative marker of transcriptional activity and cellular proliferation.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| | - Catherine Miquel
- 2Pathology Department, Saint-Louis Hospital, Université de Paris, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Wim Vermeulen
- 3Department of Genetics, Erasmus MC, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Giuseppina Giglia-Mari
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| | - Pierre-Olivier Mari
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| |
Collapse
|
22
|
Yan C, Dodd T, He Y, Tainer JA, Tsutakawa SE, Ivanov I. Transcription preinitiation complex structure and dynamics provide insight into genetic diseases. Nat Struct Mol Biol 2019; 26:397-406. [PMID: 31110295 PMCID: PMC6642811 DOI: 10.1038/s41594-019-0220-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly's global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE-p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
23
|
Elinoff JM, Chen LY, Dougherty EJ, Awad KS, Wang S, Biancotto A, Siddiqui AH, Weir NA, Cai R, Sun J, Preston IR, Solomon MA, Danner RL. Spironolactone-induced degradation of the TFIIH core complex XPB subunit suppresses NF-κB and AP-1 signalling. Cardiovasc Res 2019; 114:65-76. [PMID: 29036418 DOI: 10.1093/cvr/cvx198] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Aims Spironolactone (SPL) improves endothelial dysfunction and survival in heart failure. Immune modulation, including poorly understood mineralocorticoid receptor (MR)-independent effects of SPL might contribute to these benefits and possibly be useful in other inflammatory cardiovascular diseases such as pulmonary arterial hypertension. Methods and results Using human embryonic kidney cells (HEK 293) expressing specific nuclear receptors, SPL suppressed NF-κB and AP-1 reporter activity independent of MR and other recognized nuclear receptor partners. NF-κB and AP-1 DNA binding were not affected by SPL and protein synthesis blockade did not interfere with SPL-induced suppression of inflammatory signalling. In contrast, proteasome blockade to inhibit degradation of xeroderma pigmentosum group B complementing protein (XPB), a subunit of the general transcription factor TFIIH, or XPB overexpression both prevented SPL-mediated suppression of inflammation. Similar to HEK 293 cells, a proteasome inhibitor blocked XPB loss and SPL suppression of AP-1 induced target genes in human pulmonary artery endothelial cells (PAECs). Unlike SPL, eplerenone (EPL) did not cause XPB degradation and failed to similarly suppress inflammatory signalling. SPL combined with siRNA XPB knockdown further reduced XPB protein levels and had the greatest effect on PAEC inflammatory gene transcription. Using chromatin-immunoprecipitation, PAEC target gene susceptibility to SPL was associated with low basal RNA polymerase II (RNAPII) occupancy and TNFα-induced RNAPII and XPB recruitment. XP patient-derived fibroblasts carrying an N-terminal but not C-terminal XPB mutations were insensitive to both SPL-mediated XPB degradation and TNFα-induced target gene suppression. Importantly, SPL treatment decreased whole lung XPB protein levels in a monocrotaline rat model of pulmonary hypertension and reduced inflammatory markers in an observational cohort of PAH patients. Conclusion SPL has important anti-inflammatory effects independent of aldosterone and MR, not shared with EPL. Drug-induced, proteasome-dependent XPB degradation may be a useful therapeutic approach in cardiovascular diseases driven by inflammation.
Collapse
Affiliation(s)
| | - Li-Yuan Chen
- Critical Care Medicine Department, Clinical Center
| | | | | | | | | | | | - Nargues A Weir
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 2C145, Bethesda, MD 20892-1662, USA.,Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Fairfax, VA, USA
| | - Rongman Cai
- Critical Care Medicine Department, Clinical Center
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center
| | - Ioana R Preston
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center.,Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 2C145, Bethesda, MD 20892-1662, USA
| | | |
Collapse
|
24
|
TFIIE orchestrates the recruitment of the TFIIH kinase module at promoter before release during transcription. Nat Commun 2019; 10:2084. [PMID: 31064989 PMCID: PMC6504876 DOI: 10.1038/s41467-019-10131-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/18/2019] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, the general transcription factors TFIIE and TFIIH assemble at the transcription start site with RNA Polymerase II. However, the mechanism by which these transcription factors incorporate the preinitiation complex and coordinate their action during RNA polymerase II transcription remains elusive. Here we show that the TFIIEα and TFIIEβ subunits anchor the TFIIH kinase module (CAK) within the preinitiation complex. In addition, we show that while RNA polymerase II phosphorylation and DNA opening occur, CAK and TFIIEα are released from the promoter. This dissociation is impeded by either ATP-γS or CDK7 inhibitor THZ1, but still occurs when XPB activity is abrogated. Finally, we show that the Core-TFIIH and TFIIEβ are subsequently removed, while elongation factors such as DSIF are recruited. Remarkably, these early transcriptional events are affected by TFIIE and TFIIH mutations associated with the developmental disorder, trichothiodystrophy. The general transcription factors TFIIE and TFIIH assemble at the transcription start site with RNA Polymerase II. Here the authors provide evidence that the TFIIEα and TFIIEβ subunits anchor the TFIIH kinase module within the preinitiation complex before their release during transcription.
Collapse
|
25
|
Timmers HTM, Tora L. Transcript Buffering: A Balancing Act between mRNA Synthesis and mRNA Degradation. Mol Cell 2019; 72:10-17. [PMID: 30290147 DOI: 10.1016/j.molcel.2018.08.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ) Zentrale Klinische Forschung (ZKF), and Medical Faculty-University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, INSERM U1258 and Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
26
|
Kolesnikova O, Radu L, Poterszman A. TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 115:21-67. [PMID: 30798933 DOI: 10.1016/bs.apcsb.2019.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factor IIH (TFIIH) is a multiprotein complex involved in both eukaryotic transcription and DNA repair, revealing a tight connection between these two processes. Composed of 10 subunits, it can be resolved into a 7-subunits core complex with the XPB translocase and the XPD helicase, and the 3-subunits kinase complex CAK, which also exists as a free complex with a distinct function. Initially identified as basal transcription factor, TFIIH also participates in transcription regulation and plays a key role in nucleotide excision repair (NER) for opening DNA at damaged sites, lesion verification and recruitment of additional repair factors. Our understanding of TFIIH function in eukaryotic cells has greatly benefited from studies of the genetic rare diseases xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD), that are not only characterized by cancer and aging predispositions but also by neurological and developmental defects. Although much remains unknown about TFIIH function, significant progresses have been done regarding the structure of the complex, the functions of its catalytic subunits and the multiple roles of the regulatory core-TFIIH subunits. This review provides a non-exhaustive survey of key discoveries on the structure and function of this pivotal factor, which can be considered as a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laura Radu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes 2019; 45:225-256. [PMID: 31627878 DOI: 10.1016/bs.enz.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite their relative simplicity, iron-sulfur clusters have been omnipresent as cofactors in myriad cellular processes such as oxidative phosphorylation and other respiratory pathways. Recent research advances confirm the presence of different clusters in enzymes involved in nucleic acid metabolism. Iron-sulfur clusters can therefore be considered hallmarks of cellular metabolism. Helicases, nucleases, glycosylases, DNA polymerases and transcription factors, among others, incorporate various types of clusters that serve differing roles. In this chapter, we review our current understanding of the identity and functions of iron-sulfur clusters in DNA and RNA metabolizing enzymes, highlighting their importance as regulators of cellular function.
Collapse
Affiliation(s)
- Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
28
|
Bucio-Mendez A, Cruz-Becerra G, Valadez-Graham V, Dinkova TD, Zurita M. The Dmp8-Dmp18 bicistron messenger RNA enables unusual translation during cellular stress. J Cell Biochem 2018; 120:3887-3897. [PMID: 30270456 DOI: 10.1002/jcb.27670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 11/07/2022]
Abstract
Alternatives to the cap mechanism in translation are often used by viruses and cells to allow them to synthesize proteins in events of stress and viral infection. In Drosophila there are hundreds of polycistronic messenger RNA (mRNA), and various mechanisms are known to achieve this. However, proteins in a same mRNA often work in the same cellular mechanism, this is not the case for Drosophila's Swc6/p18Hamlet homolog Dmp18, part of the SWR1 chromatin remodeling complex, who is encoded in a bicistronic mRNA next to Dmp8 (Dmp8-Dmp18 transcript), a structural component of transcription factor TFIIH. The organization of these two genes as a bicistron is conserved in all arthropods, however the length of the intercistronic sequence varies from more than 90 to 2 bases, suggesting an unusual translation mechanism for the second open reading frame. We found that even though translation of Dmp18 occurs independently from that of Dmp8, it is necessary for Dmp18 to be in that conformation to allow its correct translation during cellular stress caused by damage via heat-shock and UV radiation.
Collapse
Affiliation(s)
- Alyeri Bucio-Mendez
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Grisel Cruz-Becerra
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Viviana Valadez-Graham
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Tzvetanka D Dinkova
- Department of Biochemistry and Molecular Biology, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Zurita
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
29
|
XPC is an RNA polymerase II cofactor recruiting ATAC to promoters by interacting with E2F1. Nat Commun 2018; 9:2610. [PMID: 29973595 PMCID: PMC6031651 DOI: 10.1038/s41467-018-05010-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
The DNA damage sensor XPC is involved in nucleotide excision repair. Here we show that in the absence of damage, XPC co-localizes with RNA polymerase II (Pol II) and active post-translational histone modifications marks on a subset of class II promoters in human fibroblasts. XPC depletion triggers specific gene down-expression due to a drop in the deposition of histone H3K9 acetylation mark and pre-initiation complex formation. XPC interacts with the histone acetyltransferase KAT2A and specifically triggers the recruitment of the KAT2A-containing ATAC complex to the promoters of down-expressed genes. We show that a strong E2F1 signature characterizes the XPC/KAT2A-bound promoters and that XPC interacts with E2F1 and promotes its binding to its DNA element. Our data reveal that the DNA repair factor XPC is also an RNA polymerase II cofactor recruiting the ATAC coactivator complex to promoters by interacting with the DNA binding transcription factor E2F1. XPC plays an important role in the nuclear exicision repair pathways. Here the authors show that in addition, XPC plays a role in transcription regulation by interacting with KAT2A and E2F1 and recruiting the ATAC coactivator complex to promoters.
Collapse
|
30
|
Gregersen LH, Svejstrup JQ. The Cellular Response to Transcription-Blocking DNA Damage. Trends Biochem Sci 2018; 43:327-341. [PMID: 29699641 PMCID: PMC5929563 DOI: 10.1016/j.tibs.2018.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
In response to transcription-blocking DNA lesions such as those generated by UV irradiation, cells activate a multipronged DNA damage response. This response encompasses repair of the lesions that stall RNA polymerase (RNAP) but also a poorly understood, genome-wide shutdown of transcription, even of genes that are not damaged. Over the past few years, a number of new results have shed light on this intriguing DNA damage response at the structural, biochemical, cell biological, and systems biology level. In this review we summarize the most important findings.
Collapse
Affiliation(s)
- Lea H Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
31
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
Affiliation(s)
- Jenna K Rimel
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| |
Collapse
|
32
|
Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol 2018; 34:337-350. [DOI: 10.1007/s10565-018-9429-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
|
33
|
Affiliation(s)
- Guido Keijzers
- From the Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen
| | - Daniela Bakula
- From the Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen
| | - Morten Scheibye-Knudsen
- From the Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen
| |
Collapse
|
34
|
Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol 2017; 75:873-882. [PMID: 27745642 DOI: 10.1016/j.jaad.2016.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 11/17/2022]
Abstract
Photodermatoses associated with defective DNA repair are a group of photosensitive hereditary skin disorders. In this review, we focus on diseases and syndromes with defective nucleotide excision repair that are not accompanied by an increased risk of cutaneous malignancies despite having photosensitivity. Specifically, the gene mutations and transcription defects, epidemiology, and clinical features of Cockayne syndrome, cerebro-oculo-facial-skeletal syndrome, ultraviolet-sensitive syndrome, and trichothiodystrophy will be discussed. These conditions may also have other extracutaneous involvement affecting the neurologic system and growth and development. Rigorous photoprotection remains an important component of the management of these inherited DNA repair-deficiency photodermatoses.
Collapse
Affiliation(s)
- Yik Weng Yew
- Department of Dermatology, National Skin Centre, Singapore
| | | | - Graciela Spivak
- Department of Biology, Stanford University, Stanford, California
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan.
| |
Collapse
|
35
|
Specific Inhibition of HIV Infection by the Action of Spironolactone in T Cells. J Virol 2016; 90:10972-10980. [PMID: 27681137 DOI: 10.1128/jvi.01722-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
Tat protein, the HIV transactivator, regulates transcription of the HIV genome by the host transcription machinery. Efficient inhibitors of HIV transcription that target Tat or the cellular cofactor NF-κB are well known. However, inhibition of HIV Tat-dependent transcription by targeting the general transcription and DNA repair factor II human (TFIIH) has not been reported. Here, we show that spironolactone (SP), an aldosterone antagonist approved for clinical use, inhibits HIV-1 and HIV-2 infection of permissive T cells by blocking viral Tat-dependent transcription from the long terminal repeat (LTR). We found that treatment of Jurkat and primary CD4+ T cells with SP induces degradation of the XPB cellular helicase, a component of the TFIIH complex, without affecting cellular mRNA levels, T cell viability, or T cell proliferation. We further demonstrate that the effect of SP on HIV infection is independent of its aldosterone antagonist function, since the structural analogue, eplerenone, does not induce XPB degradation and does not inhibit HIV infection. Rescue experiments showed that the SP-induced block of HIV infection relies, at least partially, on XPB degradation. In addition, we demonstrate that SP specifically inhibits Tat-dependent transcription, since basal transcription from the LTR is not affected. Our results demonstrate that SP is a specific inhibitor of HIV Tat-dependent transcription in T cells, which additionally suggests that XPB is a cofactor required for HIV infection. Targeting a cellular cofactor of HIV transcription constitutes an alternative strategy to inhibit HIV infection, together with the existing antiretroviral therapy. IMPORTANCE Transcription from the HIV promoter is regulated by the combined activities of the host transcription machinery and the viral transactivator Tat protein. Here, we report that the drug spironolactone-an antagonist of aldosterone-blocks viral Tat-dependent transcription, thereby inhibiting both HIV-1 and HIV-2 infection of permissive T cells. This inhibition relies on the degradation of the cellular helicase XPB, a component of the TFIIH transcription factor complex. Consequently, XPB appears to be a novel HIV cofactor. Our discovery of the HIV-inhibitory activity of spironolactone opens the way for the development of novel anti-HIV strategies targeting a cellular cofactor without the limitations of antiretroviral therapy of drug resistance and high cost.
Collapse
|
36
|
Zurita M, Cruz-Becerra G. TFIIH: New Discoveries Regarding its Mechanisms and Impact on Cancer Treatment. J Cancer 2016; 7:2258-2265. [PMID: 27994662 PMCID: PMC5166535 DOI: 10.7150/jca.16966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
The deregulation of gene expression is a characteristic of cancer cells, and malignant cells require very high levels of transcription to maintain their cancerous phenotype and survive. Therefore, components of the basal transcription machinery may be considered as targets to preferentially kill cancerous cells. TFIIH is a multisubunit basal transcription factor that also functions in nucleotide excision repair. The recent discoveries of some small molecules that interfere with TFIIH and that preferentially kill cancer cells have increased researchers' interest to elucidate the complex mechanisms by which TFIIH operates. In this review, we summarize the knowledge generated during the 25 years of TFIIH research, highlighting the recent advances in TFIIH structural and mechanistic analyses that suggest the potential of TFIIH as a target for cancer treatment.
Collapse
Affiliation(s)
- Mario Zurita
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Cuernavaca, Morelos 62250, México
| | - Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Cuernavaca, Morelos 62250, México
| |
Collapse
|
37
|
Cruz-Becerra G, Juárez M, Valadez-Graham V, Zurita M. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation. Open Biol 2016; 6:rsob.160222. [PMID: 27805905 PMCID: PMC5090060 DOI: 10.1098/rsob.160222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mandy Juárez
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
38
|
Vijai J, Topka S, Villano D, Ravichandran V, Maxwell KN, Maria A, Thomas T, Gaddam P, Lincoln A, Kazzaz S, Wenz B, Carmi S, Schrader KA, Hart SN, Lipkin SM, Neuhausen SL, Walsh MF, Zhang L, Lejbkowicz F, Rennert H, Stadler ZK, Robson M, Weitzel JN, Domchek S, Daly MJ, Couch FJ, Nathanson KL, Norton L, Rennert G, Offit K. A Recurrent ERCC3 Truncating Mutation Confers Moderate Risk for Breast Cancer. Cancer Discov 2016; 6:1267-1275. [PMID: 27655433 DOI: 10.1158/2159-8290.cd-16-0487] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
Known gene mutations account for approximately 50% of the hereditary risk for breast cancer. Moderate and low penetrance variants, discovered by genomic approaches, account for an as-yet-unknown proportion of the remaining heritability. A truncating mutation c.325C>T:p.Arg109* (R109X) in the ATP-dependent helicase ERCC3 was observed recurrently among exomes sequenced in BRCA wild-type, breast cancer-affected individuals of Ashkenazi Jewish ancestry. Modeling of the mutation in ERCC3-deficient or CRISPR/Cas9-edited cell lines showed a consistent pattern of reduced expression of the protein and concomitant hypomorphic functionality when challenged with UVC exposure or treatment with the DNA alkylating agent IlludinS. Overexpressing the mutant protein in ERCC3-deficient cells only partially rescued their DNA repair-deficient phenotype. Comparison of frequency of this recurrent mutation in over 6,500 chromosomes of breast cancer cases and 6,800 Ashkenazi controls showed significant association with breast cancer risk (ORBC = 1.53, ORER+ = 1.73), particularly for the estrogen receptor-positive subset (P < 0.007). SIGNIFICANCE A functionally significant recurrent ERCC3 mutation increased the risk for breast cancer in a genetic isolate. Mutated cell lines showed lower survival after in vitro exposure to DNA-damaging agents. Thus, similar to tumors arising in the background of homologous repair defects, mutations in nucleotide excision repair genes such as ERCC3 could constitute potential therapeutic targets in a subset of hereditary breast cancers. Cancer Discov; 6(11); 1267-75. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1197.
Collapse
Affiliation(s)
- Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danylo Villano
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vignesh Ravichandran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann Maria
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tinu Thomas
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pragna Gaddam
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Anne Lincoln
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Sarah Kazzaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Wenz
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kasmintan A Schrader
- British Columbia Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Steve M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Flavio Lejbkowicz
- Clalit National Israeli Cancer Control Center and Department of Community Medicine and Epidemiology, Carmel Medical Center and B Rappaport Faculty of Medicine, Haifa, Israel
| | - Hedy Rennert
- Clalit National Israeli Cancer Control Center and Department of Community Medicine and Epidemiology, Carmel Medical Center and B Rappaport Faculty of Medicine, Haifa, Israel
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jeffrey N Weitzel
- Clinical Cancer Genetics (for the City of Hope Clinical Cancer Genetics Community Research Network), City of Hope, Duarte, California
| | - Susan Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J Daly
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.,Center for Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Katherine L Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gad Rennert
- Clalit National Israeli Cancer Control Center and Department of Community Medicine and Epidemiology, Carmel Medical Center and B Rappaport Faculty of Medicine, Haifa, Israel
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
39
|
Santamaría Nuñez G, Robles CMG, Giraudon C, Martínez-Leal JF, Compe E, Coin F, Aviles P, Galmarini CM, Egly JM. Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells. Mol Cancer Ther 2016; 15:2399-2412. [PMID: 27630271 DOI: 10.1158/1535-7163.mct-16-0172] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
Abstract
We have defined the mechanism of action of lurbinectedin, a marine-derived drug exhibiting a potent antitumor activity across several cancer cell lines and tumor xenografts. This drug, currently undergoing clinical evaluation in ovarian, breast, and small cell lung cancer patients, inhibits the transcription process through (i) its binding to CG-rich sequences, mainly located around promoters of protein-coding genes; (ii) the irreversible stalling of elongating RNA polymerase II (Pol II) on the DNA template and its specific degradation by the ubiquitin/proteasome machinery; and (iii) the generation of DNA breaks and subsequent apoptosis. The finding that inhibition of Pol II phosphorylation prevents its degradation and the formation of DNA breaks after drug treatment underscores the connection between transcription elongation and DNA repair. Our results not only help to better understand the high specificity of this drug in cancer therapy but also improve our understanding of an important transcription regulation mechanism. Mol Cancer Ther; 15(10); 2399-412. ©2016 AACR.
Collapse
Affiliation(s)
- Gema Santamaría Nuñez
- Cell Biology and Pharmacogenomics Department, Pharmamar SA, Colmenar Viejo, Madrid, Spain
| | - Carlos Mario Genes Robles
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, C. U. Strasbourg, France
| | - Christophe Giraudon
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, C. U. Strasbourg, France
| | | | - Emmanuel Compe
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, C. U. Strasbourg, France
| | - Frédéric Coin
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, C. U. Strasbourg, France
| | - Pablo Aviles
- Cell Biology and Pharmacogenomics Department, Pharmamar SA, Colmenar Viejo, Madrid, Spain
| | - Carlos María Galmarini
- Cell Biology and Pharmacogenomics Department, Pharmamar SA, Colmenar Viejo, Madrid, Spain.
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, C. U. Strasbourg, France
| |
Collapse
|
40
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
41
|
Rump A, Benet-Pages A, Schubert S, Kuhlmann JD, Janavičius R, Macháčková E, Foretová L, Kleibl Z, Lhota F, Zemankova P, Betcheva-Krajcir E, Mackenroth L, Hackmann K, Lehmann J, Nissen A, DiDonato N, Opitz R, Thiele H, Kast K, Wimberger P, Holinski-Feder E, Emmert S, Schröck E, Klink B. Identification and Functional Testing of ERCC2 Mutations in a Multi-national Cohort of Patients with Familial Breast- and Ovarian Cancer. PLoS Genet 2016; 12:e1006248. [PMID: 27504877 PMCID: PMC4978395 DOI: 10.1371/journal.pgen.1006248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
The increasing application of gene panels for familial cancer susceptibility disorders will probably lead to an increased proposal of susceptibility gene candidates. Using ERCC2 DNA repair gene as an example, we show that proof of a possible role in cancer susceptibility requires a detailed dissection and characterization of the underlying mutations for genes with diverse cellular functions (in this case mainly DNA repair and basic cellular transcription). In case of ERCC2, panel sequencing of 1345 index cases from 587 German, 405 Lithuanian and 353 Czech families with breast and ovarian cancer (BC/OC) predisposition revealed 25 mutations (3 frameshift, 2 splice-affecting, 20 missense), all absent or very rare in the ExAC database. While 16 mutations were unique, 9 mutations showed up repeatedly with population-specific appearance. Ten out of eleven mutations that were tested exemplarily in cell-based functional assays exert diminished excision repair efficiency and/or decreased transcriptional activation capability. In order to provide evidence for BC/OC predisposition, we performed familial segregation analyses and screened ethnically matching controls. However, unlike the recently published RECQL example, none of our recurrent ERCC2 mutations showed convincing co-segregation with BC/OC or significant overrepresentation in the BC/OC cohort. Interestingly, we detected that some deleterious founder mutations had an unexpectedly high frequency of > 1% in the corresponding populations, suggesting that either homozygous carriers are not clinically recognized or homozygosity for these mutations is embryonically lethal. In conclusion, we provide a useful resource on the mutational landscape of ERCC2 mutations in hereditary BC/OC patients and, as our key finding, we demonstrate the complexity of correct interpretation for the discovery of “bonafide” breast cancer susceptibility genes. Approximately 5–10% of breast/ovarian cancer (BC/OC) cases have inherited an increased risk of developing this malignancy. However, mutations in the two major breast cancer susceptibility genes BRCA1 and BRCA2 explain only 15–20% of all familial BC/OC cases. With the emergence of the high throughput NGS-technology, the number of proposed novel candidate genes for breast cancer predisposition continuously increases. However, a “bonafide” proof of cancer susceptibility requires a detailed characterization of candidate mutations, which we addressed in the current study. Using the DNA repair gene ERCC2 as an example, we performed a comprehensive multi-center approach, analyzing ERCC2 mutations in 1000+ patients with hereditary BC/OC. We identified 25 potential candidate mutations for cancer breast cancer susceptibility, some of them affecting ERCC2 functional activity in appropriate cell-culture based assays. However, a more dissected analysis showed no convincing co-segregation with BC/OC and there was no longer a significant overrepresentation in BC/OC when compared to regionally matched controls instead of the global ExAc variant data base, pointing to the relevance of founder-mutations. In conclusion, we provide a useful resource on the mutational landscape of ERCC2 mutations in hereditary BC/OC patients and, as our key finding, we highlight the complexity of correct interpretation for the discovery of “bonafide” breast cancer susceptibility genes.
Collapse
Affiliation(s)
- Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Steffen Schubert
- Clinic for Dermatology Venerology and Allergology, Göttingen, Germany
| | - Jan Dominik Kuhlmann
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- * E-mail:
| | - Ramūnas Janavičius
- Vilnius University Hospital Santariskiu Clinics, Hematology, Oncology and Transfusion Medicine Center, Vilnius, Lithuania
- State Research Institute Innovative Medicine Center, Vilnius, Lithuania
| | | | | | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Filip Lhota
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Elitza Betcheva-Krajcir
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luisa Mackenroth
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Janin Lehmann
- Clinic for Dermatology Venerology and Allergology, Göttingen, Germany
| | - Anke Nissen
- MGZ—Medical Genetics Center, Munich, Germany
| | - Nataliya DiDonato
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Romy Opitz
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | - Karin Kast
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Pauline Wimberger
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | - Steffen Emmert
- Clinic for Dermatology Venerology and Allergology, Göttingen, Germany
- Clinic of Dermatology, Rostock, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| |
Collapse
|
42
|
Compe E, Egly JM. Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond. Annu Rev Biochem 2016; 85:265-90. [DOI: 10.1146/annurev-biochem-060815-014857] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 67404 Illkirch Cedex, Commune Urbaine Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 67404 Illkirch Cedex, Commune Urbaine Strasbourg, France; ,
| |
Collapse
|
43
|
Alpatov R, Carstens B, Harding K, Jarrett C, Balakhani S, Lincoln J, Brzeskiewicz P, Guo Y, Ohene-Mobley A, LeRoux J, McDaniel V, Meltesen L, Minka D, Patel M, Manavi C, Swisshelm K. Rare double-hit with two translocations involving IGH both, with BCL2 and BCL3, in a monoclonal B-cell lymphoma/leukemia. Mol Cytogenet 2015; 8:101. [PMID: 26719766 PMCID: PMC4696310 DOI: 10.1186/s13039-015-0203-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022] Open
Abstract
Background Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disease characterized by multiple recurring clonal cytogenetic anomalies and is the most common leukemia in adults. Chromosomal abnormalities associated with CLL include trisomy 12 and IGH;BCL3 rearrangement [t(14;19)(q32;q13)] that juxtaposes a proto-oncogenic gene BCL3 and an immunoglobulin heavy chain, a translocation that may be associated with shorter survival. In addition to the IGH;BCL3 rearrangement, other translocations involving 14q32 locus are involved in various lymphoproliferative pathologies pointing toward the significance of IGH locus in oncogenic progression. Significantly, in the majority of B-cell neoplasms that carry an IGH;BCL3 rearrangement, it is a sole translocation involving an IGH locus. Case Presentation We report a patient who, in addition to trisomy 12, carried a rare double-hit translocation characterized by the IGH;BCL3 translocation and an additional clonal IGH;BCL2 translocation involving IGH and another proto-oncogene BCL2, t(14;18)(q32;q21), commonly found in follicular lymphoma. Further single nucleotide polymorphism (SNP) array-based analysis detected a duplication of the 58.8 kb region at 19q13.32 adjacent to the BCL3 translocation junction on chromosome 19q13. Interestingly, the duplicated region contained ERCC2 gene, which encodes a DNA excision repair protein involved in the cancer-prone syndrome, xeroderma pigmentosum. Conclusions Taken together our findings indicate the existence of double-translocation driven oncogenic events involving both IGH loci and proto-oncogenes BCL2 and BCL3. Importantly, the IGH;BCL3 translocation was characterized by the duplication of the genomic region adjacent to BCL3, containing a major DNA repair factor, ERCC2. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0203-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roman Alpatov
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Billie Carstens
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Kimberly Harding
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Carolyn Jarrett
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Sudabeh Balakhani
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Jessica Lincoln
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Peter Brzeskiewicz
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Yu Guo
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Alex Ohene-Mobley
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Jamie LeRoux
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Veronica McDaniel
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Lynne Meltesen
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | - Diane Minka
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| | | | - Cyrus Manavi
- Eastern Carolina Pathology Associates, 1705 Tarboro Street SW, Wilson, NC 27893 USA
| | - Karen Swisshelm
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, 3055 Roslyn Street, Suite 200, Denver, CO 80238 USA
| |
Collapse
|
44
|
Abstract
The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA 94305-5020,USA.
| |
Collapse
|